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Abstract

An approximate integral of the Manley—Rowe type is found for a particle moving in a high-frequency field, which may interact resonantly
with natural particle oscillations. An effective ponderomotive potential is introduced accordingly and can capture nonadiabatic partids.dynami
We show that nonadiabatic ponderomotive barriers can trap classical particles, produce cooling effect, and generate one-way walls for resona
species. Possible atomic applications are also envisioned.
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PACS:52.35.Mw; 45.20.Jj; 39.25.+k

1. Introduction cle natural oscillations, such as Larmor rotation in a background
dc magnetic field, electron Langmuir oscillations in plasmas,

Even without a bias, an ac field can exert a significant timeintra-atomic quantum oscillations, and molecular vibrations.
averaged force on a partidte-3]. This so-called (average) pon- Specific properties, which ponderomotive potentiél¥ ex-
deromotive force is comprised of two components: the Millerhibit for particles exhibiting natural oscillations, have been em-
force due to the dipole interaction of the particle with the acployed in a vast variety of applications in atomic, molecular,
field and the light pressure due to the particle scattering andnd plasma physics, which enjoy experimental verification in
absorption of the radiation. Often, the light pressure is neglia wide range of frequencies and intensities of electromagnetic
gible compared to the Miller force, and the induced particleradiation[2—10].
dipole momentp follows an adiabatic equation of state. The In the presence of natural oscillations at frequeagycom-
latter means thgb can be approximately expressed as a locaparable withw, the potentia(1) is “seen” by a particle on aver-
function of the particle location, which, in the simplest case, age over time scales large compared to the field perig.2
is proportional to the amplitude of the field=a(w; r)Eg(r).  the natural period 2/w,, and the beat period? |w — w, |, if
(Herea is the polarizability tensor, and is the field frequency; any. It is implied then that the drift displacement of the particle
the conventional complex notation is implied.) In this case, theon each of these time scales is insignificant as compared to the
average force on the particle can be approximately described fireld scaleL, namely,
terms of the ponderomotive, or Miller potential equal to the
average energy of the dipole—field interaction: v/o <L, vjwy L L, @

1, wherev is the particle average velocity, and
=g wFo) IV 3)
Impprtantly, Eq.(1) applies bpth tq elementary and compoundwhereva — o — w, is the beat frequency. th, itself varies
particles and can capture adiabatic effects connected with partj; space, the variation of the beat period along the particle tra-
jectory is also required to remain smooth enough:
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Together with the requirement of small amplitude of the par-intense high-frequency radiation. In Sect®ywe study partic-

ticle oscillations as compared 10, Egs.(2)—(4) represent the ular aspects of ponderomotive dynamics of a single-mode linear

validity conditions for Eq(1). oscillator in an ac field resonant with the particle natural oscilla-
At resonant interactione{ ~ w,), the approximation of a tions. In Sectior, we consider examples of particles (including

local potential(1) is violated. Near the resonance, the parti-those with internal degrees of freedom), to which our results

cle polarizability exhibits a singularity o« Aw;* and® goes  apply. In Sectiorb, we summarize the main ideas of the Letter.

to infinity (assuming negligible dissipation), although the trueSupplementary calculations are giverAippendices A—C

force on a particle remains finite. Our preliminary studies pre-

dict a number of striking fundamental and applied effects inthisy - Effective potential and integrals of particle motion

domain, not captured by the traditional adiabatic model, includ-

ing quantum-like behavior of classical particles in ponderomo-2 1 Example

tive barrierd11], a possibility of one-way rf wallfl2—14] and o P

others[15]. To describe those in detail and predict new, unex-

plored effects, a generalization of the ponderomotive potential Consider an example of a ponderomotive force on an os-

concept is required. cillator. Namely, consider a charged particle motion in a dc
For electrons and ions under rf drive near a cyclotron resmagnetic fieldBo under the action of the ac field

onance in a magnetic field, this problem has been addressed

previously in a number of workf2,8,16—-27] None of those, E= Re[Eo exp(—iwt)]. (5)

however, has introduced a non-singular ponderomotive poten- N _ )

tial in a non-heuristic fashion, except for the essentially perUnder the condition¢2)—(4) (assumingy, = £2), the particle

turbative analysis proposed in Ref&1,22] Our recent work xhibits adiabatic Larmor rotation at frequen@y= ¢Bo/mc

though[12] has demonstrated the existence of what can be inSUPerimposed on the induced oscillations at frequencyhe

terpreted as a conservation law fory nonadiabatic trajectory. average effect of the ac field can then be replaced with the parti-

Here we generalize and advance this result to the ponderom6!& interaction with the ponderomotive potent@), which now

tive dynamics of particles of arbitrary nature. takes the form
The purpose of this Letter is to obtain the general properties 22 2
of particle dynamics in the resonance domain, when the condip — Z e|Ey| )
tions (2) do hold, whereas those given by E¢®) and (4)may oy Ao (0 +v82)
be violated. We derive the effective ponderomotive potential,
which is valid for both adiabatic and strongly nonadiabatic in-Here £, = &* - E are the projections do on the polarization
teractions and remains non-singular at the resonaneew, . vectors
The possibility to introduce such a potential is due to the con-
servation of an approximate integral of the Manle_y—Rowe P&, = (XO + iyo) /N2, £o =20 )
[28,29] for which we suggest both a quantum interpretation
and a general “classical” derivation directly from the first prin- assumingBg is primarily in thez direction (see Refl32] and
ciples of Hamiltonian mechanics. We show also that the propreferences therein). In addition to the average forda /9z
erties of near-resonant ponderomotive barriers are strikinglgeen by the particle in the direction of its one-dimensional
different from those expected within the traditional adiabaticguiding-center motion alon8o, the particle also experiences
model framework. In particular, we suggest how such barriershe diamagnetic accelerationuB),, where g = mvE/ZBo.
can be employed to produce one-way walls and even cool regHerev, = v, — V¢ is the quiver velocity, additional to the
onant species. We also discuss the implications of our resultgelocity of induced high-frequency oscillationgc.) Like in
with respect to the stability of particle aperiodic bounce os-the case when the ac field is abseng, is an adiabatic in-
cillations in ponderomotive barriers. As an example, nonlineawariant, which is approximately conserved under the conditions
dynamics of atomic clusters in an intense ac field is discusse@2)—(4) [32] In this case, the “quasi-energy” of the particle
and the problem of charged particle motion in a magnetic field® = %m(vz)z + uBo + @ is also an adiabatic invariant, hence
under resonant drive is revisited from the standpoint of our nev® + uoB plays a role of an effective potential.
approach. Should(3)—(4) be violated due to the resonant interaction,
Although the analysis is performed for classical species, wéoth .o and€ will be subjected to substantial variations; hence
anticipate that our main results apply also to quantum particleshe potential approximation no longer holds in this case. Re-
such as atoms and molecules. If so, the proposed methods coutdarkably though, the combination of the tws- (mcw/e) 1o,
supplement the existing techniques of particle manipulation bys conserved, as one can deduce from R&#15,17] Thisis a
laser fieldd4—6]. The value added could be large then, as thessign that a formulation of the average ponderomotive dynamics
techniques allow present and potential applications in a widenust be possible in terms ofgeneralizedeffective potential
variety of subjects such as light scattering, cloud physics, quareven at resonant interactions. Such a formulation can be devel-
tum optics, isotopes separation, and othéls oped for a Hamiltonian oscillator of an arbitrary nature, as we
The Letter is organized as follows. In Secti@hwe de-  show below in Sectio. The implications of these results will
velop a general formulation for particle average dynamics unddbe considered in Sectio3sand 4

