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Relativistic electron acceleration in focused laser fields after above-threshold ionization
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Electrons produced as a result of above-threshold ionization of Aigtoms can be accelerated by currently
producible laser pulses up to GeV energies, as shown recently by Hu and $RimgseRev. Lett88, 245003
(2002)]. To describe electron acceleration by general focused laser fields, we employ an analytical model based
on a Hamiltonian, fully relativistic, ponderomotive approach. Though the above-threshold ionization represents
an abrupt process compared to laser oscillations, the ponderomotive approach can still adequately predict the
resulting energy gain if the proper initial conditions are introduced for the particle drift following the ionization
event. Analytical expressions for electron energy gain are derived and the applicability conditions of the
ponderomotive formulation are studied both analytically and numerically. The theoretical predictions are sup-
ported by numerical computations.
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[. INTRODUCTION result of above-threshold ionization, the applicability of such
formulation is not obvious: the ionization event itself cannot
Recent advances in high-power laser technology have rée described directly in terms of the ponderomotive ap-
sulted in the development of petawatt laser systéhs3). proach, because the electron leaves the ion on a time scale
Those can deliver superstrong laser pulses with intensities gimall compared to the oscillation perip.
focused output radiation as high as2i@v/cm?, which What we show here is that the ponderomotive formulation
studying the interaction between electromagnetic radiatiolroPerly, and the laser field, in which the acceleration takes
and matter. One of the aspects of this interaction is the protf—’la%? changesé |fs ;mo\?\tlh err:oug’r?r the non_relatlwstlg
lem of obtaining ultrarelativistic beams of charged particles.!Dro em, see efl17). We show how lonization can be
Numerical computation$4—11] and experiment§12—15 included in a model based on the fully relativistic pondero-
show that laser waves can accelerate charged particles Féotwe approach. For certain cases of interest, we calculate

ultrarelativistic energies. For electrons, the energies achiev: electron energy gain precisely. Also, we address the ap-
} gies. ’ 9 licability conditions of the model, both analytically and nu-
able with currently available laser systems can be as large

erically. These conditions turn out to be significantly more
several GeM4-7.9. _ _ relaxed )':han those given in Réf.1]. ’ g
Thg electron energy gain can be characten.zed by the di- The paper is organized as follows. In Sec. I, we formu-
mensionless parametap=eEy/mwc, whereE, is the am-  |ate the actual model studied in the paper and introduce the
plitude of the laser electric fiellg and m are the electron pasic notation through revising the known problem of par-
charge and the mass, respectivelyis the frequency of the ticle acceleration by a plane wave. In Sec. I, we give the
laser field, anct stands for the speed of light. The value of ponderomotive treatment of nonadiabatic particle accelera-
ap can be understood as the ratio of the momentum impartetion in spatially nonuniform laser fields. In Sec. IV, we com-
by the wave field in a single oscillation tac, meaning that pare our analytical results with those obtained from numeri-
relativistic effects become important a,=1. (For the cal computations of particle motion. Sec. V summarizes our
wavelength of the laser radiation equal tquin, the inten- main ideas.
sity corresponding ta,~ 1 is about 18 W/cn?.) Thus, un-
der the influence of currently available laser intensitias ( |1. IONIZATION EVENT AND ADIABATICITY VIOLATION
=10%), the ultrarelativistic electron oscillatory motion itself

has gamma factory=&/mc?) of the order ofa,, which In a smooth laser field, with a characteristic spatial scale
though large is still small compared to the experimentallyof the wave envelope, large compared to the wavelength
and numerically observed valugs- a(z) [4-15. a charged particle experiences oscillatory “figure-eight” mo-

Under the plane-wave approximation, the particle motiontion (in a linearly polarized waveor circular motion(in a

