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Abstract

We identify relevant parameter regimes in which aneutronic fuels can undergo fusion ignition in hot-ion degenerate plasma. Because of rela-
tivistic effects and partial degeneracy, the self-sustained burning regime is considerably larger than previously calculated. Inverse bremsstrahlung
plays a major role in containing the reactor energy. We solve the radiation transfer equation and obtain the contribution to the heat conductivity
from inverse bremsstrahlung.
© 2006 Published by Elsevier B.V.
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1. Introduction

It would be desirable to achieve controlled thermonuclear
reaction that produces the fewest neutrons or no neutrons. The
most promising fuel with no neutron (sometimes called ad-
vanced fuel) is proton–boron-11 [P+B11 → 3α(2.7 MeV)] and
deuterium–helium-3 [D+He3 →p(14.7 MeV)+α(3.6 MeV)].
However, in classical plasmas, self-burning of advanced fuels
is unlikely [1], because, at high temperatures, it seems that the
bremsstrahlung loss may exceed the fusion power produced.

In Fermi degenerate plasmas, the prospect of the aneutronic
fuel burning can be very different due to the reduction of
ion–electron (i–e) collisions, which both allows the ion tem-
perature to exceed the electron temperature and reduces the
bremsstrahlung loss. In previous work [2,3], it was showed
that the fusion byproducts can be stopped primarily not by
electrons but by ions, thus allowing a regime of operation in
which ions are hotter than electrons, the so-called “hot-ion
mode” of operation. This occurs when the density is more than
ne = 1029 cm−3; self-sustained burning is then achieved where
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the ion temperature is more than 100 keV and the electron
temperature is 30 keV. This regime has more favorable energy
balance than the equal temperature mode, and so can enable the
self-sustained burning of aneutronic fuel. The reduction of the
i–e collisions can be also applied to D–T burning to achieve
high ion and low electron temperature. While much effort can
be expended to realize the hot-ion mode in conventional mag-
netic fusion [4–6], in degenerate plasmas, such an effort is not
needed, where the hot-ion mode occurs “naturally”. Also, a re-
lated effect is that in the degenerate plasma regime, the reduc-
tion in e–i collisions relative to classical plasma increases the
current drive efficiency [7].

Previous calculations of the fusion ignition regime [2,3] ig-
nored the effects of partial degeneracy and the relativistic ef-
fects on the i–e collisions, the reduction of the bremsstrahlung,
and the fraction of energy that goes from fusion byproducts into
electrons, which are now available [8]. In this Letter, we use
these result [8] to quantify more accurately the regime for fu-
sion burning, showing that the self-sustained burning regime of
advanced fuel is several times larger than the previous result
[2]. Recently Leon et al. [9] showed that plasma degeneracy
lower the ignition temperature for D–T, and that for P–B-11,
the ignition temperature can be lower than 20 keV when ρ =
3.3 × 107 g/cm3. We show that the density condition can be
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eased further. We also solve ρR-equation in the inertial confine-
ment fusion and determine the pellet dimension. Furthermore,
we show that inverse bremsstrahlung is much more efficient
than the Compton effect in the re-absorption so that the fuel
is optically thick.

This Letter is organized as follows. In Section 2, based on
[8], we identify the self-burning regime of the aneutronic fuel,
and solve a 0D power balance equation to show that burn-
ing is feasible. In Section 3, we solve ρR equation. In Sec-
tion 4, we consider various aspects of the re-absorption mecha-
nism and show that the fuel re-absorbs photons via the inverse
bremsstrahlung. In Section 5, a summary and conclusion are
given.

