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The theory of transient forward stimulated Raman scattering (FSRS) of rapidly amplified short laser
pulses is put forth to complement the classical theory for FSRS of stationary pulses. Quantitative con-
ditions for FSRS suppression are identified. In particular, it is shown quantitatively how the limitation
imposed by pumped pulse FSRS on the output laser intensity in plasma-based ultrapowerful backward
Raman amplifiers can be overcome through a selective detuning of the Stokes resonance.

PACS numbers: 52.40.Nk, 42.65.Yj, 52.35.Mw
The classical theory for transient (near-)forward stimu-
lated Raman scattering (FSRS) of laser pulses [1] has been
worked out for arbitrary shape but stationary (nonevolving)
pulses. However, the theory of FSRS of rapidly evolving
laser pulses has not been worked out. Such a theory is nec-
essary to describe evolving laser pulses in a variety of ap-
plications, including laser amplifiers, tightly focused laser
pulses, self-focused pulses, and any case when the FSRS
effect itself plays a role in evolving the parent pulse.

This Letter considers a short laser pulse rapidly ampli-
fied through Raman backscattering of a long pulse, and
simultaneously experiencing FSRS. Remarkably, attractor
solutions can be found not only to this rather generally
posed problem but even for the case when the interactions
are detuned off resonance. Thus we calculate precisely
both the forward Raman leakage and its suppression in a
detuning gradient.

This suppression enhances the prospect of achieving very
high power laser pulses through fast backward Raman am-
plification (BRA) [2]. This scheme might enable the gen-
eration of laser energies and powers significantly higher
than presently available through the most advanced chirped
pulse amplifiers [3]. The proposed working medium is
plasma, capable of tolerating ultrahigh laser intensities.
Within times shorter than it takes for filamentation instabil-
ities to develop, the transient backward stimulated Raman
scattering (BSRS) of a laser pump in plasma is a fast
enough amplification mechanism to reach nearly relativis-
tic pumped pulse intensities, say 1017 W�cm2, for l �
1-mm-wavelength radiation [2]. The nonfocused intensity
would then be 105 times higher than currently available.

Traditional BRA devices were plagued by parasitic
FSRS [4], which is faster than the BSRS in gases, liquids,
and solids. In plasma, however, the BSRS is faster than
the FSRS [5], which both alleviates and shifts the problem.
A dangerous instability is then the BSRS of the pump to
noise, as the pump traverses the plasma layer towards the
seed pulse. This instability can be suppressed, however,
by detuning the resonance appropriately, even as the
desired amplification process persists with high efficiency
due to nonlinear resonance broadening [6].

The problem of FSRS of the pumped pulse, however,
still persists. The forward-to-backward Raman gain ratio is
0031-9007�00�85(19)�4068(4)$15.00
low in plasma, but the forward-scattered signal propagates
together with the parent laser, and so has more distance
to grow than does the backscattered signal (which quickly
passes through a short parent pulse). This FSRS instability
has been shown to impose the major theoretical limit on
the peak intensity of output laser pulse in the suggestion
of fast compression by BSRS [2,6].

What we now show and precisely calculate is how the
parasitic FSRS of the rapidly evolving pumped laser pulse
can be suppressed by employing a detuning gradient. The
theoretical limit of the achievable laser output intensity is
then raised, which is important for applications requiring
very high power short pulses (see, e.g., [3,7]).

To begin, we first calculate the parasitic FSRS for the
general resonant case. The resonant nonlinear dynam-
ics, whether the coupling medium is a solid, liquid, gas,
or plasma, is described by canonical equations for two
coupled resonant three-wave interactions occurring in a
broad range of phenomena [8,9],

at 1 caaz � 2V1fb, ft � V1ab�,

bt 1 cbbz � V1af� 2 V2sl, (1)

st 1 cssz � V2bl�, lt � V2bs� .