(6)
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2.2. Drift Lagrangian wheree; are the electric charges of particle individual con-
stituents, andx;, y;, z;) are the components &f;. Sinceh
A particle exhibiting internal oscillations (e.g., a molecule, are assumed small, let us employ a second-order Taylor expan-
an atom, etc.) is, generally, a system comprised/of 1 ele-  sion forys to get

mentary constituents (e.g., electrons and a nucleus), interactibrg

both with each other and the ac field. Our purpose is to describe = Lo+ Ly + Lint, (102)
the motion of the particle as a whole, treating the individual :} MU — (b P — 1 10b
constituents motion as its internal degrees of freedom. Accord€w Z(W’ V)= PY) 2(1#’ V). (106)
ingly, we will assume that the particle cannot dissociate (i.e., th&int = (¥, F). (10c)

constituents can only exhibit finite oscillations near the comyy,a the Lagrangiado(r, v), wherev = i, describes the par-
mon center of mass) and hence represents a well-defined enti[%e motion aty; = O; £, describes free oscillations of the

described by & independent coordinates. _ dipole momenty; (-, -) stands for a real dot product i3
Letus introduce the particle center-of-mass coordipaed  jimensional spacein = p - E describes the dipole interaction

the constituents relfatlve dlspla_ceme_ths<< L(=1 T N). " of internal oscillations with the ac field; p is the total dipole
exhibiting finite oscillatory motion with real frequencies. Inthe |\ )0t of the particled, 0, andP areK x K real matrices

absence of the ac field, the particle center of mass will undergPK — 3N) being functions of , with M, 0 symmetric andP

smooth, non-oscillatory behavior, and hencean be chosen 5 qiisymmetrid30,31] Z(r, 1) is a K -dimensional force vector
as the coordinate of the particle guiding center. An exception

would be a case when the particle as a whole interacts with & = (E,, E, E., ..., Ex, Ey, E;), (11)
de f|el-d, Wh'Ch confines its average motion to a subspace of dl60nsisting ofN identical triplets(Ey, E, E;) standing for the
mensionalityz less than that of the real space. For example, an L . L

. . . . electric field component®\ppendix A). The guiding center La-
electrostatic potential could attach the drift motion to a surface : .

] - rangian can then be written as

(n = 2); or, a strong background magnetic field could keep &
charged particle moving along a single field lime< 1). Inall £, — £, + (Ly) + (Lint)- (12)
such cases we will assume deviations of the particle center of

mass from the guiding center subspace as additional oscillatolg€!oW we will show how Eq(12)can be simplified for different
degrees of freedom, assumings 1. With that, one could de- C@S€S of interest, and how the average ponderomotive force can
fine the guiding center coordinate aseing the projection of be calculated both for adiabatic and nonadiabatic interactions.

p on the subspace of the guiding-center motion.

In the presence of the ac field thoughwill generally oscil-
late at the frequency of the fietd. Hence, more generally, the
guiding center coordinates must be introduced asp — q, To calculate(Ly) and (Lint), note that the vectory can
whereq is the n-dimensional center-of-mass quiver displace-exh'b't bothdrlven oscnla_ltlons at freq'uency) andfree_oscn-
ment. As, by definition, no natural frequency is associated withations at eigenfrequencies, (Appendix B. Suppose first that
the center-of-mass motion in the subspace contemplated, vl @» remain sufficiently far fromw in the sense of Eq3)

will assume thais a wholea particle experiences adiabatic 2"d (4) so that all eigenmodeg, can be considered evolv-

oscillations @ under the conditiong2). For given fields, N9 adiabatically. In this case, one can write= vO +y@,

2.3. Adiabatic interaction

q@(r, 1) would be a known function, and thereforecan be ~ Where

employed as an independent coordinate. O _Re 0 O — O axr—iw.t 13
To derive the equation far(z), let us consider the particle v ; e Y Xy P=ian), (13)

action

denotes residual free oscillations due to nonzagr@@ = —o0)
2 at particle entrance to the ac field, assuming that summation
S=/Edt, (8) s taken over modes with non-negativg, and x> = 0 for
i wy, =0; ¥ @ =R x @ exp(—iwr)] is the adiabatic response

where L is the Lagrangian function, and the time scale—= governed by the equation

12 — 11 is large compared to~! andw, . The major contri- ()@ = £, (14)
bution to the actiors, linear in A¢, is the time-averaged part A ) R

of the Lagrangian{£), while the contribution of the oscillatory W'th X_(a)(’ =-00)=0a= D~ is the polarizability tensor
(with characteristic time scate~1, w; 1) Lagrangian to the in- In K-dimensional space;

tegral (8) remains small. Thus, the actighis approximately D) = —Mw?+2i P 15

given by § = j‘ff(ﬁ) dt, from where it follows thatCq = (L) (@) @"+2Pot 0 ~ (15)

can be treated as the Lagrangian of the drift motion. is @ Hermitian response matrif; is the complex amplitude of
To calculately consider the Lagrangiad as a nonlinear F = RelF exp(—iwt)].

operator on the particled8-dimensional dipole moment The function(Zy [y ]) then equals

Y = (e1x1, €1y1, €121, ..., ENXN, ENYN, ENZN), ) <£¢[W]) = (ﬁw [W(O)D + <£¢ [w(a)])’ (16)
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where the Lagrangian of free oscillationis/,[x/f@) =y, L‘(O) would be the equation of adiabatic drift motion. Together with
can be expressed as follows. Suppose, that the parametgys of J, = const, an integral of such motion (assumingy/o¢ = 0)
are allowed to vary as the particle moves, and thus the complag the Hamiltoniar{g =v - d.Lq4/0v — Lg, Or
amplltudesx(o) are generally not constant. Nonetheless, if the ' Aw

©) O Hy=E4+ P — - (25)
variations are slow enough (w, < L), thenx,” < w,xv , d=c¢cd v
and the following approximation can be employed: .