2. Regimes of self-burning in a degenerate plasma

In previous work [2], we showed that the optimal fuel con-
centration, ε = nB/np , is 0.3 and the electron density should
be larger than n0 = 6.69 × 1028 (1/cm3) for self-burning of
P–B-11. For an example, when ne = 2n0 (the Fermi energy
EF = 95 keV), we showed that Te = 27 keV when Ti =
200 keV. In the D–He-3 case, we showed that as an example,
for ρ = 3 × 105 (g/cm3) (EF = 90 keV) and nD/nHe = 0.1,
Te = 35 keV when Ti = 70 keV for self-burning. However, this
calculation was made using the classical bremsstrahlung for-
mula and zero electron temperature stopping frequency without
relativistic corrections and partial degeneracy effects.

In our recent work [8], we apply the work on the stopping
[10,11] to show how the partial degeneracy can change the stop-
ping in our particular regime. We also show that the relativistic
effects reduce the electron stopping by 10–20%, which agree
well with Nagy [12]. We then show how the partial degeneracy
and the relativistic effects can change the prediction about the
fraction of energy that goes from fusion by-products into elec-
trons. We show in this section how these effects ignored will
expand the self-burning regime further.

2.1. 0D power balance equation

We now integrate, numerically in time, the fuel evolution
using the reduction formula in radiation and stopping power
from [8]. We assume that the fuel is homogeneous in space. The
densities and temperatures of electrons and ions are governed
by the following equations [13]:
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The bremsstrahlung losses, PB , is given in [14]; the fusion
power, PF , is given in [15]; η, which was analyzed in [8],
is the fraction of energy that goes from fusion byproducts
into electrons; the densities of fusing-ion species are n1 and
n2; the density of the fusion by-product is nF ; we define
αF as the number of F -particles per fusion; the energy input
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by Pie = (ΣiniZi/mi)(8/3π(e4m2
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where mn is the mass of a neutron), we can simplify Eq. (1)
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dñF

ds
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4). The same analysis can be performed for the D–He-3
fuel. We do not repeat the analysis. However, the result of the
numerical computation is presented in the next section.

2.2. 0D power balance for the P–B-11

In Fig. 1, we show the time integration of the electron and
the ion temperature, the remaining fraction of Boron fuel for
ne = 4×1028 cm−3 (EF = 43 keV) with the initial condition of
Te = 0, Ti = 200 keV and nB/nP = 0.25. We also plot the frac-
tion of energy from fusion byproducts to electrons as a function
of time. Initially, the ion temperature decreases in time: the fu-
sion power is less than the energy dissipation from ions into
electrons. The electron temperature increases in time because
electrons cannot radiate the energy input from ions fast enough
since the bremsstrahlung is much smaller than the classical
prediction. As electron temperature increases, i–e collisions de-
crease, and energy transfer from ions then decreases. Thus,
fusion power becomes higher than energy dissipation from ions
to electrons, and ion temperature increases. As shown, the max-
imum of electron temperature matches with the minimum of
the fraction of energy from fusion byproducts into electrons.
According to previous work [2], since ne is the below the crit-
ical density n0, there is no self-burning regime. However, in
that analysis, the partial degeneracy, the relativistic effect in
the stopping power, and the reduction of the bremsstrahlung
losses are entirely ignored. As shown in the figure, the fuel is
self-burning due to the fact that those ignored factor eases the
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Fig. 1. The time integration of electron and ion temperature, the remaining frac-
tion of Boron fuel for ne = 4 × 1028 cm−3 (EF = 43 keV) with the initial
condition Te = 0, Ti = 200 keV and nB/nP = 0.25. Top left: the electron
temperature (Y -axis: the temperature in keV, X-axis: the time in the unit of
0.5 × 10−13 s). Top right: the ion temperature (Y -axis: the temperature in
keV, X-axis: the time in the unit of 0.5 × 10−13 s). Bottom left: the fraction
of energy from an alpha particle to electrons (Y -axis: re , X-axis: the time in
the unit of 0.5 × 10−13 s). Bottom right: the fraction of remaining boron fuel
nB(τ)/nB(0).

condition further. For too large or too low ε, the fuel will not
burn due to the severe radiation losses. We can show that, for
this density, ε must be 0.2 < ε < 0.4 for the fuel to be self-
burning.