is exactly integrablé¢Sec. 1) and the scalingy~ ag follows  Wave with circular_polqrizatioh[l&l&ﬂ. Its ggiding center
naturally. However, for focused laser beams used in experlgrlfts as_a quasiparticle with an effective massy
ments, the plane-wave model does not capture the importartmV1+a?, where the bar abovea(#)=eE(7)/mwc
dynamics, because particles can escape from the interacti@mtands for averaging over the phagse wt—k-r [20-25.
region in the direction perpendicular to the wave vector. InSlow variations of the laser intensity “seen” by the particle
this case, the same scaling can be more adequately explainsgbult in variations of its effective mass and produce a pon-
in terms of the ponderomotive formulatig8ec. IIl, see also deromotive force, proportional to the intensity gradient. Be-
Refs.[10,11,16), which can be applied to experimentally cause of the conservative nature of this force, as the pulse
realizable conditions. However, for electrons produced as passes over the particle, the particle is decelerated almost
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precisely down to its initial energy. In this case, the net acticle motion yields an exact solution for arbitrary polariza-
celeration appears to be exponentially small with respect ttion and longitudinal profile of the puld®,18,28: Consider
the parametex/L. In order to prevent adiabatic deceleration @ particle moving under the action of a plane laser wave
and extract the energy from the laser figflidversibly, one  propagating in vacuum with vector potential given by
needs to violate the adiabatic approximation for particle drift.

(See also the discussion on the so-called Lawson-Woodward A(r,t)=(mc’/e).A(7), ()

theorem in Ref[26], and references cited therein.
[26] 9 where »=wt—kz stands for the phase of the wave akd

Laser fields with sufficiently large transverse gradients of”™ ) h | . Is of
average intensity, which can lead to the loss of adiabaticity,- /¢ represents the wave vector. Several exact integrals o
article motion under the action of such a wave can be fig-

can be obtained by focusing laser radiation onto a small spoB i : , -

whose size is only limited by diffraction spreading. The focaltréd out readily. First, the canonical momentum=p,

waist w=N\ (where the factoiN is often of the order of ﬂ_L(e/c)_A is conserved because of the s_ymmetry of the laser

several unitsis usually small compared to the longitudinal fleld with respect to the transverse d'SplaceTémAx,y

scale of the focal regiob=kw?. Thus, nonadiabatic accel- —0)- Assuming zero field at——c [A(—«)=0], one

eration in a focal spot can occur primarily due to particle9€ts that, equals the initial kinetic momentum of the par-

escape in the transverse directior\at 1 [4—7]. (For more t|ple pefore the interactiop, o. This yields a solution for the

precise condition, see Sec. JIIHowever, in this case, KINetic momentum

charged particles must be delivered to the interaction region B /A 5

after the laser field has been turned on. Otherwise, as the P(7)=Po— (E/C)A(7). @

laser intensity seen by a charged particle grows slowly, th .

particle is svglept awa))// by thegverypfront o?the pulse Zven%\lso, becaqse of the fact that .the wave field depends on the

before the intensity reaches its maximal value, which resultg’hase(that IS, on the_comblnatlo—_ ct, ra_lther thare andt_

in inefficient acceleratiof9]. s_eparately there exists an additional integral of motion
It is advantageous to keep charged particles in the focad'Ven by

region until the field reaches its maximal amplitude. In Ref.

[9] (see also Refd.10,13,27), it was proposed to keep the

electron trapped by the Coulomb field of a highen for the where yo= V11 (pg/m9Z is the initial normalized ener
time needed for the laser field to reach its maximal intensit of th Yo~ | Po hat the obtained f lai lid g)I/
During this time, the bounded electron remains practically a the particle (Note that the o tained formula Is valid only
rest but, after th,e laser field intensity becomes large enoughy, the case when the laser pulse is propagating in vacuum. If
it is swe, t off by the wave. After the )électron has Iegll‘t the iorglJ the refractive index of the medium differs from unity, the

P y O . 'conservation law needs to be modified, and further analysis
the Coulomb field does not influence the electron dynamic

significantly. Thus, the electron can be considered as acceti'celfaocrannisr moreemc(:jomEImﬁiM].) The equations for the par-
erated in free space, assuming for the initial conditions that, ayy phase,

effectively, it starts seeing the intense laser field instanta-

u=y—p;/mc=yy,—p,o/Mmc=const, 3

neously, immediately after ionization. The actual value of the d_7 _ i( v-E) d_’7: w—kuv (4
ionization potential does not influence the acceleration but dt me ©odt z’

rather determines the amplitude of the laser field, at which

ionization occurqsee also Sec. |l whereE= —(1/c)(dA/dt), with Egs.(2) and (3) taken into