where &y stands for the particle kinetic energy (plus the en-

w
LY = j( O D' () (?) ergy of interaction with low-frequency background fields, if
P ) any), andé, = J,w, is the energy ofree oscillations stored
+ 5[( 9% D@y ?) — (2%, D' ()9 ?)]. in avth mode. In the simplest case when interactions with low-
(17)  frequency fields (if any) are inessential, E24) takes the form
The first term in Eq(17) equals—J,w,, whereJ, is the action dv ,
of free oscillations at theth mode Appendix B, and the sec- M —-=—V® — Z JyVw,, (26)
ond term can be expressed.f%,, where—g, is the phase of v
¥,. Hence, one can write so that
d . ’
£$)0) - E(Jvﬁov) —hvpy — Ly, (18) Peff = P — Z oAy 27)
v
The quantityp, can be treated as a new variable, with=" plays a role of the effective potential. (The termso, (r) can

dL4/d¢, being the associated canonical momentum. Then, thge omitted for constani, (r) at adiabatic interaction, but other-
Lagrangian equation fa, is J, =0, meaning thafl, are con-  wise result in essential forces analogous, say, to the diamagnetic

served for allv, except for those corresponding to zebp.  force on a charged particle in inhomogeneous magnetic field
Employing the conservation af, and omitting an unimpor- (Section4.2).)

tant full time derivative, from E¢(18) one getscﬂo) =—Jyw,.
Adding a constant will neither affect the motion equations, and.4. Near-resonant interaction

hence
Rewrite Eq.(23) in the eigenmode representation:
C‘ﬁ w(o) Z JyAw,, (19) q4(23) g p
=—-Z | F0)2 (28)
where the prime denotes summation only modes with posi- Dy(w)’
tive w, . ~
The Lagrangian of driven oscillation$L, [@]), can be ~WwhereF, are projections of” on the eigenvectorg,, andD,
calculated straightforwardly and yields are the eigenvalues @ = &~*. By definition, D, (w) — 0 as
1 Aw, — 0. Hence, keeping only the leading term with respect
(Ly) = _Z(X(a)*’ Dx(“)), (20) to va—l, the adiabatic Miller potential equals
_ _ Fo2 EJ2. 3
whereD = D(w). Employing Eq(14) one gets also &= _41)/' vl —= _leul [(c 1)/(wv)] ’ (29)
1 @ @ u(a)v) wy wy
{Lint) = E(X . Dx ) (21) where we also introduced the corresponding resonant eigen-
Therefore value «, of the particle polarizabilityx, and the projections
' E, = &} - Eg of the ac field amplitude on the eigenvectors
Lo=Lo—® +Z’ J,Aw,. (22) &, of the tensora. Note now that atAw, — 0 one has
v |50 12/4D, () ~ — I\ Aw,, where J{? is the action corre-
where® = (Ly) = —2(Lint), OF sponding to oscillations at theth mode with the amplitude
W int/, a) (a) (a) (a) ;
xv = xv = (Appendix B. SinceJ,” =&," /w,, where&,” is,
d = _}(]:-*’ &]:-)' (23) respectlvely, the energy of near-resonant adiabatic oscillations,
4 one can write
By definition, (F*,&F) = Ej - p, where p is the complex o - A @ 30
amplitude of the particle dipole moment in the real three-= = , =™V ~ (30)

dimensional space) = « - Eg, assuming the ac field of the @
form (5). Therefore® given by Eq.(23)is the same adiabatic For astable particlé,” > 0. Hence, close to the resonance, the

ponderomotive potential as the one introduced by(Ey. adiabatic potential is attractive faxw, < 0 and repulsive for
The Euler equation yielded by the Lagrang(2&), Aw, > 0. However, sinc&” itself goes to infinity atv = w,,
@ (w) exhibits a singularity at the resonance, as follows from
<a£d) — 3_£d’ (24) Eq. (29). As the true force exerted by the ac field on a particle
dt ar is finite, the fact thatp (w) appears to be a singular function is
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a clear sign of the adiabatic approximation failure in the resowhere the first term again equals the adiabatic pote@tidlote
nance region. Let us then derive a more precise expression ftinat this expression is not obtained by a perturbation method,
Lg to obtain the true, non-singular average force applied to and the two terms in E(37) are allowed to be of the same

particle near the resonance.

order. In particular, near each resonange- w,, the terms

Consider the general case when for some (possibly morguadratic inx\” « Aw;! cancel out, whereas linear terms

than one) modes the adiabaticity conditiqi33, (4) may be

enter the expression being multiplied Byw,. It means that,

violated. To do so, divide into the nonresonant (certainly adi- unlike @ (w), the effective potentig37)is a non-singular func-

abatic) partyy, consisting of modes witihw, /o = 1 and the
remaining party; consisting of those withhw, /@ <« 1. Among

tion.
The quantityy (as well asy*) should now be treated as an

the latter we might find both adiabatic and nonadiabatic modesndependent variable, for which the Lagrangian equation can be
which we will treat equivalently, hence no precise discrimina-derived as follows. Consider the variation&d (Eq. (36)) with
tion between the two types of oscillations is required. The driftrespect toy '

Lagrangian of the particle can then be written as

Ed = £O+ Enr+ Er,
/
Lnr= —Pnr + Z JyAwy,
v

(1)
(32)

wheregy, is the part of the adiabatic potentialcorresponding

SL F) 1
5 = *{ 2200 (85, D'dx0)
Xy Xy

4
+ gl ') = (. D).

where we usedLo/8x =0,80 /8% =0,D'(wy) D' (w) =

(38)

to the interaction with nonresonant modes, over which also th®’, and the fact that only the terms corresponding toitre

summation is taken in E¢32).

mode contribute to E(38). Since bothy ' and x{* are in-

To calculate’;, consider the particle near-resonant responselependent o, Eq.(38) can be rewritten as follows:

in the formy, = Re[x exp(—iwt)], wherey is a slow function

as compared to the exponent. We can write thiga- £§1) +
(2)

, where
@ _Log+ py@y_Los
Ly —ERe(X ,Dx )—Z(X ,Dx), (33a)
£? =26 D'x) - (. D)), (33b)

Here D = D(w); the adiabatic responsg is governed by
Eq. (14), with only resonant component ¢f taken into ac-
count, andy@ (¢ = —oo) = 0. The Lagrangiarc” can be
expressed as(l) —or + 8¢y, Wwheres¢y is the correction to
the adiabatic potential,:

Z JyAw,.

Here the summation is taken over near-resonant madgess
x—x“, and

(34)

1
Sy = ~2 8)( DSX

1
Jy = —Z(Sxf, D/(wv)‘SXv)

is the action of free oscillations atigh mode,J, = &, /w,,
whereé, is the energy of these oscillationsgpendix B.
The drift Lagrangian can then be put in the form

(35)

La=Lo— Pett + L?, (36)

with @ef given by Eq.(27). The difference from the adiabatic

case is that now, are not necessarily constant, afigk must
generally be considered as a functionyof

1
Pett = — 7 (x, D(@)x )

1
+ 2 2‘):/ Awy (85, D' (@) xv). (37)

/. 1'/
DXU+§DXU

. /
% =2 —iAw,D 5Xu]

dli & , ,
—| = , D .
RT [83}(3‘ (6 X”)]
The second term represents a full time derivative and hence can
be neglected. Then to obtain the Euler equafiéa/sy; =0,

one must require that the first term in E89) equals zero,
which yields

8Lg i |:

(39)

v_le =iAw,dxy, (40)

wherer; "t = 3(D)~1D’. While Eq.(40) s, strictly speaking,
derived for modes witiAw,, < w, it can formally be applied to
any mode with nonzere,. Even in this case, E¢40) properly
describes adiabatic evolution of free oscillations and predicts
that at largeAw, the amplitude of induced oscillations ap-
proaches(\®.