2.3. 0D power balance equation for the D–He-3

In Fig. 2, we show the same set of 0D power balance equa-
tion for ne = 1028 cm−3 (EF = 16.9 keV) with the initial con-
dition of Te = 78, Ti = 78 keV and nd/nhe = 0.1. Due to the
reduction of the i–e collisions, the fuel is self burning, and ion
temperature reaches 200 keV.

In Fig. 3, we show the same set of 0D power balance equa-
tion for ne = 4 × 1027 cm−3 (EF = 9 keV) with the initial
condition of Te = 78 keV, Ti = 78 keV and nd/nhe = 0.1. As
shown, the fuel is self-burning. However, because EF is com-
parable to the initial proton energy divided by electron–proton
mass ratio, the assumption vF � v (v is proton velocity) is not
valid and there can be 100% errors in i–e collision rate. How-
ever, this computation suggests that D–He-3 can be burn for the
density ρ ∼= 104 g/cm3 and the temperature Ti

∼= 100 keV.

3. ρR equation and pellet dimension

To find the pellet dimension and total power, we solve the
ρR equation (for a review, see [16]) in the P–B-11 with ε = 0.3
and ρ = 2.0 × 105 (g/cm3):

(3)
dx

dt
∼= np〈σv〉x(0.7 + x),

where x is the ratio of the deuterium density to the initial he-
lium density; x = 0.3 at t = 0, and x = 0 at total burn-up.
The solution is x/(0.7 + x) ∼= 0.3 exp(−tnp〈σv〉). For the total
Fig. 2. The time integration of electron and ion temperature, the remaining frac-
tion of deuterium fuel for ne = 1028 cm−3 (EF = 17 keV) with the initial
condition Te = 78 keV, Ti = 78 keV and nd/nhe = 0.1. Top left: the elec-
tron temperature (Y -axis: the temperature in keV, X-axis: the time in the unit
of 0.5 × 10−13 s). Top right: the ion temperature (Y -axis: the temperature in
keV, X-axis: the time in the unit of 0.5 × 10−13 s). Bottom left: the fraction
of energy from an alpha particle to electrons (Y -axis: re , X-axis: the time in
the unit of 0.5 × 10−13 s). Bottom right: the fraction of remaining boron fuel
nD(τ)/nD(0).

Fig. 3. The time integration of electron and ion temperature, the remaining frac-
tion of deuterium fuel for ne = 4 × 1027 cm−3 (EF = 9 keV) with the initial
condition Te = 78 keV, Ti = 78 keV and nd/nhe = 0.1. Top left: the elec-
tron temperature (Y -axis: the temperature in keV, X-axis: the time in the unit
of 0.5 × 10−13 s). Top right: the ion temperature (Y -axis: the temperature in
keV, X-axis: the time in the unit of 0.5 × 10−13 s). Bottom left: the fraction
of energy from an alpha particle to electrons (Y -axis: re , X-axis: the time in
the unit of 0.5 × 10−13 s). Bottom right: the fraction of remaining boron fuel
nD(τ)/nD(0).

burn-up, the confinement time tc = R/Cs must be longer than
1/np〈σv〉 ∼= 0.5 × 10−13 s, where Cs is the sound wave veloc-
ity, and R is the pellet dimension. Assuming Cs

∼= √
nEF /ρ,

then R must be larger than 10−4 cm. In a conventional ρR

equation: f = ρR/(ρR + β), where f the burn fraction, and
β = 3MCs/〈σv〉. We can estimate that for the D–He-3 or the
P–B-11, β ∼= 25–50 g/cm2. For the P–B-11 case, by com-
pressing a pellet to a state with ρ ∼= 105 g/cm3 and the ra-
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dius R ∼= 0.002 cm, the input at the electron Fermi energy is
4 MJ and the output will be 160 MJ. In this case, the confine-
ment time is estimated longer than a picosecond and is long
enough. For the D–He-3 case, by compressing a pellet to a state
with ρ = 104 g/cm3, and the radius R = 0.01 cm, the input at
the electron Fermi energy is 7 MJ, and output energy will be
600 MJ. In this case, the confinement time can be estimated to
be longer than a picosecond and is long enough. The feasibility
as a reactor for either of these fuels is low because the gain is
smaller than 100. The gain is 10 times smaller than D–T fuel.
We note that the gain can be as large as 1000 in D–T fuel [16].