Once the adiabaticity is violated by an abrupt ionizationaccount, can be put in the dimensionless form
event, the ponderomotive force generally does not bring the
particle to rest after the interaction is over, even if the laser dy 1 dA%? d
intensity seen by the particle decreases adiabatically to zero ar 2—7 W =
at t—. Therefore, in this case, the particle can retain a
significant part of its energy even if leaving adiabatically the

region of interaction with the laser field. In this paper, we uantity. A= = A—p. ~/mc. Solving those. one readily gets
will consider precisely this case below. Namely, we will as-J Y Poo/MC. ving ' yge
the functiony(#) for arbitrary initial conditions and arbi-

sume that after ionization, which we model as an instanta-rar shape of the laser pulse:
neous jump of the laser intensity seen by the electron, th% y P P '

I

o
g]
=R|c

©)

where we introduce the dimensionless time wt and the

particle moves in smooth laser fieldee Secs. Ill, 1Y and _ 2 2
leaves the interaction region adiabatically. We will develop a Y(7)=yo+ [ A7) =P, o/MCI™= (P, o/MO) (6)
ponderomotive formulation to study electron acceleration af- 2(770= Pzo/M0)

ter ionization and show that, though the above-threshold ion- . . )

ization represents an abrupt process compared to laser oscjl- J€t US now precisely point out the connection betwéen
lations, the ponderomotive approach can still adequatel at enters the above formula and the actual laser electric
predict the resulting energy gain if the proper initial condi- ield E. From Eq.(1), it follows that

tions are introduced for the particle drift following the ion-

I e (»
ization event. A(n)=— —— E(n')dn'. 7
Under the plane-wave approximation, the problem of par- (m) MwCJ (7} dz “
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In the case when the field seen by the charged particle imation for a laser pulgas needed to describe electron ac-
smooth enoughN/L<1), one has celeration in real experiments.

In this section, we employ a ponderomotive formulation
of acceleration of an electron produced as a result of above-
threshold ionization in a smootfthough arbitrarily nonuni-
form) laser field. Again, below we will assume that the field
with Eq(7) being a slow function ofy; E=ReE;. For such  seen by the particle is switched on instantaneously=t,

a pulse,A(+x) is exponentially smal{with respect to the (or 5= 7,), when the particle remains at rest. Note that, if
parameten/L), since it represents the average of a rapidlythe spatial scale of the field is large enoughe exact con-
oscillating function. Thus, after such a smooth laser pulselitions are discussed belowthe particle dynamics is adia-
has passed over the particle, the particle energgverts to  bpatic at any timé¢>t,. The nonadiabatic “jump” of the laser
its initial value y,. This regime corresponds to the adiabaticfield intensity att=t, can be attributed to proper initial con-
motion, when no substantial acceleration takes place. As distitions for thedrift motion, which is superimposed on the
cussed above, in order to provide significant acceleratiorknown laser-driven oscillations and is considered onlyt at
one needs to make the laser field amplité&dé») an abrupt =t,. The requirement on these proper initial conditions is
function. that they must provide the partidetal velocity to be zero at

Consider the case when the particle initially rests, whicht=t, (similar approach for the case of nonrelativistic particle
will be the case of our further primary interest. Equatiéh  energies is discussed, e.g, in Ref7]).
now simplifies to At t>t,, the particle average motion is determined by the

_ ) effective ponderomotive forcgl1,20,21,23—-2bcaused by
Y(m)=1+A%(n)/2. © inhomogeneity of a smooth laser field with the vector poten-
Hgl satisfying Eq(8). As shown in Refs[20,24], the particle
drift is described by the Hamiltonian function

eE, .
AwazRe(—i , Ec=Eg(n)e™'", (8)

MwC

Suppose that the laser field seen by the particle grows insta
taneously at some phasg, from zero value up to a finite

amplitude. If, later, the pulse amplitude decreases to zero H(r -t :m 11
slowly, the value of integra(7) at »—o is determined by (Ta:Pait) el T PdC A

the intensity only aty= 7,. Precisely, for field8), Eq.(9)  where rq=(r) stands for the guiding center locatiopy
can be written as = Meygryqvg €quals the particlphase-averagethomentuny,

y(0) =1+ a?(70)/2= 1+ a3sir?( 70)/2. (100 mgx(rg,t)=mV1+a? is the slowly variable effective mass,
and yq4= 1/\/1—vdz/c2 is the gamma-factor associated with
The model of instantaneous increase of the field seen byhe drift velocity vy, which coincides with théme-averaged
the particle can adequately describe the acceleration followsarticle velocity(v). (The bar denotes averaging over the
ing an ionization evenf9,13] and, generally, represents a phasey, and the angular brackets stand for the time averag-
good qualitative model describing any nonadiabatic effect$ng [20].) As follows from the definition, the transverse drift
during acceleration. As mentioned above, the scajingaj momentumpy, at t=t, equals the canonical momentum