The guiding-center equation of motion readily follows (see
Eq.(24)) from the drift Lagrangian, which we can finally put in
the following form:

Xv+T

La=Ly+ Ly, (41a)
L= Lo(r,V) — Pesi(r, x), (41b)
Ly = éZ’[(XJ, D'(@)xw) = (%2 D' (@0) )] (41¢)

v
While J, corresponding to nonresonant modes are integrals of
such motion (assumingLq/9t = 0), those of resonant modes
are not conserved, and hence a particle can generally exhibit
stochastic behavior. Surprisingly though, one more independent
integral can be identified in this case. Employing Ef) to-
gether with Eq(40), one can prove by direct calculation that
the full time derivative ofHg =V - 8L£q/3dv — Lg equals zero.
The approximate integral

Hd = Ed + Pett = cONSt (42)
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coincides with that given by Eq25) and is conserved under ZZ:l J, = const, or

the limitations(2) only, regardless of conditior(8) and (4) 1
<5d + &+ Z/ Jva)v> + Z/ J, = const (46)

Like in the adiabatic case, at nonadiabatic interaction the =~
function @¢f can also be considered as the effective potential @
seen by the particle. Directly from E¢42) it follows that where nowany of the modes may be resonant with the ac
dv d e field. The obtained equation is clearly equivalent to the above-
mos = (43)  predicted conservation df4 given by Eq.(25), both in adia-
batic and nonadiabatic regimes.
assuming thafq = 3mv?, andds = vdz is a length element  Note that the conservation lag6) follows also from a
along the particle trajectory. In the simplest case when no baCKquantum-mechanical argument, if one recalls thagre pro-
ground fields are present in the system, it is also convenient t8ortional to the number of quanté, in corresponding modes,
employ the actual Lagrangian equati(@), which now takes  n, — j, /4. Consider the total energy of the syst&g, which

an “intuitive” form includes the energy of the “dressed” particle average motion
dv &4+ @ [33-37] the energy of internal oscillation}s, Nyfiw,,
o= —V @eft. (44)  and the energy of the ac fiel hw. As Ex is conserved, one

: . . can write that
Note that the gradient in Eq44) applies to both terms of

Eq. (37), assumingsx, = x» — x\”(r), wherey, is an inde- &a+® — Y _ NyhAw, + Noho = const (47)
pendent variable. v

Despite of deceptive similarity in form with a truly conser- where the first three terms constitutéy, and No = Ny +
vative force, near-resonant ponderomotive acceleration is ngt_, N, is the total number of quanta. Siné& is conserved
reversible. Onlyn of the particle vV degrees of freedom are as the particle absorbs or emits photons (which is what con-
governed by Eq(44). The remaining & — n degrees of free- stitutes nonadiabaticity in classical terms), then @) yields
dom, described by Eq40), are “frozen” at adiabatic inter- g = const, in agreement with the above results.
action, but otherwise are indispensable and can be viewed as One can see then that the conservation lawHgris of the
hidden variables of the particle guiding center, should the lattesame type as Manley—Rowe relations, which are similar classi-
be considered as a “black box”. Also associated with the partical manifestations of inherently quantum interactions between
cle average motion are a complex phaseyaend the natural resonant oscillatorf28]. (One can show also that such relations
“location uncertainty’ = v/min|Aw, |, which makes the guid- originate from specific Noether symmetry of resonant interac-
ing center similar to @uantumobject. As shown in Ref11],  tions[17,29]) Like those, the new integral allows to conclude
the quantum analogy can be elaborated upon further and caspon global stability of particle oscillations and obtain other

even be made quantitative. results of interest. In Sectid) we will consider some applica-
tions of this conservation law on the simplest example of a par-
2.5. Hamiltonian interpretation and quantum analogy ticle with a single natural mode. More complicated dynamics

of particles with richer eigenspectrum can be approached anal-

The conservation law42) can also be explained alterna- 0gously.
tively, by employing basic principles of Hamiltonian dynamics. ] . . ]
To show that, note thaf, are the canonical momenta corre- 3- Single-mode oscillator in resonant field
sponding to angle variables , ¢, = w,. For clarity, label these
modes (with nonzerm,) with indexesv = 2, ..., ¢ and intro-
duce the quantity

For a particle with a single natural modethe conservation
law (42) takes the form

A
L ‘ 9+ @ — =28, =Hy, (48)
h=-=&+®+) Lo (45) , o - it
) - with Hg being a constant determined by initial conditions. At

diabatic interaction, when all of the conditiof23—(4) are sat-

fied,J, = &£, /w, represents an invariant, so tt{a8) yields an
expression for the drift velocity at eachThis fact allows to in-
tegrate the particle equation of motion and actually find the de-
pendence (¢) (at least, in quadratures and for one-dimensional
drift). At nonadiabatic interaction though, varies in time, and

which is the action variable corresponding to a generalize
coordinate 91 oscillating at frequencyw1 = o (see, e.g.,
Ref.[32]). At adiabatic interaction, when ad}, are well sep-
arated, each of,, will represent an invariant, which results in
conservation oty (Eq.(25)) being a combination af,. On the
other hand, at nonadiabatic ir_1teraction, when, agy_, L @ particle sees the effective potential

are close to each othef, ¢, will not be conserved individu-

ally. In this case though, treumof the resonant modes actions ¢ — ﬂ[gsa) -&), (49)

Iy = Y3 _41Jy will be an adiabatic invariantAppendix Q. Wy

Since the action of each nonresonant mdge, remains con-  with &, (¢) essentially being an unknown function (cf. E¢&7)
stant in any case, adding,.; to I; will not violate the con- and (30). Hence construction of the analytic solution is gen-
servation law. Hence, the integral can also be expressed asally impossible in this case. Nonetheless, applying ke



362 1.Y. Dodin, N.J. Fisch / Physics Letters A 349 (2006) 356—369

@ (b) .50
0.4
0.2 0.2
< <P
EN 0 SN 0
0.2
-0.2
0.2 0 02 04 06 08 T 12
A
zZ/z

Fig. 1. Longitudinal velocity, vs. guiding center locationfor a charged particle in the ac field with the spatial prdifgz) = ono exp(fzz/ZLz) imposed over
uniform dc magnetic fiel®q = z0Bg. Herev, is measured in unité = (e| Eg|/mw)v/A ~ (|® |max/m)Y/2; z is measured in units = ¢/w; e|Eg|/mcw = 0.001;
A=|1-2/o|"1=100;2 = eBg/mc; L =0.42; £,(t = 0) = 0. (a)vg = 0.475, that is,Hq < 0, (b) vy = 0.535, that is,Hq > O; vg = v (r = 0). The bifurcation
from stable to unstable bounce oscillations is analytically predictaghpt %0, thatis,Hq =0.