Here a, b, and s are amplitude envelopes of, respectively,
(long) pump laser, (short) pumped pulse, and his first
Stokes component; f and l are resonant material waves
involved in the a-b and b-s interactions, respectively; V1
and V2 are three-wave coupling constants for these interac-
tions, real for appropriately defined wave envelopes; sub-
scripts t and z signify time and space derivatives; ca, cb ,
and cs are group velocities of the pump, pumped pulse, and
Stokes, respectively; and the group velocities of the mate-
rial waves are neglected in comparison to those of lasers.
For BRA, the pump and pumped lasers are counterpropa-
gating, so that cacb , 0, and the resonant material wave
is of a relatively short wavelength (jkf j . jkbj). For FSRS
of the pumped pulse, cscb . 0, and the resonant material
wave is of a relatively long wavelength (jklj , jkbj). In
new variables z � V1�t 2 z�cb�, t � V1z�cb , and no-
tations R � V2�V1, Ra;s � ca;s�cb � 1 2 ra;s, Eqs. (1)
take the form

Raat 1 raaz � 2fb, fz � ab�, bt � af� 2 Rsl , (2)
© 2000 The American Physical Society
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Rsst 1 rssz � Rbl�, lz � Rbs�. (3)

As long as the Stokes influence on the pumped pulse can
be neglected, the solution of Eqs. (2) is close to that for
R � 0, which is known. During the linear stage of the
backscattering instability [10], when the pump depletion
can be neglected (a � a0 � const), the originally small
and narrow seed pulse is amplified and broadened. Its
maximum increases with the peak growth rate for the
monochromatic wave instability a0V1 and moves with the
speed cb�2 (so that the distance between the maximum and
the front of the pulse increases with the speed cb�2). In
the nonlinear stage, the amplification time increases (since
a fixed pump acts relatively more slowly on larger signals),
while the pump depletion scale decreases inversely propor-
tional to the pumped pulse amplitude, and the pulse maxi-
mum moves with a super-luminous speed, approaching the
front. An advanced nonlinear behavior is approximated
well by a quasi-self-similar attractor solution, a so-called
“p pulse,” where the pump is fully depleted by the pumped
pulse undergoing amplification and contraction [2,8]. Dur-
ing this stage the z scale is much smaller than the t scale,
and the term jatj ø jaz j in (2) can be neglected.

Consider now Eqs. (2) and (3) with R fi 0. Assume, at
first, that both the at and st terms can be neglected during
a sufficiently advanced nonlinear stage. In the absence
of the at and st terms, Eqs. (2) and (3) have integrals
j fj2 1 rajaj2 � const1 and jlj2 2 rsjsj2 � const2. For
an intense enough pump (raa2

0 ¿ f2
0 ) and FSRS seeded by

the long-wavelength material wave noise (rss
2
0 ø l2

0), the
integration constants are const1 � raa2

0 and const2 � l2
0 .

For rs . 0 and ra . 0, solutions of Eqs. (2) and (3) can
be approximated by the following special solution:

a � a0 cos�u
2 �, f �

p
ra a0 sin�u

2 � , b �
p

ra
uz

2 , (4)

l � l0 cosh�Ku�2�, s � l0 sinh�Ku�2��
p

rs , (5)

uzt � a2
0 sinu 2 Kl2

0 sinh�Ku��ra, K � R
p

ra�rs . (6)

Equation (6) for the integrated amplitude of the pumped
pulse u

p
ra�2 �

Rz
2` dz1 b allows the self-similar substi-

tution u � u�j�, j � 2a0
p

zt which reduces it to the or-
dinary differential equation (ODE)

ujj 1
uj

j � sinu 2 Q sinh�Ku�, Q � Kl2
0

a2
0ra

. (7)

For Q � 0, Eq. (7) reduces to the sine-Gordon equa-
tion, which has the classical p-pulse solution that depends
on only a single parameter u�10� � e [2,8]. Of interest
here is the case of a small initial integrated amplitude of
the seed pulse e ø 1. Then, u reaches its maximum value
close to 2p in the first zero of b, following the leading b
spike in the p pulse wave train, and afterwards oscillates
with a decreasing sweep around the stable stagnation point
u � p reached at j ! `.