predicted by Eq.(10) matches well with the values of P, =(e/c)A(7,). The value ofpg(t=te) can be readily
actually measured in experimet2—15. However, for fo-  optained from Refs[20,24],

cused laser beams used in experiments, the plane-wave
model does not capture the important transverse dynamics of H=MggrysC2= m?cz, ;: o, /1 +;, (12)
particles, which can be more adequately approached in terms
of the ponderomotive formulation discussed in the followingconsidered together with the expressiops u+p,, and
section. u(t=ty)=1. (Note that, in nonuniform fields, which are not
only phase dependent but may also vary in time and space
lIl. PONDEROMOTIVE TREATMENT independently, the quantitiesandP, are subject to slow but

. . ... substantial variations as the particle travels across the laser
Treating the acceleration process under the apprOX|mat|o]n

) ; . ield.) Finally, one gets the expressions for the drift momen-

of a plane laser pulse gives a simple estimate for the ener ; )
; ! ' i . i m and the normalized energy:

gained by a particle during the interaction with a laser wave.

In reality, however, to get the most efficient acceleration for Py (t=tg)=mca,

a given fluence, the radiation is usually focused into a tiny '

spot, where the field gradients become essential for particle Py, (t=to) = mc(a2+a?)/2, (13
dynamics. As discussed in Sec. Il, the particle energy gain '

depends on the transverse structure of the field because par- ;(t=t0)=1+(a2+¥)/2,

ticles primarily escape from the focal region in the direction

transverse to the wave propagation. In addition, in focusedvhere the right-hand side is assumed to be evaluatdd at
fields, the longitudinal component of the laser electric field=t, (or = 7.), and the quantitya is defined according to
appears, which, though small, can influence the acceleratiofq. (8).

process substantially11,29. Therefore, a more accurate  Equations(13) represent the initial conditions for the par-
model(rather than the one assuming the plane-wave approxiicle drift motion, which, att>t,, can be solved for in the
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framework of the ponderomotive canonical description withat 57—« [a()=0]. Using dH/dt=dH/dt and a(?)/at
the Hamiltonian function given by E§11). Using those, one

= w{d(a?/dn}, one gets equations similar to EqS):
can finally formulate the limitations of the ponderomotive o {d(@)/dy} g d as)

treatment.(For the problem of free electron scattering off a d; 1 d(?) Ay 1
laser pulse, those were addressed in Ref].) In addition to —=—", — == (15
the restriction that the amplitude of oscillations must remain dr 2y d(p) " dr

small compared to the characteristic scale of the laser field, ) ] .

the particle needs to undergo at least several oscillations b&lere (7)=wt—kzy is the time-averaged phase, which we
fore it leaves the interaction region. The number of oscilla-cCan be approximately used as the argument of a slow func-
tions can be calculated as the ratio of the tifiag spent by  tion a’(), that stands for the normalized average intensity.
the particle within the interaction region to the Doppler- From Eqs.(15), the previously obtained formula for the par-
modified period of oscillationd ~27a2/w. Denoting the ticle net energy gairi10) follows immediately: As follows
transverse and the longitudinal scales of the laser fieldrom Egs.(15), one hasy—a?/2=const, which yields

with L, and L respectively, one get$,=min{L, /vy, ; _ _

L)|/vq,}- Forag>1, from Egs.(13), it follows that vy — = a’(»)—a’(mo) _ a%(mo)

~clag andvg~c. Thus, finally, the condition for the pon- v(=)=y(m0) + 2 =1 2 (16
deromotive approach to be valid can be written as

where we substituted Eq.13) for 7(7;0) and used that
L, >\ay, L>\aj (149 a%(=)=0.
On the other hand, from the ponderomotive treatment,

