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Short- and long-wavelength plasma waves can become strongly coupled in the presence of two coun-
terpropagating laser pump pulses detuned by twice the cold-plasma frequency vp . What makes this
four-wave interaction important is that the growth rate of the plasma waves occurs much faster than in
the more obvious copropagating geometry.
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An important nonlinear process in plasma physics is the
beat wave excitation of the electron plasma wave using
high-frequency lasers, with applications including plasma
heating and current drive [1,2], studying and controlling
the ionosphere [3], and accelerating charged particles [4,5].
In this Letter we demonstrate that a fast plasma wave with
phase velocity close to the speed of light can be generated
by crossing two counterpropagating laser beams, which are
detuned by jDvj � 2vp , where vp � �4pe2n0�m�1�2 is
the plasma frequency, 2e and m are the electron charge
and mass, and n0 is the plasma density. The counter-
propagating geometry departs from the geometry em-
ployed in the traditional plasma beat wave accelerator
approach to generating fast plasma waves for particle
acceleration, which utilizes copropagating laser pulses [6]
detuned by Dv � vp .

That a plasma wave can be driven unstable by the 2vp

beat wave was originally proposed by Rosenbluth and Liu
(RL) [7], who calculate a growth rate of a fast plasma wave
gRL � vpa0a1�2 (copropagating lasers). Note that this
decay is high order, with growth rate going as pump am-
plitude squared. Thus, for pump waves of subrelativistic
intensity, i.e., a0, a1 ø 1, this decay instability is too slow
to be of great practical interest.

What we propose here is that a counterpropagating
pump geometry results in a growth rate also second order
in the pump amplitude, but strongly enhanced by the
factor 2v

2
0�v2

p . We consider the four-wave interaction,
in which the four participating waves are the counter-
propating lasers and two plasma waves, one (slow) with
about twice the laser wave number, and one (fast) with
the small wave number (vp�c). For the similar reason
why Raman backscattering is much faster than Raman
forward scattering, here the counterpropagating geometry
enhances the growth rate, but now in the much different
context of a four-wave interaction in which there is decay
to a fast plasma wave capable of particle acceleration.

To proceed, consider then the interaction of two coun-
terpropagating laser beams (labeled by 0 and 1), with
the corresponding normalized vector potentials given by
�a0,1 � a0,1��e6 exp�iu0,1� 1 c.c.�, where �e1�2� � ��ex 6

i �ey��2, u0 � k0z 2 v0t, and u1 � k1z 1 v1t. We as-
sume that the duration of the forward-moving laser pulse
0031-9007�01�86(15)�3328(4)$15.00
is short (several plasma periods) and the duration of the
backward-moving pulse is twice the length of the plasma.
Tenuous plasma vp ø v0 is assumed, ensuring that
the lasers propagate almost as in vacuum: yg0 � c and
j �k0 2 �k1j � 2k0. The four-wave instability we consider
involves a short-wavelength (slow) and a long-wavelength
(fast) plasma wave. The wave number of the slow wave is
ks � 2k0 2 kp . The wave number of the fast wave kp is
determined by the group velocity of the short pulse yg:
kp � vp�yg � vp�c.

Just as for the copropagating geometry, the time-
averaged ponderomotive force �F � 2mc2=� �a0 ? �a1� �
2k0mc2 sin�2k0z 2 Dv� due to the pump lasers drives
the plasma waves:

j̈ 1 v2
pj � ik0c2a0a1ei�Dvt22k0z� 1 c.c. , (1)

where j � z 2 z0 is the Lagrangian electron displace-
ment. For the copropagating geometry, RL [7] used a
single-wave ansatz for the plasma electron displacement
j � A�t� sin�kz 2 vpt 1 f�t��. The single-wave ansatz
used by RL, however, is not sufficiently general for the
case of counterpropagating lasers. Consider instead then
the two-wave ansatz:

j � Af sin�kpz0 2 vpt 1 ff�
1 As sin�ksz0 2 vpt 1 fs� , (2)

where Af �ff� and As �fs� are the amplitudes (phases) of
the fast and slow plasma waves. For simplicity, we first
consider the temporal evolution of the plasma wave ampli-
tudes assuming that the driving laser fields are monochro-
matic waves. Short-pulse effects are numerically studied
later in the paper. Substituting z � z0 1 j, where j

is given by Eq. (2), into the right-hand side (rhs) of
Eq. (1) yields

≠2j

≠t2 1 v2
pj � ik0c2a0a1

X
k,l

�21�k1lJk�2k0Af�Jl�2k0As�

3 eik�kpz02vpt1ff�eil�ksz02vpt1fs�

3 ei�Dvt22k0z0� 1 c.c. , (3)

where Jk,l are Bessel functions, and Dv � v0 2 v1 �
2vp 1 dv. In writing the rhs of Eq. (3), we used the
© 2001 The American Physical Society
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identity eia sinf �
P

k Jk�a�eikf. A set of purely time-
dependent equations can now be obtained by separating
the z0 dependent terms on both sides of Eq. (3). Thus,
substituting Eq. (2) into the lhs of Eq. (3) and matching the
corresponding harmonics of kpz0 and ksz0 on both sides
of the equation, we can write for the �k � 0, l � 1� and
�k � 1, l � 0� terms the following:

≠f

≠t
� dv 2

V
2
B

4
vpG�Af , As� sinf , (4)

≠�k0Af�
≠�vpt�

�
V

2
B

4
J0�2k0Af �J1�2k0As� cosf , (5)

≠�k0As�
≠�vpt�

�
V

2
B

4
J1�2k0Af �J0�2k0As� cosf , (6)

where f � fs 1 ff 1 p�2 1 dvt; V
2
B � 4a0a1v

2
0�

v2
p is the square of the electron bounce frequency in the

optical lattice created by the interference of the counter-
propagating lasers, and

G�Af , As� �
J0�2k0Af �J1�2k0As�

k0Af

1
J1�2k0Af�J0�2k0As�

k0As
.

Higher order Bessel terms are of the same order in the
plasma wave amplitudes 2k0Af,s and are assumed small.

At resonance (dv � 0), the relative phase f locks
at f � 0. For small amplitudes of the plasma waves,
2k0Af,s ø 1, Eqs. (5) and (6) can then be linearized,
predicting the simultaneous exponential amplifica-
tion of the fast and slow waves with the growth rate
Vi � v

2
0a1a0�vp . In a nutshell, this is the principal

result of this work: fast plasma waves capable of accel-
erating relativistic particles can be produced with a high
temporal growth rate Vi . This growth rate is much higher
than that predicted by RL for the copropagating lasers:
Vi�gRL � 2v

2
0�v2

p . The fast wave Af grows so rapidly
because it is parametrically coupled to the slow wave As.
The coupling mechanism is the ponderomotive force due to
the counterpropagating optical mixing of the laser beams.

An important practical issue is the sensitivity of the
instability to the deviation from the exact two-plasmon
resonance dv. For the finite frequency detuning from
resonance dv fi 0, there is an intensity threshold: phase
locking takes place only if V

2
B�2 . dv�vp. Here, again,

the counterpropagating geometry offers an advantage over
the copropagating case: the intensity threshold is given byp

I0I1 �W�cm2� � 1.4 3 1023�dv�vp�n0�cm23� . (7)

For example, if the laser wavelengths are l0 � 0.8 and
l1 � 1.0 mm, and plasma density is n0 � 1019 cm23

(corresponding to v0 2 vp � 2.5vp), the geometric
mean of the laser intensities should exceed the threshold
value of 8.0 3 1015 W�cm2. Since this threshold is not
too high, the instability is quite robust to the plasma
inhomogeneity and detuning errors.
Equations (4)–(6) can be simplified by noting that, from
the last two equations, J0�2k0Af ��J0�2k0As� � const. If
both waves start out negligibly small, the constant is equal
to unity, and one can assume that Af � As at all times.
This assumption is meaningful only when the instability
significantly amplifies both As and Af , so that the small
absolute difference of the initial amplitudes is unimportant.
The equations for the phase and the normalized amplitude
u � 2k0As � 2k0Af become

�f � �dv�vp� 2 V2
B

J0�u�J1�u�
u

sinf , (8)

�u �
V

2
B

2
J0�u�J1�u� cosf , (9)

where the dot indicates a derivative with respect to vpt.
The conserved invariant of Eqs. (8) and (9) is H �
V

2
Bu2 sinf 2 2�dv�vp�F�u�, where

F�u� �
Z u

0
dx

x2

J0�x�J1�x�
.

Note that F�u� diverges for u ! m0, where m0 � 2.405
is the first zero of J0.

For the excitation which starts out infinitesimally small
H � 0, and the sinf can be expressed in terms of the
amplitude u. The expression for the cosf is then substi-
tuted into Eq. (9):

�u �
J0�u�J1�u�

2

∑
V4

B 2
4F2�u� �dv�2

u4v2
p

∏1�2

. (10)

Equation (10) gives the trajectory of the wave amplitude as
a function of time. The plus (minus) sign corresponds to
the increasing (decaying) portions of the trajectory. For a
finite detuning dv, the “motion” of u is periodic between
its initial starting value u0 and the maximum value umax.