conservation together with E§49) renders important infor- If w, is constant, Eq(50) readsA&y = (w/w, — 1)AE,, SO
mation on the properties of particle dynamics in the resonanc®r given Aw,, the sign of A&y is determined by the sign of

domain. Some of these properties are described below. AE,. Let us show thatA&, > 0 for moderaten = To/ Pmax,
whereTy is the initial temperature. As follows from E40),
3.1. Bounce oscillations in nonadiabatic barriers AE, ~ APmay, Where

. . . -1
The conservation of{4 allows to determine the stability 4 =I1—v/o[7"> 1. (51)
conditions for particle bounce oscillations in ponderomotlvelf A n, thenAE, > To,

barriers. Suppose, for example, thai, < 0, in which case particles, regardless of the initial value 8f. As a result, if

@ <0 (cf. Eq.(30)). Conservation off{y requires then that ' " onehasagy < 0, so thatall thermal particles are de-
&4 < Hq+ | @] forall . Hence a particle cannot leave the field if celeratedFig. 3a))

.Hd <0, as otherwise it must arrve in the reg|<m_z) - 0 hav- Suppose now that each particle encounters the field repeat-
ing f'fd g Hg < O. Thus, at negatwé{d,.even ape_fIOdIC bounce edly, and the time between consecutive encounters exceeds the
OSC'”a.tlonS remain sta_ble and a particle remains trapped t,’y d&laxation time of particle natural oscillations. At each impact,
attractive ponderomotive potential. (Instability of such oscilla-y,, particle will lose abouy/w, — 1|/ AE, ~ | |max of its drift

tions can only result from dissipative effects like spontaneou%nergygd, and yet get to the next encounter with negligible
emission[33,38] not considered here.) Unstable oscillations ;¢ compared tat|® |max. Then, after about interactions, each

develop otherwise and result in particle escaping from the 'nbarticle will be cooled down t&q ~ |® |max < To, assuming

teraction region. Examples of trapped and untrapped particlg > 1. At lower energies though, new effects come into play,

trajectories are depicted Fig. j“,WhiCh qxhibits the agreement and further cooling slows down significantly, as we explain be-
between the sign df{y and particle confinement. low.

henceAé&, ~ &, (+00) > 0 for all

3.2. Ponderomotive cooling 3.3. Dynamic trapping

Breaking the adiabaticity allows irreversible energy ex- What impedes cooling below the liméy ~ | |max is the

change between particles and the ac field. If the radiation Iaynamic trapping of particles by the ac field. It is possible that,

redshifted from the resonance frequeney, thermal parti- : : ) . .
. . .due to nonadiabatic deceleration in an attractive ponderomotive
cles lose their drift energy as they scatter off a nonadiabatic . . oo
otential, a particle can lose all of its kinetic enefgyeven be-

ponderomotive barrier, regardless of their actual trajectorie#) X ) : . . o
. ) ) ore leaving the interaction region. In this case, an initially free
Should particle natural oscillations thermalize between consec-

utive interactions with the field, the effect can be employed fmpartlcle W'." be bounced b"?‘Ck by t_he_ de_:celeratmg slo_pe of the
cooling particles. wave barrier, and hence will remain inside the potential well at

. . . least for one bounce oscillatioRif. 2). More oscillations may
The idea can be explained as follows. When a free particle i

. . also follow after that; yet, because of the phase space conserva-
scatters off a ponderomotive barri@r (+00) = 0], the conser-

vation of Hgy requires that the overall changes of the guidinggtr)“n rsqu:;rr?]rir;e(?te, p?:rflisr;r] a)ytpao ' sitr‘]':\y it;apopsesti:ibfl(;r?r:/ ?r:isR(?;:gr'
center kinetic energgy and the internal oscillations energy ydy U porary) frapping 1s p '

are bound to each other:

A&q= A[(ﬂ —1

v

(50) tint Is the interaction time. For clarity though, we assume thats sufficiently

) 1 see also Ref12]. Strictly speakingA = min{wfint, |1 — wy/w| 1}, where
¢ ]
large, so that one can use the definit{6a).
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On the other hand, if the number of bounce oscillations within aciently smallvg a particle may be trapped within a potential
potential well is large, the post-trapping dynamics of a particlewell, but if ¢ < 1, trapping is impossible regardlessugf
correlates little with its pretrapping dynamics. Hence the direc- To illustrate these conditions, consider a Gaussian field
tion, to which the particle is released, is almost uncorrelatedEg(z) = xX°Eg exp(—z2/2L?) applied to a particle traveling in
with the initial velocity, and a particle can randomly escape ei-a uniform magnetic fieldBg = zZ°By (see also Sectiod.2).
ther forward or backward with respect to the direction of itsThe energy change of a particle as it goes through the pon-
original drift (Fig. 2). The overall scattering is then stochastic, deromotive barrier can be estimated under the assumgptisn
and may lead to both transmission or reflection of incident parvg = const. In this case, as follows from E(0), A&, =
ticles. —27t|<15|maxf(662), where|® |max= %mﬁz, b = (e| Eg|/mw) x

To derive the condition, under which these effects become/A, 7(x) = xe™, andeg = A(vg)/L. Assuming that ~ const
possible, suppose for simplicity that, = const. Also intro-  remains a good approximation also foe= vo/9 ~ 1, we can
duce the particle drift displacement on the beat pekiag = expect then that a particle having
v/|Aw,|, the characteristic velocity change of the particle as it
encounters the ac fielfl~ (@ |max/m)Y2, and the dimension- M_z - zf[(A )_2] (52)
less parametet = A(0)/L. Slow particles with initial velocity 2 4 e

vo < 0 are accelerated ponderomotively up to the velocity ofiyyst pe released from the interaction region with negafive

the order ofd inside the barrier. It itself is large enough \yhich is impossible. Therefore, for satisfying the condition
(€ 2 1), nonadiabatic effects have to reveal for all, even initially(52)’ the approximation, & const isstrongly violated. It is
slow particles, some of which may then experience trappingy sign that a turning point appears on the particle trajectory,

On the contrary, at <1, slow particles remain adiabatic and hich means that the particle gets trapped in the potential well.
hence cannot be trapped. As for fast particlies¥ v), in both Trapping remains possible fér, at which Eq.(52) has a real

cases they have enough energy to overcome the ponderomotiygjtion foru. In compliance with the general condition derived
deceleration and avoid trapping. Therefore¢ it 1, at suffi-  apove, such solution exists only for- 1.08, as can be shown

: : : numerically. These analytic predictions are confirmed with high
04 - accuracy in our numerical calculations, as depicteféign 3.
It is clear now why the cooling mechanism described in Sec-
tion 3.2cannot be efficient &y < ®max, thatis, atvg <« 0. For
a barrier withe <« 1 (Fig. 3@)), the conditionyg « v guaran-
tees adiabatic dynamics. Correspondingly, the energy exchange
between particles and the ac field will be exponentially small
with respect toeg, hence substantial cooling will be possible
: only on exponentially large time scales. On the other hand, at
: € 2 1 (Fig. b)), slow particles will get trapped by the ac field,
-0.6 5 05 5 05 i - and the characteristic trapping time increases with decrease
~ of vo. Indeed, a released particle must have kinetic ené€ggy
z/z satisfying 0< &g < Hq = 3mv3. As vo approaches zero, this
Fig. 2. Longitudinal velocity, vs.z for a particle being trapped and released by interval Sh“,nks’ a”‘?' it bec_omes less probable for a particle to
an attractive ponderomotive potential in a dc magnetic field (same notation an8SCape the interaction region. Thereforef@t< ®@max all par-