(see also Sec. IV The condition of small amplitude of par- More results of interest can be derived. For example, suppose
ticle oscillations(compared td., andL ) can also be shown the nonuniform |nten_S|ty profile remains static du_rmg a time
to coincide with Eqs(14). larger than th_at requ!red for Fhe accelerat.ed partl_cle to leave
It is important to emphasize that, for the ponderomotivethe region of interactiofe.qg., in a focal region In this case,
approach to stay valid, the laser pulse may not satisfy théhe phase-average particle energyis conserved, since
plane-wave approximation on the global scale. Note that it i$7/9t=0. Thus, assuminga®(*)=0, one gets y(x)
the potential of the field that enters the drift motion equations= () = 4(0), meaning that
rather than the field itself. Thus, the possible inhomogeneity
of the laser intensity is automatically taken into account in y(%)=1+1(a?+a?),, (17)
the proposed treatment, and so is the particle acceleration by
a small longitudinal field component, which is hard to takewhere the subscript 0 denotes the evaluation of the right-
into consideration in the conventional plane-wave modehand side of the formula at=t, (7= 7,). The additional
[29]. _ ~ term a?/2 [compared to Eq(10)] results from the particle
In the framework of the ponderomotive approach utilizing ponderomotive acceleration out of the interaction region,
the concept of a quasiparticithat is, a guiding center drift- \yhich, for static intensity profile, replaces a similar decelera-
ing with the effective maseney), the scaling for the retained tjon py the tail of a plane laser pulse. The detailed structure
energyy~aj of an electron produced as a result of ioniza- of the intensity profile appears to be unimportant for the net
tion becomes apparent. Indeed, consider the initial zero totanergy gain because of the conservative property of the pon-
velocity as a superposition of a drift velocity, in the labo-  deromotive force. Also, it is worth noting that, by above-
ratory frame of referenckl and the quiver velocitw’ inthe  threshold ionization, electrons are primarily produced at the
frameK’ moving relatively toK at the speeds;. From Lor-  maximum of electric field9], when the instantaneous mag-
entz addition of velocities, one finds far=t, that v3=  nitude of the vector potential is zefa(7,) =0], if the field
—v'. Since the magnitude dd is relativistically invariant intensity seen by electrons varies only slightly from one laser
[20,21], it follows that ys=7y' ~ag, Wwhere ¥  period to another(If the field strength has not been large
=1/Jy1—v'?/c? stands for the relativistic factor of quiver enough to unbind an electron on some period, the ionization
motion. Recall that it is the guiding center with an effective event, if any, can occur on the next period only near the peak
massmgs~ma, (rather than the true particle with masyg field: any other field strength has been previously experi-
that is accelerated up to the velocity. Thus, immediately enced by the electron and has not caused an ionization
after the laser field is switched on, the guiding center energgvent) Therefore, electrons produced in the same region of a
MeirY4C? iNCreases up to the value of the ordemnd®a3. On  static laser field at different moments of time eventually must
the other hand, as follows from E(12), the guiding center retain approximately the same energf) =1+ a2/2.
energy coincides with the average energy of the true particle, One needs to keep in mind though that ionization in a
which yields the predicted scaling~a§. laser field is a stochastic procd€d: Since the frequency of
The results obtained in the preceding section for charged bounded electron oscillations inside an atom is much larger
particles acceleration by a plane wave with a(#) can be than the laser frequency of interest, electron performs mul-
readily derived from the proposed ponderomotive formula-iple rotations around the ion in the laser field before ioniza-
tion. Indeed, consider a particle instantaneously injected inttion. Therefore, in principle, there can be few electrons es-
a plane laser wave, whose amplitude decreases adiabaticattgping at different phases. One might also imagine other
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crong and the laser intensity (measured in W/c), ag is
given by
40
20 1 ao=N Vw2 /(2.74x 10'9). (18
a o
For the sake of definiteness, consider the parameters of laser
220 ] radiation accepted in Ref9], namely,A =1.054 um and|
=8x 10"t W/cn? for the peak field. For those, Eq18)
-40 ] yieldsayg~57. In the peak field, the maximal possible value
of the oscillating electron energyy(n)= 1+a(2)(sin7;
5 0 n 0 50 —sinm)?2 is therefore y,,=1+2a5~6500 (or &
~3.3 GeV).
n As discussed above, a significant fraction of the electron

FIG. 1. Normalized vector potential (“seen” by electron of a ~ €N€rdY ¥~ ¥max Can be retained by the particle after the in-
linearly polarized laser pulse vs phageThe field is switched on at  teraction, only if the field amplitude seen by the particle
7o=— /2. For the peak intensity=8x10°* W/cm? and the Cchanges abruptly in time. As in previous sections, we will
wavelengthh =1.054 2m, the dimensionless field strength param- assume a free electron to be befor instance, by means of
eter isap~57. ionization in a peak-intensity laser field rapidly in compari-

son with the wave period, so that instantaneous increase of
situations when the phasg, differs from the one corre- the seen field intensity represents an adequate approxima-
sponding to the peak field. However, working out the actuafon.
phase of partide escape remains out of the scope of the First, consider the interaction with a |inear|y pOlarized

present study, which is primarily focused on particle dynam-Plane laser pulse switched on gt= 7, with intensity de-
ics after ionization. creasing slowly atp— (see Fig. 1L From Egs.(10) and

