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A new isotope separation process based on selective cyclotron resonant interaction between ions and
a tapered helicoidal magnetic structure is identified, analyzed, and evaluated. On the basis of a
Hamiltonian analysis, the existence of a class of tapered magnetic modulation that provide a full
conversion of linear momentum into angular momentum is discovered. The characteristics and
parameters of this field configuration are analyzed and described. The dynamic of the nonresonant
isotope is investigated in order to set up a separation criterion. This autoresonant ion cyclotron
isotope separation mechanism provides an efficient alternative to other niches of enrichment
process. © 2007 American Institute of Physics. #DOI: 10.1063/1.2717882$

I. INTRODUCTION

Isotope separation, the process of concentrating specific
isotopes of a chemical element, relies on various techniques.
On the industrial scale, for uranium enrichment, for example,
standards techniques require an enormous amount of energy
and many cascade stages, making these processes costly;
however, they are able to enrich a large amount of matter. On
the other hand, to produce small quantities of pure isotopes,
electromagnetic devices such as a Calutron and plasma sepa-
ration process using ion cyclotron resonance (ICR)
heating1–10 are preferred but they do suffer of a very low
throughout.

Therefore, the search for new effective isotope separa-
tion process able to cover a large range of chemical elements
remains a goal of active research. To date, processes based
on selective ion cyclotron resonance have been used for the
isotope separation of various metallic elements.

In this paper, we present a new selective magnetic iso-
tope separation process based on the ICR interaction of a
monoenergetic multi-isotope ion beam with a tapered heli-
coidal magnetic structure. In a tapered undulator, the modu-
lation of the magnetic field, i.e., the pitch of the helicoidal
field lines, varies along the axial direction. As we will show
below, we proved the existence of a tapered undulator pro-
viding mass-dependent phase-matched energy conversion
from linear to angular momentum. Consequently, it provides
a way to force different isotopes to follow different paths in
the magnetic structure. This new isotope separation process
is a mix of methods related to Calutron and ICR heating: we
used a cyclotron resonance, but in a purely static field, no
wave injection is needed.

To understand the advantage of a tapered helicoidal
magnetic structure, let us consider a simple helicoidal mag-
netic field. Such a magnetic field is the sum of a homoge-
neous longitudinal component Bo=Boez plus a transverse ro-

tating component B!=B!#cos!kz"ex+sin!kz"ey$, where k is
related to the undulator period " through k=2# /" and
!ex ,ey ,ez" is a Cartesian basis. In the reference frame of an
ion entering this structure along ez with velocity vo, this ion
experiences an interaction with a circularly polarized electro-
magnetic wave and a resonant interaction takes place be-
tween the cyclotron motion and this wave if the following
resonant condition is fulfilled:

!c = kvo, !1"

where !c=eBo /mi is the ion cyclotron frequency with re-
spect to the longitudinal field, e is the ion charge, and mi the
resonant ion mass.

At resonance, the ion Larmor radius increases, i.e., ion
perpendicular energy increases at the expense of its longitu-
dinal energy !vz decreases", so that the resonant condition
Eq. !1" is no longer fulfilled. However, if the helicity k de-
creases in order to compensate this resonance mismatch such
that

!c = k!z"vz!z" = k!0"vo, !2"

then the resonant interaction will last as long as the particle
stays in the magnetic structure. This type of autoresonant
dynamic provides two opportunities to perform isotope sepa-
ration. First, the cyclotron frequency is different, so that
resonance #Eq. !1"$ takes place for one specific specie. Sec-
ond, the tapering of the structure #Eq. !2"$ is also mass de-
pendent. As k!z" is computed for one specific value of vo,
two different isotopes with the same kinetic energy, but dif-
ferent masses, will enter the undulator with different initial
velocity vo and as a result will follow different trajectories:
The resonant isotope will undergo an energy exchange from
the longitudinal degree of freedom towards the transverse
degree of freedom, while the nonresonant isotope will suffer
a weak adiabatic interaction and will propagate through the
structure without a significant Larmor radius increase. An-
ticipating our major results, the position-dependent helicity
k!z" providing full autoresonant conversion from linear trans-
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lation to cyclotron rotation is given by the following for-
mula:

k!z" =

!c

vo

cos%2
eA

po

!c

vo
z + &

n=1

+$
Jn!n"