4. Radiation re-absorption

The radiated photons are absorbed mainly via the inverse
bremsstrahlung or the Compton processes. Eliezer [13] has
shown that, in some regime with a particular temperature range,
the Compton process dominates the inverse bremsstrahlung. We
show in this section that the opposite is true in our regime. For
this, we develop the Green’s function approach and calculate
the heat conductivity due to photon-induced transfer.

4.1. Compton effect

In the reference frame in which a electron is at rest, the
Compton scattering cross section is given by the Klein–Nishina
formula as

(4)
dσKN

dΩ
= r2
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2
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ε2

(
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ε
+ ε

ε1
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)
,

where σT = 8π/3r2
0 = 6.65 × 10−25 cm2 is the Thomson

cross section, and ε (ε1) is the initial (final) photon energy.
The relationship among ε1, ε and Θ is given as ε1 = ε/[1 +
(ε/mec

2)(1 − cosΘ)]. If ε 	 mec
2, then ε1 ∼= ε and the cross-

section becomes the Thomson elastic cross section. By integrat-
ing Eq. (4) over the solid angle, the total Klein–Nishina cross
section can be obtained as
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where x = h̄ν/mec
2. In non-relativistic regime (x 	 1), it can

be simplified as σ = σT [1 − 2x + (26/5)x2].
Let us now estimate how much a photon travels before most

of its energy is re-absorbed by electrons. If the photon energy
is small compared with the rest mass, the average energy ab-
sorbed per a Compton scattering can be estimated as ε(ε/mec

2)

from Eq. (5). The energy equations for the photon can then
be written as (dε/dt) = −neσT c(ε/mec

2)ε, whose solution is
ε(t) = 1/(1 + t/τC) with 1/τC = (neσT c)(ε0/mec

2), where ε0
is the initial energy of the photon. At t = t1/2 = τC , the half of
the photon’s energy is re-absorbed by electrons. The distance
traveled by a photon during t = t1/2 can be estimated as fol-
lows. The photon traveling can be considered as the random
work (at each collision, the photon reduces its energy by small
amount and changes its direction randomly). Then, the photon
position can be obtained as a solution of the simple diffusion
equation, whose solution is a Maxwellian with only one unde-
termined parameter (standard deviation L). Since the average
time interval between the scattering is τn

∼= 1/neσT c, the diffu-
sion coefficient D can be estimated as D ∼= c2tn (assuming the
photon is scattered isotropically). Then, at t = t1/2, the root-
mean square of the distance that the photon has traveled can
be estimated as L ∼= √

Dt1/2 = (1/neσT )
√

mec2/ε(0). We can
easily see that the less energetic the photon is, the more distance
it travels before it loses half of its energy. As an example, for
electron density ne = 1029 cm−3, we obtain L ∼= 10−4 cm for a
10 keV photon. However, the actual L is much larger than the
result because the Compton scattering is much reduced from
the degeneracy.

4.2. Inverse bremsstrahlung

Inverse bremsstrahlung has been calculated classically by
Dawson and Oberman [17], then by Silin [18]. Later, Seely and
Harris [19] calculated one-photon and multi-photon process us-
ing the Born approximation and found that the result matches
the result by Dawson and Oberman [17]. The multi-photon
process of inverse bremsstrahlung is refined later by a few
authors [20,21]. We use some of the result from Shima and
Yatom [20].