(16), it follows that the maximal retained energy is given by
YVret= 1+a(2)/2~ 1630(or £=0.83 GeV). This value matches
precisely with the one obtained numerically. In Fig. 2, the

In this section, we discuss the possibility of ponderomo_normalized electron energy (solid line) is shown versus the
tive acceleration by ultraintense electromagnetic pulseglormalized timewt. It can be seen thag() = ye, Where
available with existing laser systems, and present the result§€ asymptotic value is represented by a dotted line. The
of our numerical computations. We consider particle accelelectron drift energyy="H/mc® (dashed ling is found to
eration both by a plane laser wave and by a focused wavillow Egs. (15), as predicted above.
with a static average intensity profile. In these two cases, the Lower acceleration is found for initial phases, other than
energy gain can be obtained analytically, which allows us topy,= + #/2. For the same laser field switched ongt=0,
compare the numerical results with our theoretical predicthe electron energy after acceleration is negligiclempared
tions. t0 Ymay, €xactly as predicted by Eq10) (Fig. 3. If the

To start, let us calculate the actual value of the parametesimplitude of the laser pulse decreases adiabatically; at
ag, which determines the characteristic energy of accelerated-co, substantial acceleration fomy,=0 can only be
particles. In terms of the wavelength (measured in mi- achieved in spatially nonuniform fiel@ather than the field

IV. DISCUSSION

6000 6000

1y=7/2

5000 5000
4000 4000
Y 3000 Y 3000
2000 2000
1000 1000

d 25(500 SOéOO 75600 lOO‘OOO 125‘000
wt

FIG. 2. Electron normalized relativistic energy=&/mc? (solid ling), normalized drift energﬁz H/mc® (dashed ling and predicted
normalized retained energy.= 1+ a3/2~1630(dotted ling vs phasey (upper ploj and timer= wt (lower plob for electron acceleration
by the laser field shown in Fig. laf=57).
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1500 1500 ;70:()
1250 1250
1000 1000
Y 750 Y 750
500 500
250 250
of. 0

d 2500 5600 7560 10600 12500 15600
wt

FIG. 3. Electron normalized relativistic energy=£&/mc? (solid line) and normalized drift energy: HImc (dashed lingvs phasen
(upper plof and timer= wt (lower ploy for electron acceleration by the laser field shown in Figad=57) switched on at);=0. The
theoretically predicted retained energyyig—=1.

which depends on the phase onlwhen the acceleration is contains multiple Fourier harmonics, but the amplitudes of
provided by the ponderomotive force pushing the particle outhose evolve slowly. As the interaction region is decreased
of the region of strong field. and condition(20) is violated, the acceleration becomes
Simulations of electron acceleration of this type were pernonadiabatic, as, for example, shown in Fig. 5N 10. On
formed for a linearly polarized focused field wit+ Req;, the other hand, even foN=50~a,, the ponderomotive

where treatment predicts the energy gain fairly well, as seen in
Fig. 6.
ib KO2+y2) In the end, we would like to point out that, as we men-
a.=a —exg — A (19 tioned in Sec. ll, all of the above analysis corresponds to
X Op+2 b+2 n) SF !
1z 1z laser-particle interactiom vacuum where the phase and the

group velocities of laser pulses coincide. It is often the case
though that electron acceleration by laser pulses in a plasma
. appears to be of interest. In rare plasmas, with small back-
=kw? sets the longitudinal scale of the focal area, and ground electron densitiesi& mw?/4me?), the refraction in-

=NN\ is the focal waist size. For the factbk three different ey remains close to unity, and the results obtained by ap-
values were chosen to simulate different regimes determme&ying the ponderomotive treatment represent a good
by the conditions Eqg14), which, for the focal area, can be approximation.

put in a simple form

a,=(i/k)(da,/dx), and they component is neglected as
being one of a higher order with respect ioN. Here b

=0
N>a,. (20) 2000} o

Note that this condition is significantly more relaxed than the
one given in Ref[11], namely, 1-v,/c>1/kw, which, for

ultrarelativistic particles, yieIdN>a(2). As we show below, 1000k
for the considered acceleration of electrons produced as a - —
result of above-threshold ionization, conditi(#0) is consis- so0ol I ‘ ‘ ‘ , H ’
tent with results of our numerical computations.