For Q fi 0, as seen from the modified sine-Gordon
equation (6),(7), the p-pulse regime of the BRA is not
affected noticeably by the FSRS as long as the condition
Q sinh�2pK� , 1 is satisfied. For K ¿ 1 this implies an
exponentially small value of Q, i.e., an exponentially small
noise-to-pump intensity ratio. On other hand, the BRA is
not completely suppressed by the FSRS but rather persists
under a much more relaxed condition QK , 1, as seen
immediately from Eq. (7) linearized over u. Thus, there is
a broad range of parameter values where the BRA persists,
but clearly affected by the FSRS.

The efficiency of BRA remains high as long as the
leading b-spike maximum, where u � p , is not strongly
affected, i.e., at Q sinh�pK� , 1. The same condition im-
plies that the stable stagnation point u` [sinu` � Q sinh 3

�Ku`�], to which u tends at j ! `, remains close to p ,
so that the pump is nearly completely depleted. For larger
noise, such that Q sinh�pK� . 1, the pump depletion 1 2

a2
`�a2

0 � sin2�u`�2� decreases. Say Q sinh�pK�2� � 1
corresponds to u` � p�2, so that the depletion is 50%. A
numerical calculation of FSRS-affected BRA self-similar
regimes supports these assertions, as shown in Fig. 1.

The relative intensity of the output Stokes pulse is
s2

`�a2
0 � Qra sinh2�Ku`�2��Krs � sinu`

p
ra�rs�2R, for

Ku` ¿ 1. It increases with the noise for l2
0 , a2

0ra�
2K sinh2�Kp�4�, corresponding to p . u` . p�2. For
an even higher noise, such that u` , p�2, yet Ku` ¿ 1,
the Stokes intensity s2

` decreases with the noise intensity
l2
0 , because of the BRA suppression.

The numerical solution of the initial value problem for
Eqs. (2) and (3) indicates that their advanced solutions are
indeed well approximated by those of Eq. (6), which in
turn tend to the self-similar solutions given by the ODE (7),
b�ta2

0
p

ra ! uj�j. It indicates that modified self-similar
solutions are attractors for solutions of Eqs. (2) and (3).

The tolerable level of noise (seeding FSRS) can be in-
creased substantially by using an appropriately detuned
BRA scheme. To include frequency detunings, Eqs. (1),
for material waves should be modified as follows:

ft 1 ıVff � V1ab�, lt 1 ıVl l � V2bs�, (8)

where Vf � vf 1 vb 2 va, Vl � vl 1 vs 2 vb , and
va,b,s,f,l are respective wave frequencies. Detunings Vf

and Vl can be varied independently by using two different
detuning mechanisms, the pump frequency chirp and the
Raman frequency variation. For a short enough pumped
pulse, detunings in the pulse location z are well-defined
functions of z. Provided these functions are smooth
enough, they can be linearized over z near exact resonance
points. Let these points be located at z � 0, then Vf �
V

0
fz � qfa2

0V1t and Vl � V
0
lz � qla

2
0V1t, where qf

and ql are dimensionless detuning gradients. Changing
variables t and z for z and t, one can note that, in the
regime where at and st terms are negligible, the above
similarity survives even with the detunings. The self-
similar substitution

b � a2
0t
p

ra B�h�, h � a2
0zt � j2�4, a � a0A ,

f � a0
p

ra F, l � l0L, s � l0S�
p

rs (9)

leads then to the following ODE set:
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FIG. 1 (color). The rescaled pumped pulse intensity �uj�j�2

for e � 0.1, K � 3, and different values of effective noise in-
tensity Q, namely, Q � 0, p-pulse solution —solid line; Q �
1� sinh�pK�—dash-dotted line; Q � 1� sinh�pK�2�—dashed
line. The rescaled pumped pulse intensity jb�ta2

0
p

raj
2 com-

puted from the respective initial value problem with the same e,
K , and Q is shown by dotted lines.