0.2

A

U,/U

-0.2

-0.4

parameters as ifig. 1; L = A(9)/¢; € = 3): v, = 0.300 (black) andv, = 0.31% ticles will eventually get trapped by the ac field, hence further
(gray). cooling, as described in Secti@2, will become impossible.
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Fig. 3. Change of the drift energy&y of a particle traveling in a dc magnetic field as it scatters off a nonadiabatic attractive ponderomotive barrier: numerical resul
(dots) and analytic prediction (solid). Same notation and parameterd=&s &) energy is measured in unitsH2: (a) ¢ = 0.5 (no trapping); (b = 3.3 (shaded is

the region of particle trapping as established numerically). For reference to compare with the analytically predicted trapping G®)dsfimwn also is a graph
1, .2
5mug (dashed).
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Fig. 4. (a) High-frequency field profile producing a one-way wall:>> 1 > Ly, A = vg/|Awy|; (b) effective potentials for particles incident from the left (positive
repulsive potential; particles are reflected) and from the right (negative attractive potential; particles are transmitted).

On the other hand, specific properties of nonadiabatic ponder@nough, this particle will never get to the nonadiabatic region
motive barriers allow other cooling mechanisms operating als@ < z < Ly; it will rather be reflected by the adiabatic slope and
atvg < 0 via employing one-way walls, which we will discuss leave the interaction region with zerEq and AE,. It is then

in Section3.4. clear that the contemplated ponderomotive barrier is asymmet-
ric and acts essentially like a Maxwell demon, except that it
3.4. One-way walls increases the energy of transiting particles, as required by laws

of thermodynamic§l2,41]

Internal oscillations at», ~ » essentially decrease the po-  One-way walls of the described type might find numerous
tential seen by the particle by the facter @eff = y @, where  applications employing selective manipulations with plasma
y = 1—51,/55”) < 1(cf. Eq.(49)). Remarkablyy = y(€,) can  particles. For example, in Reffl2-14] it was proposed how
be made different for different particle trajectories even at thehe contemplated Maxwell demon effect (MDE) can be used for
samer . In particular, it means that particles incident on a nona-driving electric current in magnetized plasmas. (The flexibility
diabatic ponderomotive barrier from opposite directions can bén rearranging phase space makes these techniques at least as
arranged to see differedicsr. As a result, a barrier can become efficient, and in some regimes more efficient, as the conven-
asymmetric and operate as a one-way wall. tional current drive techniqugd?2].) Mechanisms of cooling

Various techniques to produce one-way walls on the basparticles belowdmnax by what effectively amounts to pondero-
of this principle (or what effectively amounts to it) have beenmotive one-way walls have also been proposed rec{3aly3]
proposed recently in rf frequency range for electrons and iontn addition, one can also imagine how the sensitivity of MDE
[12—-14]and optical frequency range for atof39,40] Toillus-  with respect to particle resonance properties could help in sep-
trate how the idea can be employed on practice in the simplesirating plasma constituents (including isotope separation), and
caseAw, = const, let us consider the field configuration de-how asymmetry of nonadiabatic barriers in general could be
picted inFig. 4(a), assuming that it is encountered by particlesemployed for enhancing plasma confinement of mirror traps
with initially zero &, [13]. (As explained in SectioB.2, the  and other applicationd 5].
presence of nonzer§, ~ &4 can be neglected.) Assume also  If successful also on neutral particles, MDE could supple-
that Ly > A > Ly and, at first, consider a particle incident on ment the existing techniques of manipulating atoms by means
the ponderomotive barrier from the right. At its entrance to theof laser fields4—6], which broke important ground in atomic
ac field, such a particle will not have enough time to establisiphysics. Similar capabilities apply also for other small neu-
adiabatic oscillations. As it passes the vanishingly narrow rightral objects ranging from molecules to micron-sized particles
slope of the barrier, it will still havey ~ 0, or 8y, ~ _XV(“)_ and permit one to selectively and stably trap particles, levitate
Hence, at = 0 the particle will see them against gravity, channel particles along laser beams and

use them as sensitive probes for measuring optical, electric,
Pefi(z=0) ~ Pefi(z = L2 —~ 0) =0, (53) magnetic, viscous drag, and gravity ford@s44—47] These
in compliance with the fact thakes must be a continuous func- light-pressure techniques allow present and potential applica-
tion. As z is changing from 0 to-oo, the effective potential tions in a wide variety of subjects such as light scattering, cloud
can only decrease, as bafh and Aw, remain constant on the physics, qguantum optics, and high-resolution spectrosgdpy
adiabatic left slope, whered@sgradually changes from its max- If these techniques could be additive with those proposed in this
imum value to zero. A particle incident from the right then seed_etter, the value added could be large.
an attractive potential ®eff ~ & — Pmax < 0 (Fig. 4(b)) and
eventually gains energy

A(C/’d = Pmax, Aé’v = APmax. (54)

A particle incident from the left, however, sees an adialatic Let us now consider the actual examples of particles (includ-
pulsivepotential e ~ @ > 0. Assuming thatbax is large  ing those with internal degrees of freedom), to which the above

4. Classical particles exhibiting natural oscillations
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results can be applied. The purpose of this section is to derive,— oo:
within the framework of our new approach, the expressions for

the Miller potentialsp for two types of such particles, to obtain Afd = (
expressions for the corresponding effective potentials and

to show how particular results of our previous wofkg,32]  as follows from Eq(50).
follow from the general consideration proposed above.

V3L 1) AE,. (58)

wp

4.2. Particle in a magnetic field

4.1. Atomic cluster )
Return now to an elementary charged particle (electron or

Consider first an atomic cluster, i.e., a compound particld®n) in & high-frequency fiel@5) in the presence of a dc mag-
containing electron gas, which can oscillate in the attractivé'€tic fieldBo =V x Ao. IlimployaIlnear_approxmatlon for the
Coulomb field of the ion core. Since under an ac drive the elecYeCtor potentiaRo(r) = 3 Bo(2)(z° x 1) with respect to the par-
tron cloud oscillates as a whole (assuming cold electrons), ficle displacement? x r from the location of the guiding center,
can be treated as a single constituent of the “macro-particle®@ssuming thaBy is a slow function ot. Assuming also that the
Hence, counting also the ion core as one, we have 2. Since ~ dyrofrequencys2 = eBo/mc is comparable or larger thas,
the guiding center motion is three-dimensionak 3), there ~We must treat the guiding center motion as one-dimensional
can beK — n = 3 independent modek(= 3N), each corre- (n = 1). Hence there can be at most two “internal” eigenmodes
sponding to some nonnegative frequengy plus K —3=23  With distinct nonnegative frequencies (plus, the same num-
modes with zero eigenfrequencies, corresponding to the cente?er of modes with-w,). To find those, one can either start with
of-mass oscillations. the actual expression fagy, (see Ref[15]), or, more easily,