In Fig. 4, the particle energy is shown versus time
=wt for N=140 and initial particle location(t=0)=0, also 0 55000 50000 75000
assumed below. As predicted from the ponderomotive ap- wt
proximation, the phase-average energy is conserved through-
out the acceleration process. Thus, the retained energy is r 4 Ejectron normalized relativistic energy= &/me (solid
Yre= 1+ (a®+a%)/2, wherea is evaluated at the moment |ine) ys time r= wt for electron acceleration in a focused laser field
when the field was switched on. For the given field apd  with the focal waist w=140n and a,=57, instantaneously
=0, one hasy,~810. Note that despite the fact that the switched on aty,=0. Initial particle location is in the center of the
energy plots in Fig. 4 seem to demonstrate nonadiabatic b&scal region. Fory> 7,, the average intensity profile is assumed
havior, in fact, the dynamics remains adiabatic: Each periodtatic. Condition(20) is satisfied, so that the ponderomotive de-
of oscillations contains two peaks ¢f7), and each of those  scription is valid. The normalized drift energy="H/mc® (dashed
changes slightly from one period to another. Because of théne) is conserved equal to the theoretically predicted retained en-
interchange of the two types of peaks, the functig() ergy yrer~810.

15007

056402-6



RELATIVISTIC ELECTRON ACCELERATION IN . .. PHYSICAL REVIEW E68, 056402 (2003

800| 5000]
=0
o 4000}
600
3000f
Y 400} Y
2000}
200 1000}
ok ol
0 500 1000 1500 2000 2500 3000 0 10000 20000
wt wt
FIG. 5. Electron normalized relativistic energy=£/mc? (solid FIG. 6. Electron normalized relativistic energy= &/mc? (solid

line) vs time 7= wt for electron acceleration in a focused laser field line) vs time 7= wt for electron acceleration in a focused laser field
with the focal waistv= 10\ anday=57, instantaneously switched with the focal waistv="50\ anday=57, instantaneously switched
on at 7o=0. Initial particle location is in the center of the focal on at phasey, (7,=0,7/2). Initial particle location is in the center
region. For»> 7,, the average intensity profile is assumed static.of the focal region. Fom> 7,, the average intensity profile is as-
Condition(20) is not satisfied, and the electron motion in nonadia-sumed static. Sincli~a,, condition(20) is satisfied only margin-
batic. The theoretically predicted retained energy,is~810(dot- ally, though the ponderomotive description predicts the energy gain
ted line. fairly well. The theoretically predicted retained ener¢gyotted
lines) is =1+ (a%+a2)/2, which givesy,e~810 for 7,=0 and
V. SUMMARY Yiet= 2440 for o= /2.

In summary, we employed an analytical model to describeyift trajectory and the particle energy gain. Not only does it
acceleration of electrons produced as a result of abovesllow one to reproduce the well-known results of electron
threshold ionization up to ultrarelativistic energies. Theacceleration by plane laser pulses, but it also gives the pre-

model is based on a fully relativistic ponderomotive treat-cise energy gain for acceleration in smooth transversely non-
ment. We showed that, thOUgh the above-threshold lonizatiogniform fields, for which the conventional p|ane-Wave ap-

represents an abrupt process compared to laser oscillationgroximation does not hold.

the ponderomotive approach can still adequately predict the To our knowledge, no precise measurements on electron
resulting energy gain of electrons if the proper initial condi-acceleration after the above-threshold ionization have been
tions are introduced for the particle drift following the ion- carried out at ultrarelativistic laser fields. While experimental

ization event. The major result of the present work consistglata remains unavailable for direct comparison with the ob-
of obtaining the explicit expressions for those initial condi- tained results, our analytical predictions show a good agree-

tions[Egs.(13)] and determining the applicability conditions ment with the results of our numerical computations.
of the ponderomotive modgEqs. (14) and (20)], studied

both analytically and numerically and shown to be signifi- ACKNOWLEDGMENT

cantly more relaxed than those given in REil]. The

Hamiltonian formulation for the electron average motion al- The work was supported by the U.S. DOE, under Contract
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