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Nonresonant forces by applied rf waves in plasmas are analyzed. Along the background dc magnetic
field, the force arises from the gradient of the ponderomotive potential. Only when the dc magnetic
field is straight, however, is this parallel force completely consistent with that from the single
particle picture, where the ponderomotive force depends on the gradients of rf fields only. Across the
dc magnetic field, besides the ponderomotive force from the particle picture, additional Reynolds
stress and polarization stress contribute to the total force. For waves with frequency much lower
than the cyclotron frequency, the perpendicular forces from the particle and fluid pictures can have
opposite signs. In plasmas with a symmetry angle �e.g., toroidal systems�, nonresonant forces cannot
drive net flow or current in the flux surface, but the radial force may influence macroscopic behavior
of plasma. Moreover, nonresonant forces may drive flow or current in linear plasmas or in a
localized region of toroidal plasmas. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2775431�

The use of radio frequency �rf� power to drive plasma
current and/or flow has received considerable discussion.1–8

Although current drive and flow drive usually concerns dif-
ferent directions of the driving force on different species, the
physics of the nonlinear force9 by applied rf waves is funda-
mentally unified. Recently, Gao, Fisch, and Qin10 �GFQ� dis-
cussed the rf force by low frequency waves in the picture of
a single particle, a fluid element, and a kinetic plasma, re-
spectively. The GFQ paper especially focused on the parallel
force and found that the collisionless nonresonant force of-
fered by the quasilinear electromagnetic force is completely
cancelled by the nonlinear stress force. Therefore, in colli-
sionless plasmas, none of the nonresonant forces by low fre-
quency waves can drive parallel current and it negates the
scheme of steady current driven by helicity injection of ap-
plied low frequency waves. A similar work was performed
by Myra, Berry, D’Ippolito, and Jaeger,11 �MBDJ� where
both the nonlinear stress and Lorentz force are also included
in a kinetic moment approach that was developed to treat
rf-driven flows. While certain flow-drive effects could be
treated generally, the nonlinear kinetic stress terms in the
MBDJ paper were only given for the case of perpendicular
forces and rf field gradients in a constant dc magnetic field. It
was found that the forces driving flux-surface-averaged flows
consisted of energy absorbing terms and dissipative stresses
only.

These two works are complementary in the geometry
and components of force considered. Also, the absence of the
nonresonant force in the two papers is due to different
mechanisms. The GFQ paper assumes that the gradient of the
rf field is perpendicular to the dc magnetic field, so the non-
resonant force is in the perpendicular direction and then the
parallel force is totally due to resonant �i.e., dissipative�

physics. In the MBDJ work, the nonresonant force disap-
pears after projecting the local force onto the parallel and
toroidal direction and averaging over a flux-surface. This op-
eration is valid in toroidal plasmas since averaged forces and
flows in the flux-surface, namely poloidal and toroidal, are
usually what is important. However, the radial force, al-
though driving no flow, affects the force-balance in magne-
tohydrodynamics �MHD� equilibrium, the radial electric field
and accordingly the stability of the plasma. On the other
hand, the flux-surface average is not appropriate in some
cases, for example in linear devices or in a localized region
of toroidal systems, where the local force may drive flow or
current. Therefore, in some sense, an analysis of the local
force is more general. The purpose of the present Brief Com-
munication is to extend the local analysis of parallel forces in
Ref. 10 to all directions in a general inhomogeneous back-
ground magnetic field.

The rf force includes nonresonant and resonant compo-
nents. The latter arises from the resonant mechanism be-
tween waves and thermal particles, such as Landau damping
or cyclotron damping. We can use a nonlinear kinetic ap-
proach to derive a detailed expression for the resonant
force.5,10,11 However, it is found that, from cold plasmas to
thermal plasmas, except for the details, the nonresonant force
is not changed in nature.10,11 Therefore, the cold-fluid model
is useful and convenient for analyzing nonresonant forces. In
cold plasmas, the fluid velocity can be considered the same
as the velocity of a single particle; on the other hand, when
the kinetic theory is applied, the velocity given by the single
particle picture can still be considered as the perturbation of
the microcosmic canonical velocity variable by the rf field
and the physics is not lost. Nonresonant forces by rf waves
act on the bulk plasma rather than on selected particles,
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therefore they are usually referred to as ponderomotive
forces. The “ponderomotive force” is a nonlinear force that a
charged particle experiences in a rapidly oscillating, inhomo-
geneous electromagnetic field. Its mechanism can be under-
stood by considering the difference between the restoring
force at one turning point and that at the other in one cycle of
oscillation due to the inhomogeneity in the field. The pon-
deromotive force does not rely on the wave-particle reso-
nance; therefore its concept can be easily extended to the
fluid picture. In the rest of this Brief Communication, we
will discuss the local nonresonant force in the cold fluid
model, as well as in the single particle picture. It is noted
that, although the ponderomotive forces in both particle and
fluid pictures have been derived before,9 a further analysis
will give us a more comprehensive understanding of nonlin-
ear ponderomotive forces by rf waves.