To obtain the eigenfrequencies,, it is sufficient to find employ the already known EXDTESSiOH for the polarizability ten-
poles of the particle polarizability. This can be done as fol- SOr[32]

lows. Assume that collisional heating of the cluster is insignif- 1 b g

icant during the time when the ac field is on, and the size of e2 1_—,’22 1—1b2

the cluster is small compared to the radiation wavelength. Thef§ = T o2 1,—1;,2 5z Of- (59)
an adequate model for a cluster would be a polarizable sphere 0 0 1

characterized by a real dielectric constaand a fixed radiu®
[48,49] In this casex is a diagonal tensos, = «l, with all three
eigenvalueg, equal to

whereb = 2 /w. From Eq.(59), it is seen tha& exhibits singu-
larities at the cyclotron resonanee= +£2, which gives us one

of non-negative eigenfrequencies. The remainingy, are ap-
e—1 parently zero, which can also be proved directly by solving the
’ (55) full characteristic equatio®ys = 0, as shown in Ref15].

To calculate the Miller potential, it is convenient to intro-
duce the complex amplitudes of the ac figld= &' -Eginthe
new basis formed by the eigenvectdrsof the polarizability
tensor:

so thatw, must satisfy the dispersion equatiefw,) = —2.
The dielectric constart equals that of a plasma(w) =1 —
wf,/wz, wherew, is the plasma frequency of the electron gas
inside the clustef48]. Hence, the (Frohlich) resonance takes

place atw, = w,/+/3, whereas the coefficient is modified asS _x0%iy ot — e? (60a)
the shape of a cluster deviates from spheffi6@|51] HET L oL Q)
The Miller potential(1) then takes the form 2
, £o=2° a0 =——s. (60b)
1 mao
@ = Z|Eo*PRP—L— (56) L .
L 302 — 2’ wherea, are the corresponding eigenvaluesecofThe adia-
b batic ponderomotive potentig = —3 3"« | E, |? (Eq. (23))
and the effective ponderomotive potential equals then is given by(6), and the effective potential can be ex-
® pressed a®e = @ — J(w — £2), whereJ is the action vari-
Peff =D + (1 — \/5—)51,, (57) able(35)corresponding to free natural oscillations at frequency
@p 2:J= mvE/ZQ. (Herev, = v, — vy is the quiver veloc-

where £, is the energy of free electron (Langmuir) oscilla- ity, additional to the velocity of induced high-frequency oscil-
tions inside the cluster. At adiabatic interactiép,is conserved lationsvac.) Then, introducing the particle magnetic moment
(sinceJ, = const, andv,, is constant by definition), and thus # = mv? /2Bo, one gets

Deif = @ + const. Hence, the quasi-energy= &4 + @, where

4= 3mv?, will represent an integral of particle motion in this Pett =  + 1(Bo — Bres), (61)
case. A more general integral, which is conserved even whewhere Bies= mcw/e is the magnetic field strength, at which a
the cluster interacts resonantly with the ac drive, would be thgarticle would be in exact cyclotron resonance with the ac drive
quantity’Hq = &g + Pesi- Even when the conservation 8§ is at frequencyw. In the adiabatic limit, whem = (e/mc)J is
violated, the conservation @iq still bounds the change of the conserved, one hagess = @ + wBg + const. Hence, the quasi-
particle drift energy to the change of its “internal” energy atenergy® = 4+ uBo+ @, whereEy = %m(vz)z, will represent
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A more general integral, which is conserved even when a parti-

an integral of the particle motion in this case (cf. R@2]). 1 e
9 P (cf. ReR]) £=Z|:§mjvj2»—e/'¢(rj)+fvj'A(r./‘)
cle interacts resonantly with the ac drive, would be the quantity /

Ha = &4 + Petr. Even when thew conservation is violated, the 1 Z s (|r o r~|):| A1)
conservation of{q still bounds the change of the particle drift 24 NS '
energy to the change of the magnetic moment-at co: i#]

Herem;, ¢;, r;, andv; are, respectively, the mass, the charge,
Aéd= A[p(Bres— Bo)], (62)  the location, and the velocity of #th particle;¢ = ¢ac+ dg

and A = Aac + Apg are the scalar and the vector potentials,
which determine the ac and the low-frequency background
fields correspondinglys is the speed of light{J;;(Ir; — r;])
is the energy of interaction between particles labeled with in-
dexes; and:.

Assuming thair ; —r| « L, whereL is the minimum scale

. . . . of the fields, andr is the guiding-center location, one can
In this Letter, we generalize the ponderomotive formulationyeyyrite Eq.(A.1) as

to particles (including those with internal degrees of freedom)
moving under the action of a high-frequency field, which mayL = Lo+ L~ + Zﬁj. (A.2)
interact resonantly with natural particle oscillations. The ef- j

fective ponderomotive potential is derived for both adiabaticHere Lo is the Lagrangian of the guiding center motion as it

and strongly nonadlabayc |nteract|on§ ‘?‘F‘d remains nonsiNgys 14 pe without excitation of particle internal degrees of free-
lar even at resonant drive. The possibility to introduce sucfbom.

a potential is due to the conservation of an approximate inte-

gral of the Manley-Rowe type, for which we suggest a nat-,, — }mUZ — edg(r) + fv.Ab r) (A.3)
ural quantum interpretation. We show that the properties of 2 g ¢ o

near-resonant wave barriers are strikingly different from thosevherem = Zj mj, e= Zj ej, andv = . (Note though that,
expected from the traditional adiabatic model. On one handn the presence of a dc magnetic fielgg when the particle
nonadiabatic ponderomotive potentials can repel or attract pagyrofrequencys2 = eBpg/mc is of the order ofw, the pro-
ticles in measurably predictable ways, in which sense they caposed model captures the guiding center motion only along a
operates just like normal potentials. On the other hand thouglsingle field line. In this case, the componentdfansverse to
nonadiabatic potentials are more flexible as tools for controlBpy =V x Apg should be taken equal to zero by definition (see
ling particle motion. They are not limited by the requirement of Section2.2 and 4.Zor details).) The term

conservativeness, hence allowing more freedom in manipulat- e

ing particles, which can be either charged plasma particles, g~ = Y _m;V; -V — egac(r) + ~V - Aac(r) (A4)
neutral particles, such as atomic clusters and others. We show j ¢

that, as a result, nonadiabatic ponderomotive barriers can hg approximately a full time derivative, and can be omitted as

farranged into stable traps for classical particles, producg Cooinsigmﬁcam_ The Lagrangians; are those of elementary par-

ing effect, and generate one-way walls for resonant species. tigjes relative motion. Assuming thdt;; give rise to linear
Although the analysis is performed for classical speciesggcijlations, we model them with quadratic functions pf-r;,

we anticipate that our main results can be extrapolated alsgng thys, when elaborated to the second ordérjinr; —r,
on quantum particles, such as atoms and molecules. If so, the. can pe put in the form

proposed methods could supplement the existing techniques o _

particle manipulation by laser fields. The value added could b& ; = LE.O) + Eﬁ'”t), (A.5a)
large then, as these techniques allow present and potential ap—o) 1 . e . 1

plications in a wide variety of subjects such as quantum optics./;; = Zmjh5 + ?]hj [y - V)Apg()] - > Z h; -Ujj - hj,

isotopes separation, high-resolution spectroscopy, and others. 2 i#) (A.5b)
. t )
Acknowledgement E;m) =ejh;-E/, (A.5¢)

] whereE’ is the external field in the guiding center rest frame:
The work is supported by DOE contract DE-AC0276-

CHO3073. E =E+ }v x B. (A.6)
C

as follows from Eq(50), in full agreement with the result we
obtained in Ref[12] by straightforward averaging of particle
the motion equations.