n
sin 2n'2

eA

po

!c

vo
z −

#

2
() , !3"

where Jn are Bessel functions of the first kind, A is the am-
plitude of the vector potential describing the rotating compo-
nent of the magnetic field, and po=mivo. In such a tapered
magnetic undulator, one specie will arrive at the end of the
structure with a large Larmor radius and the other will escape
the device with a large linear momentum along the main field
axis. The ultimate collection of the material on receiver or on
collector plates achieves the full separation process; the is-
sues associated with this collection process are not addressed
in this paper. This process is a deterministic process and the
isotopes of the chemical elements are physically separated
after a single pass through the magnetic structure, as opposed
to statistical processes requiring cascading. Moreover, it can
be applied, as we will see later, to any elements, making this
process very attractive.

The main components of such an autoresonant magnetic
isotope separator are presented in Fig. 1: !i" a cylindrical
vessel, !ii" a set of coils located around the outside of the
chamber producing a uniform magnetic field along the axis
of the cylindrical vacuum chamber, !iii" a suitable pair of
conductors wounded as a double helix around the chamber or
a set of permanent magnet to produce a tapered magnetic
field with circular polarization as in free electron laser de-
vices, !iv" an ion beam source at one end of the separator,
and !v" collecting plates at the other end.

In this work, we identify and calculate analytically the
tapered magnetic structure allowing an efficient mass-
dependent conversion of linear to angular momentum. A
Hamiltonian dynamic provides the right framework to iden-
tity and analyze ion autoresonance in our tapered magnetic
device. We proceed as follows. First, we write down the
Hamilton equation in which the helicity of the undulator k!z"
is kept as a free parameter. For one specific specie, we re-
quire a continuous conversion of linear to angular momen-

tum; this constraint yields Eq. !3". Finally, we check that the
other isotopes stay off resonance so that linear momentum
conversion remains in the adiabatic regime.

The paper is organized as follows. In Sec. II, we present
the model used to define the magnetic field produced by an
ideal tapered undulator. In Sec. III, starting from the Hamil-
tonian of one ion in the tapered magnetic structure, we iden-
tify and determine the autoresonance conditions and then
calculate and study the corresponding magnetic structure that
permits a resonant interaction between the fields and the par-
ticles. In Sec. IV, we complete this study by a set of numeri-
cal simulations of ion orbits in the magnetic structure with
realistic fields and length values. These simulations com-
pletely validate our analytical findings and the remarkable
efficiency of this new process. Section V summarizes our
results and gives our conclusions.

In order to simplify, we will consider single charged ions
!Z=1", noting that the generalization to multiply charged
ions is straightforward. In the following, except in the final
discussion, we use the system of units e=mi=1, where e is
the electron charge and mi the mass of the resonant ion.

II. MAGNETIC FIELD MODEL

Let us consider the following magnetic structure: a static
homogeneous magnetic field Bo=%ez plus a transverse cir-
cularly polarized static magnetic field B!!z"=B!#cos!kz"ex
+sin!kz"ey$. % is the amplitude of the uniform axial field
component. Choosing a Coulomb gauge !! ·A=0", these
magnetic fields Bo and B! derive, respectively, from the po-
tential vectors Ao and A!, given by

Ao = %xey !4"

and

A!!z" = A cos &!z"ex + A sin &!z"ey . !5"

We will refer to the axial or longitudinal direction as the
direction along ez and to the transverse direction to any di-
rection in the plane !ex ,ey". In Eq. !5", the phase &!z" in-
creases with z according to the following relation:

FIG. 1. Schematic of an autoresonant
ion cyclotron isotope separation
system.
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&!z" = *
0

z

k!z"dz , !6"

where k!z" is the local helicity related to the undulator period
" through k!z"=2# /"!z". For a periodic undulator, k is con-
stant and magnetic field lines follow perfect helicoidal tra-
jectories. Here, since we anticipate a tapered undulator, we
have introduced an unspecified function k!z".