First, we consider a single particle, with mass m and
charge q, under a background dc magnetic field B and a rf
wave with electric and magnetic fields, E1, B1�exp�i�k ·r
−�t��. If the spatial perturbed displacement and the average
drift displacement are small compared to the scale of the
field, the ponderomotive force on a single particle can be
represented as

fsp = 1
2 Re��p1 · ��E1

* + p1 � �� � E1
*��

= 1
2 Re���E1

*� · p1� , �1�

where p1�q�1=� ·E1 is the dipole moment with a perturbed
displacement �1. When the polarizability � is Hermitian, the
force can be rewritten as

fsp = 1
4 ���E1

* · p1� − ���E1
* · p1�� . �2�

Here the operator �� denotes a spatial derivative holding E1

fixed �both the explicit E1 and the one inside p1�. Therefore,
the ponderomotive force on a single particle is only due to
the inhomogeneity of rf fields, which, in fact, can be seen
from Eq. �1� directly. Using the single particle motion equa-
tion,

− m�2�1 = qE1 − i�q�1 � B , �3�

we can rewrite the last term of Eq. �2� and the single particle
ponderomotive force becomes

fsp =
1

4
���E1

� · p1� +
�

q
��B� · �ip1

� � p1�� . �4�

When the inhomogeneity of the equilibrium magnetic field is
much smaller than that of the applied rf field, the force re-
duces to the well-known form—the gradient of the pondero-
motive potential.

For a fluid element, the electric field force due to the
displacement of a single particle is replaced by a force due to
the charge accumulation by the divergence of the flow, and
the Reynolds stress should be included as well. The Rey-
nolds stress describes the net transfer of momentum across a
surface in a turbulent fluid because of fluctuations in fluid
velocity, therefore its divergence gives a volume force. The
total force on a fluid element �strictly speaking the force
density� is

Fcf = 1
2 Re��1E1

* + nqv1 � B1
* − � · �nmv1v1

*�� , �5�

where �1=−� ·np1 is the charge density, v1=−i��1 is the
perturbed velocity and B1= �1/ i��� �E1 is the rf magnetic
field. This force is connected with the single particle pon-
deromotive force by

Fcf = nfsp − 1
2 Re�� · �np1E1

* + nmv1v1
*�� . �6�

The physics is clear. Besides the single particle ponderomo-
tive force, a fluid element encounters two surface forces, one
coming from the Reynolds stress and the other from the po-
larization stress. Using the cold fluid momentum equation,
i.e., the single particle motion equation, Eq. �3�, we have

Fcf = nfsp +
1

2
Re�� · �in

�

q
p1p1

* � B	� . �7�

Since � ·B=0, we have ��B� · �p1
*�p1�=p1� �p1

* ·��B−p1
*

� �p1 ·��B. Then, the �B term in fsp is cancelled, and Eq. �7�
is rewritten as

Fcf =
n

4
� �E1

* · p1� +
1

2
Re
�

q
�� · �inp1p1

*�� � B� . �8�

Using the identity �� �����=� · ���−��� valid for arbi-
trary vectors � and �, we can recast Eq. �8� into the form

Fcf =
n

4
� �E1

* · p1� −
�

4q
B � � � �inp1

* � p1� . �9�

For a system with dc magnetic field symmetry in the direc-
tion of a periodic variable � �such as the toroidal direction in
a tokamak or the azimuthal direction in a linear device�, the
torque is

Re� · Fcf =
n

4
Re� · ��E1

* · p1� +
�

4q
� · ��Re� � B�

� �inp1
* � p1�� . �10�

Here we have used �� �Re��B�=−����=0 where � is a
magnetic flux function and R is the �major� radius. The flux
surface average of the first term in Eq. �10� vanishes because
of periodicity in �, and the flux surface average of the second
term vanishes because Re��B is normal to the flux surface.
The flux surface average of B ·Fcf also vanishes since the
flux-surface average will annihilate any result of the operator
B ·� on any function. Then, we conclude that flux surface
averages of all nonresonant force components in the surface
vanish, in agreement with MBDJ.