For a perfect laser detuning dv � 0, the mode am-
plitude has a stable attractor at u � m0. Since m0 . 1,
Eq. (3) no longer holds because of the breaking of the
slow wave [8]. For 0 , �dv�vp� , V

2
B�2 the amplitude

u oscillates periodically between its initially small value
u0 and umax , m0 which is found by solving the equation
F�umax��umax � V

2
Bvp�2dv. This equation has no so-

lutions for �dv�vp� , V
2
B�2, i.e., there is no instability.

Defining dv according to V
2
B�2 � �1 1 e� �dv�vp�, we

plotted in Fig. 1 the temporal evolution of u for a fixed
VB � 1 and three different detunings corresponding to
e � 0.2, 0.1, and 0.05.

Analytic progress can be made in the limit of u , 1,
which is, in any case, the applicability limit of Eq. (3).
Then F�u� � u2 1 3�16u4 1 · · ·, and the maximum am-
plitude can be evaluated as umax � 4

p
e�3. The oscillation

period is given by �dv�T � 8
p

2�3 ln�2umax�u0��umax,
where u0 ø umax is the initial mode amplitude. Figure 1
confirms that the smaller the peak amplitude of the wave,
the longer the oscillation period.

The physics of the amplitude oscillation can be under-
stood as follows. Initially, u is very small, and since the
3329
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FIG. 1. Fast and slow wave amplitudes u � 2k0Af as func-
tions of time for three detunings: V

2
B�2 � �1 1 e� �dv�vp�.

Initial excitation u0 � 1023, V
2
B � 1.

ratio F�u��u2 is approximately a constant, the relative
phase is locked at a constant f � sin212�dv�vp��V

2
B.

As u undergoes an exponential growth, the phase “un-
locks” and drifts towards f � p�2, at which time the
amplitude peaks at u � umax and starts dropping. After
the amplitude drops to its initial value u0, the phase locks
again, and the process repeats.

While the fastest instability corresponds to Dv �
vs 1 vf , it is instructive to understand qualitatively
how two plasma oscillations vs and vf (fast and slow)
can become strongly coupled by a beat wave which has
a frequency Dv fi vs 1 vf . It turns out that both
vf and vs are shifted from vp in the presence of the
lasers. The simplified description of the instability,
expressed by Eqs. (4)–(6), predicts that the frequency
shifts are proportional to �a0a1�2. Indeed, consider the
small-intensity regime �dv�vp� ¿ V

2
B�2. Then using

f � �dv�t and expanding Bessel functions to the lowest
order in As,f , it can be shown that both fs and ff

acquire a time-averaged drift �fs,f � 2dVs,f, where
dVs � dVf � V

4
B��32dv�vp�. Therefore, in the

presence of the nonresonant beat wave the frequencies
of both modes are shifted in the direction of �dv�. A
3330
rough estimate of the instability threshold can be obtained
by requiring that dVs 1 dVf � �dv�vp�. This results
in V

2
B � 4�dv�vp�, overestimating the earlier obtained

expression for the intensity threshold by a factor of 2. As
shown below, there is an additional mechanism of shifting
the frequency of the slow plasma wave via backscattering
the short laser pulse. This frequency shifting can signifi-
cantly modify the threshold intensity.

Since multiple plasma and laser waves are involved,
Eqs. (4)–(6) describe the instability only approximately.
Some of the missed effects are (i) plasma perturbation
driven at frequency Dv; (ii) modification of a1 by the
backscattering of a0 off this driven density perturbation;
(iii) the renormalization of the slow wave frequency due
to its interaction with the short laser pulse. Therefore,
we supplement the above calculation by a more rigorous
two-scale particle simulation, which takes advantage of
the scale separation between the short period of the slow
plasma wave and a much longer period of the fast wave.
We also assume for simplicity that the forward propagating
laser pulse a0 is much shorter than a1.

The small-scale dynamics of the plasma electrons is
characterized by their location (or phase) uj � u0 1 u1 �
2k0zj inside the optical lattice produced by the interference
of the two lasers. Equations of motion for the j’s electron
in a reference frame moving with the short pulse are de-
scribed in Refs. [9,10]:

üj 1 V2
B sin�uj 2 D0z � � 2

X̀
l�1

n̂le
iluj 2 ẽz 1 c.c. ,

(11)

where a dot denotes a derivative with respect to z �
vp�t 2 z�c�, n̂l � i�e2iluj �l	l0�2 is the lth harmonic of
the small-scale electron plasma wave averaged over one
lattice period, and D0 � Dv0�vp . The global electric
field ẽz � 2v0eEz�mcv2

p is generated owing to the aver-
age momentum deposition from the lasers into the plasma
[11]. In normalized units, equations for ẽz and a1 can be
written as
≠ẽz