5. Conclusions

The field E’ consists of both the ac componeg}. and the
Appendix A. Compound particle Lagrangian low-frequency background componétft . For an ac field, the
amplitudes of the electric and the magnetic fields are connected
Consider the Lagrangian of a compound particle consistingvith each otherEac ~ (Lw/c)Bac, as follows from the Fara-
of N > 1 individual elementary particles: day’s law. Sincev/c « 1, one can usually neglect the term
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%v x Bac in comparison withE,e, and thusEj.~ Eac. Inturn,  where we employed the fact th&’ = R. By subtracting
E/bg = Epg both in the absence @y and in the opposite case Eg. (B.4) from Eq. (B.5) and noting that the difference be-
whenByg is sufficiently strong, so that one must consideas  tween the two must remain zero at all one gets(w, —
parallel toB (see above). We will therefore assume for sim-wv)(x;j, Rx,) = 0, meaning that(x;, Rxv) = 8uvRy. Us-
plicity that E’ = E, while a more general case can also being this result together with the characteristic equation and

contemplated. MT = M, one can show also th&b(,’j, My,) = 8,yM,, and
With the above formulas, the Lagrangigncan be finally (X;j, Oxv) =8,0,00.
put in the form(10a) with Since of the X vectorsy, the first K modes are complex
L conjugate to the remaining ones, it is convenient to consider
m; .

Ly= Z{;fzpi + ;D./ i [(pj ~V)Abg(r)] in the form

j J ’ V= ReZ Xv EXP(—iwyt). (B.6)

1 v
- Z 2eie; Pi - Uij - p,-], (A78)  1pe Lagrangian functio(B.1) can then be expressed Ag =
i7 >, Ly, where summation is taken over half of modes, i.e.,

Lint = Z p, - E(n), (A.7b)  those with nonnegative,, and

J 1., . 1., 1, . )
wherep; = ¢;r; stand for the dipole moments of the particle Ly= Z(‘/fv ’ M‘[’V) - Z(’»”v’ P‘/fV) + Z(Ww P‘/fv)
individual constituents, angd =" p; is the total dipole mo- 1, .
ment of the particle. ’ - 4_1(%’ o). (B.7)

Consider also the energity, = Pyyr — Ly, Where Py =

Appendix B. Properties of generalized linear oscillators aEl/f/alp is the canonical momentum associated with

1. . 1

The Lagrangian Hy = 5(1//, My) + E(llf, oy). (B.8)

1. ; ; 1 Like the Lagrangian}{y can also be written as a sum over
Ly = E(I/f’ My) =, Py) = E(I’//’ V) (B.1) individual modes with non-negative,: Hy = >, ‘H,, where
describes free linear oscillations in coordinagesnd yields a 1., . 1, .,
Euler equatiorDy = 0, where Hy = Z(% , M) + Z(I//v’ ov). (B.9)
R d? d In turn, H, can be expressed in terms of thth action variable
D=M— —2P— + Q. (B.2)

dt? dt 1

The eigenmodeg, = x, exp(—iw,t) are then defined by the o= g?gpv dy, (B.10)
characteristic equatioR(wy)x, = 0, where which remains an adiabatic invariant as the parameters of the
D(w) = —Mw? + 2Rw + 0, (B.3) system experience slow variatiof?]. Since
andR =iP. We will assume that ath, are real, for whichwe j — —}(Xf, D' () %), (B.11)
will require thatM, Q, and P are K x K real matrices, with 4
M, Q symmetric and nonnegatively defing@l,antisymmetric, whereD’(w) is the derivative ofB.3), the energy of ath mode
and R imaginary Hermitian corresponding]$0,31] equalsH, = J,w,; hence the associated phase varighl®s-

Under these conditions, the eigenmodes are orthogonal wittillates in time at frequencyH,,/0J, = w,.
weight function. To show that, note first that for agy =
Xvexp(—iwyt) the functiony_, = xexpliw,t) will also be
an eigenmodg31]. We thus can representraal function v Appendix C. Adiabatic invariantsfor resonant oscillators
inthe formy =)~ xv exp(—iw, ), where summation is taken _ o
over allv, both positive and negative. Consider then a real ex- Consider a system governed by the Hamiltonian
pression(ys, Py ), which can be put in two alternative complex

forms: first, as H="Ho(,1) +€H~(J, 9,1), (C.1)
. whered = (J1, ..., Jy) denote action variableg = (¢1, ...,
W, Py) = Zwu(xfi, Rxv) expi (w, — wy)t], (B-4)  4,) denote angle variablesjs time,e < 1 is a small parame-
Vil ter, andH .. is the perturbation Hamiltonian. If all frequencies

and second, after taking a complex conjugate and exchanging = dHo/0J; are aliquant and is sufficiently small, the sys-

the dummy indexes, as tem exhibits regular dynamics, with the image point moving in
. phase space along ardimensional invariant torus provided by
W, PY) = wu(xji. Rxv) exi(w, — w)t], (B.5)  the conservation of all; [53]. Suppose though that the first

Vil p frequenciesy; are close to each othejuf — w;| < w;), in
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which case even a small perturbation can destroy the mvanarEq 1@/ /q. If € K Aw/d, the new actlonl’ Zq

I; will

torus and resonantly drive the system away from its unperturbealso be an adiabatic invariant. Extendlng the technique even
trajectory. The overall deviation will then depend on the tensofurther, one can say then that at least 1 < p independent

gij = dw;/8J;, and in general can be arbitrarily large. Let usintegrals exist if, roughlys < (Aw/d)k.

show that even in this case the system will honetheless con-

serve an adiabatic invariant being a combinatiod©f .., J
Consider a canonical transformatiéh ¢) — (I, 8), where

0y =0, (C.2)

are the new angle variables, wifhbeing the average ovex:

9i<p:€0i_¢s 9i>p:(pi

¢ = (C.3)

Mu

:1

and where the new action variables are derivef} asd F/d¢p;
from the generating function

p—1 K
Fle.)=) (pi—®li+¢l,+ Y oili,
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