The one-photon process in completely degenerate plasma
and partially degenerate plasma has been presented in [20]. In
this section, we assume the complete degeneracy. From Shima’s
result, we write the absorption formula of one-photon process
in laser field as

(6)
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where W is in the units of eV/cm3, vF is the Fermi energy,
ω is the laser frequency, E is the electric field strength of the
laser, and q = h̄ω/2mev

2
F . Note that the electric field and pho-

ton density can be related as nph̄ω = (E2/8π), where np is the
number of photon per volume. Using this, we can obtain the
inverse bremsstrahlung time scale as
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As opposed to the Compton process, the photon is absorbed
by just a one-step process. The time scale ratio between the
Compton process and the inverse bremsstrahlung is given from
the last section and Eq. (7) as

(8)νi(ω)τC = 3
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niZ
2
i

ne
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c
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)3
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)
ω2

pe

ω2
Γ,

where Γ ∼ O(c2k2
F /ω2) is much larger than one from the

reduction of the Compton effect due to the degeneracy. If
νi(ω)τC > 1, the inverse bremsstrahlung dominates the Comp-
ton effect. For example, when ne = 1029 cm3 and Zi = 1, the
inverse bremsstrahlung is faster than the Compton scattering
by more than a factor of 2 for a 30 keV photon. Note that
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the self-burning regime identified in [2] has the electron tem-
perature less than 30 keV, and an energetic photon from the
bremsstrahlung normally have energy less than 30 keV. The in-
verse bremsstrahlung thereby dominates the Compton effect in
our regime of interest.

Another time scale involved is the time in which an excited
electron with energy E emits most of its energy by photons.
This problem is dealt in [8], and the frequency is given also
from Eq. (26) in [22] as νB = (niZ

2
i σT c)(e2/h̄ve). The ratio be-

tween νi to νB is νi/νB = 3/2(c/vF )3 log(1/q)(ω2
pe/ω

2)(h̄vF /

e2). We note that νi/νB � 1 unless ω � ωpe.
Let us summarize what we have done until now. Firstly, the

Compton effect can be ignored in comparison to the inverse
bremsstrahlung unless the photon frequency is much higher
than the plasma frequency (h̄ωpe

∼= 7 keV). Secondly, a pho-
ton travels during 1/νi(ω) before absorbed by electrons via the
inverse bremsstrahlung, and the excited electron radiates pho-
tons with various frequencies during 1/νB . These photons are
absorbed by electrons again, and then re-radiated with differ-
ent frequencies. Since νi/νB � 1 unless ω � ωpe, the energy
of photon will stay longer in the form of electron kinetic en-
ergy rather than in the form of photon energy. Especially if a
photon has energy less than the plasmon (ω < ωpe), the time
interval in which an electron radiates via bremsstrahlung is a
hundred times longer than the time interval in which a pho-
ton is absorbed via inverse bremsstrahlung. Thus, we can safely
assume that, for a photon ω < ωpe, the energy is instantly ab-
sorbed by electrons, and such a photon does not exist any more
in the plasma. Though it is well known that a macroscopic wave
cannot travel in a conventional plasma if ω < ωpe, the relevance
of such a property to non-correlated photons from the inverse
bremsstrahlung is apparently new.

4.3. Green’s function for inverse bremsstrahlung

We now address the following question: given a photon with
a frequency ω0 at the origin at t0, how do its frequency and
position evolve in time? Or what is the energy density spread
ρ(ω, r, t : ω0,0, t0) as a function of position and frequency?

The photon travels a distance δl0 = c/νi(ω0) in the direction
of â0 and is absorbed by an electron. Let us assume that an
electron does not move its position and emits the photons by
the bremsstrahlung in time τB = 1/νB . Now, choose one of the
photons emitted with a probability weight proportional to the
energy of the photon (what we are interested in is energy not
number of photons), and call it the first photon. The first photon
travels the distance δl2 = c/νi(ω1) in the direction of â1 and is
absorbed by an electron. The electron emits the second photon
and so on. After n steps, the photon position is given as

(9)δL = c
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1
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)
.