Now, we return to the analysis of the local force. From
Eq. �8� or Eq. �9� we can see that, along the dc magnetic
field, the nonlinear force on a fluid element is strictly the
gradient of the ponderomotive potential, multiplied by the
density n. Note, in this case, that the inhomogeneity of the
background magnetic field also contributes to the force
through the polarization p1=� ·E1. From Eq. �7�, we see that
the parallel force exactly equals the single particle force only
when the background magnetic field is straight. In this case
the parallel force depends on the parallel gradient of the rf
field.
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In the GFQ paper, the rf field is uniform along the dc
magnetic field, so the parallel nonresonant force is zero.
However, if an asymmetry such as a gradient in the potential
in the parallel direction is artificially constructed, the current
drive then arises from rearranging particle phase space
through Hamiltonian forces under energy absorption.8 We
have shown that the parallel force will disappear when aver-
aged over the flux surface in toroidal systems. Therefore,
parallel current/flow drive by nonresonant force is effective
only in linear devices or in a localized region in toroidal
devices.

Next, we focus on the perpendicular component of the
force. Besides the single particle ponderomotive force, the
nonlinear stress contributes significantly to the perpendicular
force. In Eq. �8� the force from the first gradient term is
obviously along the direction of the inhomogeneity, while
the second term provides the possibility of “off-diagonal”
drive. An example of this “off-diagonal” drive is that the
inhomogeneity of rf fields along the dc magnetic field can
induce local forces in the perpendicular plane, which can be
easily identified from Eq. �8�. However, the perpendicular
gradient of rf fields results in a local force only in the direc-
tion of the gradient, since the binormal component of the
force vanishes as pure imaginary due to the structure of
� · �inp1p1

*��B. Specifically, we consider the case where the
electric field is inhomogeneous across the dc magnetic field
and this inhomogeneity dominates that of the dc magnetic
field and other equilibrium profiles. Then, we can decompose
the rf electric field as E1=E1x�x�x̂+E1y�x�ŷ+E1z�x�ẑ, where
ẑ=b is the direction of local dc magnetic field, x̂ is the di-
rection of inhomogeneity and ŷ= ẑ� x̂. According to Eqs. �2�
and �8�, the force in the single particle picture is

�nfsp
 = −
nq2

4m�
� �

�2 − �2

���Ex1�2 + �Ey1�2�
�x

−
2�

�2 − �2 Im
��Ex1

* Ey1�
�x

+
1

�

��Ez1�2

�x
�x̂ , �11�

and the total fluid force is

�Fcf
 = −
nq2

4m�
����2 + �2�

��2 − �2�2

���Ex1�2 + �Ey1�2�
�x

−
4��2

��2 − �2�2 Im
��Ex1

* Ey1�
�x

+
1

�

��Ez1�2

�x
�x̂ . �12�

For high frequency waves �	�, the forces in particle and
fluid pictures are almost the same. However, for low fre-
quency waves �
� and taking Ex1=Ez1=0 or Ey1=Ez1=0,
these two forces have opposite signs!

All these nonresonant forces, in principle, may drive
flow or current locally. As seen previously, in toroidal sys-
tems, the toroidal and poloidal force, namely the force in the
flux surface, will disappear after the flux surface average and
only the radial force survives. The radial force does not drive
flow since its flux-volume integral is zero, but it will influ-
ence the force balance in MHD equilibrium and instability as
well. For example, when a laser is injected into plasmas, the
self-focusing phenomena and the filament instability are due
to the radial ponderomotive force.

In summary, the nonresonant force by applied rf waves
is analyzed in cold plasmas. Along the dc magnetic field, the
force is the product of the density and the gradient of the
well-known ponderomotive potential, so the parallel force
exists when the potential has an inhomogeneity in the paral-
lel direction. The parallel force is exactly equal to the pon-
deromotive force on single particles, only when the dc mag-
netic field is straight, and in that case it depends on the
inhomogeneity of rf fields only. Across the dc magnetic field,
besides the single particle ponderomotive force, the nonlin-
ear stress, including the Reynolds stress and the polarization
stress contributes to the force. These additional forces will
modify the conventional ponderomotive forces, and can even
negate its sign. All these nonresonant forces, in principle,
may drive flow or current locally. However, the nonresonant
forces will be annihilated in the toroidal and poloidal direc-
tion after a flux-surface average in toroidal plasmas, but the
radial force survives. Therefore, the nonresonant force may
be more important in linear plasmas or in a localized region
in toroidal confined plasmas. Here, we have not discussed
the resonant force, which arises from the resonant mecha-
nism between wave and thermal particles, such as Landau
damping or cyclotron damping and survives after the flux-
surface average. Detailed expressions of the resonant force
can be obtained using the nonlinear kinetic approach.5,10,11
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