�hB�h � AF� 2 QSL, Ah � 2BF, Sh � KBL�,

Fh 1 iqfF � AB�, Lh 1 iqlL � KBS�. (10)

For qf � ql � 0, this set has real solutions given by the
modified sine-Gordon equation (7). The BRA detuning gra-
dient qf � 0.25 prevents a premature pump backscatter-
ing by noise, while the useful amplification process persists
with a high efficiency. This nonlinear filtering effect was
in fact shown in [6] under conditions when the FSRS is neg-
ligible. What we show now is that even a strongly seeded
FSRS can be suppressed by means of the Stokes detuning
gradient ql . The BRA efficiency approaches then the limit
where FSRS is absent, as shown in Fig. 2. An estimate
for the FSRS gain can be obtained by the WKB method, as-
suming that the parent pulse B is unaffected by the FSRS.
Then, for L ~ S� ~ es , one gets in the zeroth-order WKB
approximation sh �

p
K2jBj2 2 q2

l �4 2 iql�2. For ql �
qf � 0, when B � uh�2, it gives s � Ku�2 which
agrees with the above formulas for the exactly resonant case.
In slightly detuned regimes, a noticeable FSRS suppression
should occur at ql � KB�, where B� � maxh jBj �
jB�h��j, and nearly complete FSRS suppression should
occur at ql � 2KB�. The numerical solution of ODE (10),
presented in Fig. 2, confirms these crude estimates. The
figure also shows that the detuned self-similar regimes are
attractors for solutions of the initial value problem.

For the above self-similar solutions, where both a and
s depend just on the product tz , the conditions that the t

derivatives be small in equations for the pump and Stokes
waves, i.e., jRaatj , rajaz j and Rsjst j , rsjsz j, can
be written as t�ph .

p
jRa�raj�a0 � ta and t�ph .
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FIG. 2 (color). The rescaled pumped pulse intensity jBj2 for
e � 0.1, K � 3 and the BRA detuning gradient qf � 0.25; the
upper solid line corresponds to zero noise Q � 0; all other lines
correspond to Q � 1� sinh�pK�2� and different values of the
FSRS detuning gradient ql , namely, ql � 0— the lower dash-
dotted line, ql � 0.5— the lower dashed line, ql � 0.75— the
lower solid line, ql � 1— the upper dash-dotted line, and ql �
1.5— the upper dashed line. The rescaled intensity jb�ta2

0
p

raj
2

computed from the respective initial value problem is shown by
dotted lines.

p
Rs�rs�a0 � ts, respectively. Under usual conditions

when Rs � 1 ¿ rs, while Ra � 21 , ra � 2, there is
a broad intermediate range ta , t�ph , ts, where the
Stokes convective term is still negligible, while the pump
is already quasistatic. As long as the Stokes influence on
the pumped pulse can be neglected, the Stokes evolution
is described by linear nonstationary equations

st � Rbl�, lz 1 ı�Vl�V1�l � Rbs�. (11)
The potentially dangerous regimes where Stokes is

greatly amplified can be analyzed by the WKB method. For
s� ~ l ~ es , the zero-order WKB approximation leads
to the equation st�sz 1 ıVl�V1� � jRbj2. For b from
Eq. (9), this equation, with Vl � 0, i.e., without the de-
tuning, has the self-similar solution s � a0tR

p
ra c�h�,

�hch 1 c�ch � jBj2, that gives the Stokes growth
rate at each point h. To find the detuning needed to
reduce substantially the Stokes growth, consider formally
Vl � Vlm � KqlmV1a2

0t2�ts. Then, the self-similar
substitution s � a0tR

p
ra c�h� survives, leading to the

following equation for c:
�hch 1 c� �ch 1 ıqlm� � jBj2. (12)

For qlm � 0, the maximum of ch can be crudely evaluated
as B��ph�. The detuning qlm � B��ph� should reduce
noticeably the FSRS effective growth rate �c. The nu-
merical solution of (12), presented in Fig. 3, confirms this
crude estimate.

The detunings needed for the FSRS suppression in
the convectionless and convective regimes are Vlm �
KB�V1a2

0t2�ts
p

h� and Vl � 2KB�V1a2
0t, respectively.

The detuning gradients are related by V
0
lm � V

0
lt�ts

p
h�.
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FIG. 3 (color). The effective growth rate �c of convectionless
FSRS in the BRA regime with initial integrated seed amplitude
e � 0.1 and BRA detuning gradient qf � 0.25, for several val-
ues of the modified FSRS detuning parameter qlm.