For this magnetic field model, the transverse rotating
magnetic field is described by only two parameters, i.e., A
and k, and its amplitude is B!=kA. Note that these fields are
divergence free !! ·B=0" but are not solenoidal !!'B#0".
However, it can be easily shown !“near-axis approximation”
in free electron laser studies11–13", by using a more realistic
field, that the effect of the additional component providing a
current-free condition can be safely neglected in front of the
main component of this standard model. The undulator sys-
tem outside the chamber will produce a transverse field with
radial !r" inhomogeneities A+ I1!kr", where I1 is the modi-
fied Bessel function of first kind; this current-free vector po-
tential reduces to !5" near the axis. Here, we make the as-
sumption that the monoenergetic multi-isotope ion beam
propagates close enough to the axis so that we can neglect
the radial variation of this magnetic field. Note that such
tapered helical undulators are currently used for free electron
lasers and are usually modeled with this standard model; i.e.,
Eq. !5".

III. HAMILTONIAN

A. Resonant isotope dynamics

To compute the right shape of the helical tapered mag-
netic field #Eq. !3"$, we consider first the resonant isotope
dynamics. The particles enter the circularly polarized tapered
magnetic field along the z axis at position !0,0 ,0" with ki-
netic energy E= 1

2 P0
2.

In normalized units, the time-independent classical
Hamiltonian describing the interaction between an ion and a
static magnetic field is given by

H!r,P" =
1
2

#P − A!r"$2, !7"

where r= !x ,y ,z" are the spatial coordinates, P= !Px , Py , Pz"
is the canonical momentum conjugated to r, and A=A0
+A! is the potential vector. To separate the slow and the fast
time scales of the motion, let us introduce the following gen-
erating function:14

F3!(,Y,Z,Px,Py,Pz" = −
PxPy

%
−

Px
2

2%
tan ( − YPy − ZPz,

!8"

in order to perform a canonical transformation. This transfor-
mation introduces the new set of canonical variables
!( ,Y ,Z ,J , PY , P" related to the old set by

x =
PY

%
+,2J

%
sin ( , !9a"

y = Y −,2J

%
cos ( , !9b"

z = Z , !9c"

Px = ,2%J cos ( , !9d"

Py = PY, Pz = P . !9e"

These new variables have the following meanings !see
Fig. 2": P is the longitudinal momentum, ,2%J the trans-
verse momentum, ,2J /% the Larmor radius, ( the gyro-
angle !cyclotron phase", and Y and PY /% are the guiding
center coordinates along, respectively, ey and ex.

The Hamiltonian expressed with this set of variables is
given by

H!(,z,J,P" =
1
2

A2 +
1
2

P2 + %J − A,2%J cos#&!z" − ($ .

!10"

In this relation !10", the first term is proportional to the mag-
netic energy B!

2 /2)0, the second and third ones to the ion
kinetic energy, and the last one models the interaction be-
tween the ion and the field. We point out that the guiding
center coordinate Y and the canonical momentum PY are
cyclic variables !they do not appear in the Hamiltonian" and
are, thus, constants of motion that can be set to zero without
any loss of generality.

To identify and calculate the required magnetic tapered
structure allowing for autoresonance, we now consider the
Hamilton motion equation derived from the Hamiltonian !9"

d(

dt
=

$H

$J
= % −

A%

,2%J
cos#&!z" − ($ , !11a"

FIG. 2. Definitions of the “new” variables: P is the longitudinal momentum,
,2%J the transverse momentum, ( the gyro-angle, and Y and PY /% are the
guiding center coordinates along, respectively, ey and ex.
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dz

dt
=

$H

$P
= P , !11b"

dJ

dt
= −

$H

$(
= A,2%J sin#&!z" − ($ , !11c"

dP

dt
= −

$H

$z
= − A,2%Jk!z"sin#&!z" − ($ . !11d"

The factor &!z"−( is the relative phase between the gyro-
angle ( and the field phase &!z".

At this stage of the analysis, the magnetic field phase
&!z" is still unspecified. As we will see, a unique specifica-
tion of the undulator parameter k!z" will allow continuous
energy transfer from longitudinal to transverse degree of
freedom; i.e., autoresonance.