From Eq. (7), we can write the above equation as
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â0 + ω2

1

ω2
0
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The time taken for this whole process can be estimated as
T = nτB from the assumption that νi/νB � 1. It is noted that
δL is a random variable. We followed a path of the photons for
which a lot of alternative paths are possible. However, by sum-
ming up many trial paths, each δL is statistically the same due
to the law of large number. We thereby assume that δL repre-
sent the whole paths soundly in the statistical sense and δL is a
Gaussian.

In Eq. (10), a number of random variables are involved.
Firstly, âi is the set of independent random variables which is
uniform over the direction with only constraint |âi | = 1. Sec-
ondly, gi = ωi/ωi−1 are also independent random variables,
and from Eq. (36) in [8], we note that gi is distributed uni-
formly in the unit interval 0 � gi � 1. With these consideration,
it is trivial to show 〈δL〉 = 0 and

〈
(δL)2〉 = (δl0)
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[
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We can do the same analysis for ωn = ω0(ω1/ω0) · · ·ωn/ωn−1
with the result: 〈ωn〉 = ω0(1/2)n and 〈ω2

n〉 = ω2
0(1/3)n. Assum-

ing δL is a Maxwellian, we obtain the Green’s function ρ as
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where n ∼= t/τB . The photon frequency exponentially decays
with time and reach the cutoff frequency ωpe quickly. We can
eliminate ω in ρ by integrating ω out with the assumption that
the relevant time-scale for consideration is larger than τB . Then,
the time independent Green’s function ρ is given only as a func-
tion of the position and frequency as

(11)ρ∞(r,ω0) =
(

1

2π(δl0(ω0))2

)3/2

exp

[
−1

2

r2

(δl0(ω0))2

]
.

For just one-step process, the Green’s function is given as

(12)ρ1(r,ω0) = 1

8π(δl0(ω0))3
exp

[
− r

δl0(ω0)

]
.

For an example, for a hydrogen plasma with ne = 1029 cm−3

and a photon with h̄ω0 = 30 keV, we obtain δl0 = 10−5 cm.
This is much smaller than the pellet dimension that we esti-
mated in Section 3.

4.4. Non-local electron energy transfer equation and heat
conductivity

In the previous section, the inverse bremsstrahlung has been
shown to dominate the Compton effect in re-absorption mecha-
nism for a reasonably low energy photon, and the fuel can hold
the radiated energy for much longer time than we expect. This
makes it necessary for us to include the re-absorption in the
fuel evolution equation since most of radiations are not lost but
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retained. Here, using the Green’s function we derived in last
section, we rewrite the full evolution equation and derive the
heat conductivity.

As in Section 2.1, the evolution of the electron temperature
is

(13)
3

2
n2

dTe

dt
= Pie − PB + ηWF + Wd − (

niZ
2
i

)
neB(T ),

where Pie is energy input from hot ions, PB is the bremsstrah-
lung losses, WF is the fusion power and η is the fraction of en-
ergy from the fusion by-product to the electrons, and Wd is the
electron heat diffusion via Coulomb collisions. From [8], the
bremsstrahlung PB is given as PB = K

∫
W(Te,ω)dω, where

we write explicit dependence of W on Te from Eq. (29) in [8].
As shown in the previous section, the radiated power is retained
by electrons non-locally at different locations. Thereby, PB is
no longer given by the local quantity but by an integral of the
Green’s function:

PB(r) = +
∫

W
(
Te(r,ω)

)
dω

(14)−
∫ [ ∞∫

0

ρ(r − r1,ω)W
(
Te(r1),ω

)
dω

]
dr1.