≠z
� � �uj	l0�2,

≠a1

≠z
� 2i

vpa�
0

4v0
�e2iuj 	l0�2 . (12)

Equations (11) and (12), supplemented by the initial condi-
tions at z � 2`, are numerically solved using macropar-
ticles. As an initial condition, we assume that at z � 2`

plasma is uniform (n̂l � 0 for all l) and stationary ( �uj � 0
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FIG. 2. Solid line: fast electric field ẽz ,
dashed line: normalized intensity of short
pulse a2

0n. (a) a0 � a1 � 0.06, fixed a1;
(b) a0 � 0.19, a1�z � 0� � 0.015, and a1
is solved from Eq. (12).
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for all j), and that a small initial fast plasma wave is
present (ẽz � ẽ0). The presence of a much larger plasma
wave inside the short pulse (taken here in the form a0 �
0.5ā0�tanh�2z�tL� 1 1�) indicates an instability.

The fast electric field Ez obtained by integrating
Eqs. (11) and (12) is shown in Fig. 2 for two sets of laser
field amplitudes a0 and a1. Simulation parameters are
v0�vp � 10, v0 2 v1 � 2.5vp , and ẽ0 � 1023. In
Fig. 2(a) a0 � a1 � 0.06 were assumed fixed. Evolving
a1 according to the second equation in (12) did not
result in any significant change of Ez . We also simulated
the case of the fixed a0 � 0.19 and a1 � 0.015, which
did not show any instability since in this case V

2
B is

smaller than in Fig. 2(a). However, when a1 was self-
consistently evolved, a large electric field was excited, as
shown in Fig. 2(b). This result is a manifestation of the
physics which was not included in the above two-wave
analysis which predicted that the threshold for the insta-
bility is determined by the frequency detuning dv and
V

2
B � 4a0a1v

2
0�v2

p , which depends only on the product
of the laser amplitudes, not on the individual amplitudes.

As was explained earlier, the instability threshold arises
because the finite V

2
B is needed to shift the frequencies

of the fast and slow plasma waves to compensate for the
frequency detuning dv. However, there may be other
mechanisms of frequency shifting unaccounted for by the
two-wave treatment. In particular, it follows from Eq. (12)
that a slow wave with amplitude n̂1 
 e2iz excites a
backward wave da1 � vpa�

0n̂�4v0�D0 2 1�, which then
forms a beat wave with a0 and acts back on the plasma
electrons. Substituting da1 into Eq. (11), we obtain
an additional frequency shift of the slow plasma wave
dV1

s � v2
pja0j

2�4v0�Dv 2 vp�. For the simulation
parameters of Fig. 2(b), this additional frequency shift,
independent of a1, effectively reduces the dv � 0.5vp

frequency mismatch. Hence, V
2
B required to bridge the

remaining gap is reduced as well. For the simulation
parameters of Fig. 2(a) this reduction was negligible
because of the smallness of a2

0 .
The relatively modest intensity threshold, given by

Eq. (7), can be further lowered by employing a chirped
laser pulse. Frequency chirp dv�z� also provides the
benefit of suppressing the Raman backscattering of the
more intense short pulse which can evolve from noise
[12]. In Fig. 3 we plotted the amplitudes of the fast and
slow plasma waves, ẽz and �cosuj	, for a linearly chirped
Gaussian pulse. Assuming that l1 � 1 mm, the central
frequency of the laser v0 � v1 1 2.35vp corresponds
to l0 � 810 nm, and the plasma frequency vp�v1 � 0.1
corresponds to n0 � 1019 cm23, the pulse profile is
as follows: a0 � 0.15 exp�2z 2�2t

2
L� with tL � 25

(160 fs FWHM) and ddv�dz � 29.5 3 1023vp (3%
bandwidth). The initial fast plasma wave ẽ0 � 1023 and
a1 � 0.0165 have been assumed. In this example an
accelerating plasma field of up to 9 GeV�m is generated.
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FIG. 3. Solid line: fast electric field ẽz , long-dashed line: nor-
malized intensity of short pulse a2

0n, dashed line: density bunch-
ing of the slow plasma wave Re�n̂1� � �cosuj	. The rapidly
varying part of n̂1 is the driven plasma response inside the
laser pulse.

In conclusion, we showed that large-amplitude fast
plasma waves might be very effectively excited by two
counterpropagating laser pulses detuned by approximately
two plasma frequencies. In this arrangement, a slow
plasma wave is incidently excited, which is very effective
in coupling the laser energy to the very useful for particle
acceleration fast plasma waves.
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