Now, consider Eqs. !11c" and !11d" describing, respec-
tively, the rates of change of transverse and longitudinal mo-
mentum. Suppose we turn off the transverse magnetic field
A=0; the actions J and P will then be constant and the gyro-
angle ( will rotate uniformly in time. When the transverse
component A is turned on !A#0", the action J !P" will in-
crease continuously !decrease continuously" if the phase
&!z"−(!t" remains constant and is equal to # /2. This phase-
locking condition reads

&!z" − (!t" =
#

2
. !12"

Inplementing this phase-locking condition !12" into Hamil-
ton equations !11", we get the following equations of motion
at the autoresonance:

d(

dt
=

$H

$J
= % , !13a"

dz

dt
=

$H

$P
= P , !13b"

dJ

dt
= −

$H

$(
= A,2%J , !13c"

dP

dt
= −

$H

$z
= − A,2%Jk!z" . !13d"

Equations !13" complemented by the definition !6" de-
fine implicitly the variation of the periodic modulation k!z"
for which autoresonance occurs. In others words, we face an
inverse problem in which a steady resonant interaction of a
cyclotron kind between charged particles and an unknown
fields is assumed. Integrating Eq. !13c" with the initial con-
ditions J!0"=0 yields

,2%J = A%t , !14"

describing linear increase of the transverse momentum with
respect to time. This increase of the transverse momentum
takes place at the expense of the longitudinal one. Then,
differentiating with respect to time the phase-matching con-
dition !12", we obtain a local relation between k!z", the lon-

gitudinal momentum P, and the cyclotron frequency %:

d#&!z" − ($
dt

=
dz

dt

d&!z"
dz

− % = k!z"P − % = 0 !15"

since k!z"=d&!z" /dz #see Eq. !6"$. Introducing this autoreso-
nant condition kP=% relation into Eq. !13d" and integrating
with respect to time, we obtain the time dependence of the
longitudinal canonical momentum P:

P!t" = P0,1 − 'A%t

P0
(2

. !16"

This equation shows that when the autoresonant condition is
fulfilled, the energy transfer from the longitudinal to the
transverse degree of freedom occurs at the time

* =
Po

A%
. !17"

The final step is to integrate Eq. !13b", giving

z!t" =
Po

2

2A%
%arcsin

A%t

P0
+

A%t

P0
,1 − 'A%t

P0
(2) . !18"

We can now find the full length L of the undulator as a
function of the parameters A, Po, and %:

L = z!*" = z' Po

A%
( =

#Po
2

4A%
. !19"

From Eqs. !9a", !9b", !14", and !18" we also obtain the
parametric equations of the path followed by a resonant par-
ticle:

x!t" = At sin %t , !20a"

y!t" = At cos %t , !20b"

z!t" =
Po

2

2A%
%arcsin

A%t

P0
+

A%t

P0
,1 − 'A%t

P0
(2) . !20c"

The resonant ion path follows a helix !see Fig. 3" whose
radius increases linearly with respect to time.

To express the undulator period as a function of the dis-
tance z, we first relate longitudinal position z and helicity k
through

FIG. 3. Trajectory of a resonant ion for A / Po=10−2; L=#P0
2 /4A% is the

distance traveled along ez for which all the energy has been transferred to
the transverse degree of freedom. The final radius is Po /%.
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2A%

Po
2 z!k" = %arcsin,1 − ' %

kPo
(2

+
%

kPo
,1 − ' %

kPo
(2) . !21"

Equation !21" constitutes the main results of this study and
gives the variation of the pitch of the magnetic field line "
=2# /k as a function of the distance traveled along the main
axis and of the three parameters Po, %, and A. We note that
this function depends on the resonant isotope mass through
% and Po= !2E /mi"−1/2. It turns out that, given the values of
%, Po, and A, the undulator parameters are fully determined.
To study and invert this function, we introduce the two di-
mensionless variables K and Z, given by

K =
kPo

%
, Z =

2A%

Po
2 z . !22"

Equation !21" expressed with these dimensionless variables
reads

Z = arcsin,1 −
1

K2 +
1
K
,1 −

1
K2 . !23"

To invert this function, we perform the change of variable
K→+ with K=1/cos +, so that Eq. !23" becomes the cel-
ebrated Kepler equation

2Z = 2+ + sin 2+ , !24"

for the case where the eccentricity is equal to 1. The solution
of the Kepler equation !24", i.e., +!Z", can be written as a
Kapten series of Bessel function of the first kind:15

+ = Z + &
n=1

+$
Jn!n"

n
sin 2n'Z −

#

2
( , !25"

which yields the following expression for the normalized
helicity K:

K!Z" = -cos%Z + &
n=1

+$
Jn!n"

n
sin 2n'Z −

#

2
().−1

. !26"

Finally, going back to the dimensional variables, i.e., the
cyclotron frequency !c, the input velocity vo, and the undu-
lator potential A, we end up with the explicit formula !3"
stated in Sec. I. Based on this original result giving the ta-
pered helicity of the magnetic structure for isotope separa-
tion, we will perform a set of numerical simulations to check
the efficiency of our device.