Up to t � ts
p

h�, when the transition between the re-
gimes in the location of the pumped pulse maximum should
occur, V

0
lm is smaller than V

0
l , i.e., the detuning gradient

suppressing FSRS in convective regimes is sufficient for the
FSRS suppression during the earlier BRA stages as well.

Consider now the application of the above theory to pow-
erful plasma-based BRA. In a cold plasma, vl � vf �
vp �

p
4pnee2�me, where me, e, and ne are electron

mass, charge, and concentration, respectively. For the laser
frequency v substantially exceeding the plasma frequency,
vp ø vs � vb � va, the laser group velocities y �
c�1 2 v2

p�2v2� are close to the speed of light c, and
Ra � 21, ra � 2, Rs � 1, while rs � v3

p�v3 ø 1.
The FSRS to BSRS coupling constant ratio is R �
vp�2v ø 1, so that K � R

p
ra�rs �

p
v�2vp . 1.

Then, Q � Kl2
0�2a2

0 � K3Wl�Wa, where Wa and Wl are
initial energy densities of the pump and long Langmuir
wave, respectively. Note that, according to the above
theory, the FSRS is sufficiently suppressed by the convec-
tion for Wl ø Wa�K3 sinh�pK�, but otherwise an extra
suppression mechanism, like detuning, is needed.

For the undercritical plasma considered here, it is con-
venient to specify quantities a, b, and s as space-time
envelopes of the respective electron quiver velocities mea-
sured in the units of the light speed c. The normalization
Ia � cWa � pc�mec2�e�2jaj2�l2 � 2.736 3 1018jaj2�
l2�mm� W�cm2, where Ia and l are the laser intensity
and wavelength, and similar normalizations for b and s
correspond to the BRA coupling constant V1 �

p
vvp�2,

both for linearly and circularly polarized lasers. The enve-
lopes f and l of respective Langmuir wave electric
fields Ef and El are then specified by Efe�V1mec �
feı�kfz2vpt� 1 c.c. and similar for l.

The slowly varying envelope approximation for the
short-wavelength Langmuir wave is valid as long as j ftj ,
vpj fj , V1jbj , vp , ta2
0B�

p
v�vp , 1. The similar

requirement to the long-wavelength Langmuir wave in the
convective regime is stricter: jltj , vpjlj , Vl , vp ,

ta2
0B�v�vp , 1. This may be satisfied in the domain

t . ts
p

h� �
p

h��a0
p

rs, where the convective regime
occurs, for a0 , �vp�v�5�2�B�

p
h� � 1.3�vp�v�5�2.

For a reasonable frequency ratio, like v�vp & 10, the
latter condition does not differ much from the condition
that the short-wavelength Langmuir wave is not broken,
4a0 , �vp�v�3�2 [2], which is assumed anyway in
regimes considered here. Conditions that the pumped
pulse dispersion and relativistic electron nonlinearity are
negligible in the beginning of the convective regime are
a0 , 3�vp�v�2 and a0 , 3�vp�v�3, respectively.

Anti-Stokes excitation is described by the equation
s̄t 1 cb�1 1 rs�s̄z 1 ıvprss̄ � 2V2bl. In the convec-
tive regime, where the approximation s̄t 1 cbs̄z � 0 is
valid, anti-Stokes is decoupled from Stokes resonance
and suppressed, since cjs̄zj , vpjs̄j as long as the
slowly varying envelope approximation is applicable. The
numerical solution of equations including anti-Stokes
confirms that anti-Stokes is indeed small in the whole
applicability range of our equations neglecting relativistic
nonlinearity. This may be an experimentally verifiable
signature of the new regimes, since for longer pulses,
anti-Stokes excitation occurs at much smaller intensities.

In summary, apart from the broad applicability of our
results within the general theory of three-wave interactions,
an important application is FSRS suppression in powerful
plasma-based BRA. By operating in a Raman detuning
gradient, huge FSRS-seeding noise might then be tolerated
in such devices without being amplified significantly, while
the useful amplification persists with high efficiency.
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