As long as δl0(ω) 	 R with the fuel dimension R, the
bremsstrahlung is not energy-loss but diffusion. We can see
readily that Eq. (13) becomes integro-differential equation,
which might be intractable.

However, when Te(x) is slowly varying, the bremsstrahlung
PB in Eq. (14) has the form such as PB = κ∇2Te, and κ is
the heat conductivity from the radiative transfer. Let us assume
that the electron temperature has only linear x-dependence so
that Te = T0 + x(dT /dx), where dT /dx is very small. The en-
ergy flux through x = 0 plane from the negative-x region to the
positive-x region is

F+ = +
∞∫

0

dω

∫
x1<0

dx1 dy2 dz2

∫
x>0

dx dy dz

× [
ρ(r − r1,ω)W

(
Te(x1),ω

)]
.

The energy flux from the positive-x region to negative-x region,
F−, can be similarly obtained. The net flux, F = F− − F+ is
then proportional to the dT /dx, whose coefficient is the heat
conductivity:

κ = +2

∞∫
0

dω

∫
x1>0

dx1 dy1 dz1

∞∫
0

da

×
[
ρ(a + x1, y1, z1,ω)

∂W

∂Te

x1

]
.

By using ρ1, we obtain

(15)κ1 = 1

2
a1

∞∫
0

(
δl0(ω)

)2 ∂W

∂Te

dω,
where a1 is

(16)a1 =
∞∫

0

da

∞∫
a

ds

[ ∞∫
0

dt exp
(
−

√
s2 + t2

)]
.

By using ρ∞, we obtain

(17)κ∞ = 1

2

∞∫
0

δl0(ω)2 ∂W

∂Te

dω.

5. Discussion and conclusion

In summary, based on the correction of the stopping power
from partial degeneracy, we show that the self-burning regime
is larger than the previous result [2]. We also show that in re-
absorption, the inverse bremsstrahlung dominates the Compton
effect and the fuel is optically thick for bremsstrahlung losses.

These results suggest an optimal ICF regime to produce net
energy using advanced aneutronic fuel. In this regime, the pel-
let mass is 1–20 times that of a D–T pellet, and the dimension R

in compressed state is 3–8 times smaller than that of a D–T pel-
let. The output energy is 100–1000 MJ. The gain, defined as the
ratio of the output to the total Fermi energy, is 40–200. Further-
more, since all the fusion energy resides in charged particles,
the energy conversion efficiency is far better than for D–T fuels.
However, unless a method for the extreme compression regime
here is devised, the burning of aneutronic fuel in this regime
might not be realizable. The creation of a hot spot is also prob-
lem: The hot spot must be 10 times hotter than the case of D–T.
One might use a hybrid concept which uses uranium inside the
pellet [23,24], or possibly chain-reaction involving D–T [3].

There are several aspects that we ignored in the computation.
First, while 0D power balance equation suggests also that it may
be possible to burn the D–He-3 at densities ne 	 1028 cm−3,
the assumption that vF � V with V being the velocity of the
fusion byproduct breaks down at ne 	 1028 cm−3 since the pro-
ton is very energetic. Then, the stopping power will be more
than that we predicted due to the velocity dependence of the
stopping power [25,26]. The treatment of the ion stopping when
vF

∼= V , however, is out of the scope of this Letter. Second,
due to the degeneracy, the heat capacity of the electron gas is
smaller than the classical electron gas. As ions heat partially de-
generate electrons, the electrons become hot more quickly than
our estimate in this Letter, which will reduce the ion stopping.
Therefore, the reduced heat capacity will ease the burning con-
dition. Third, in our simulation we included neither the particle
losses in the pellet nor the radiation re-absorption. Fourth, our
treatment of the relativistic effect breaks down when the elec-
tron temperature exceed 150 keV. While there exists a more
rigorous theory [27], it is not computationally tractable. A valid
approximation of the theory should be devised. The largest
outstanding issue in this regime, however, remains a practical
means for the compression and creation of the hot spot.
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