The normalized helicity function K!Z" is plotted in Fig.
4. Full conversion occurs on a finite length Z=# /2, but re-
quires that the helicity diverges !corresponding to an un-
physical period equal to zero" at the end of the structure. The
point Z=# /2 is an essential singularity and the function
K!Z" is nonanalytical at the exit. However, from !16", we
remark that 87% !99%" of the linear to angular momentum
conversion is achieved when Z=1.48 corresponding to K
=2 !Z=1.56 corresponding to K=4". Hence, from a practical
point of view, it is important to note that most of the linear to
angular momentum conversion occurs for a twofold increase

of the helicity !see Table I". The strong tapering at the very
end of the structure appears to be useless for the purpose of
isotope separation. This point is well summarized in Fig. 5,
where we have plotted the ratio of the transverse energy %J
to the initial energy Po

2 /2 as a function of the normalized
length Z.

To conclude this section, we derive the expression of the
field phase &!Z", given by

&!Z" = *
0

z!Z"

k!z"dz =
Po

2A
*

o

Z

K!Z"dZ . !27"

This last integral is evaluated by performing the change K
→+:

&!Z" =
Po

2A
*

o

+!Z" 1
cos +

dZ

d+
d+ =

Po

A
sin + , !28"

and by invoking an identity relating the sinus of the eccentric
anomaly + to Z through15

sin + =,1
4

+ &
n=1

+$
Jn!!n"

n
cos 2n'Z −

#

2
( . !29"

At the end of the undulator Z=# /2, +=# /2; hence, &
= Po /A and the total number of rotations N undergoes by a
magnetic field line is thus Po / !2#A".

TABLE I. Energy transfer versus traveled length in the undulator.

K 1 2 3 4 5

Z 0 1.48 1.55 1.56 1.565

!2%J"1/2 / Po!%" 0 87 94 97 99

FIG. 4. Normalized undulator wave vector vs normalized length. Perpen-
dicular to longitudinal momentum ratio vs normalized length.
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B. Nonresonant isotope dynamics

Let us now consider the nonresonant ion dynamics. The
undulator helicity equation !3" depends on a specific isotope
mass through Po and %.

To derive a separation criterion, we study with a pertur-
bation techniques the nonresonant isotope dynamic. Let ,m
be the difference between the resonant isotope mass mi and
the nonresonant isotope mass. The resonant condition !15"
depends on the resonant isotope mass through initial linear
momentum Po!mi"= !2Ec /mi"1/2 and cyclotron frequency
%!mi"=eBo /mi. For the nonresonant isotope, the resonance
mismatch is to the first order in the parameter ,m /mi:

kP!mi + ,m" − %!mi + ,m" +
,m

2mi
% . !30"

Let -=&−( be the difference between the field phase and
the gyro-angle. Using - rather than ( as a dynamical vari-
able, we rewrite the set of motion equations !11" as

d-

dt
= kP − % −

A%

,2%J
cos - , !31a"

dz

dt
= P , !31b"

dJ

dt
= A,2%J sin - , !31c"

dP

dt
= − A,2%Jk!z"sin - . !31d"

In the resonant case, kP−%=0 and - is a constant equal to
# /2 #see Eq. !12"$. In the nonresonant case kP−%+
−,m /2mi% and the phase - is no longer a constant of the
motion; the sine function in Eqs. !31c" and !31d" are now
oscillating. Figure 6 displays these different ion dynamics in

the !- ,J" plane. The straight line corresponds to the phase-
locking condition -=&−(=# /2 and the others paths to non-
resonant dynamics. Substituting Eq. !30" into Eq. !31a" and
integrating !31a" and !31c", we obtain

- =
#

2
−

,m

4m
%t ,

,2%J =
A

,m

4m

sin
,m

4m
%t .

In the nonresonant case, we see that the transverse momen-
tum ,2%J is now an oscillating function with a period equal
to *nr=8#m /,m%−1. Note that in the limit ,m /m=0, we
recover as expected the resonant result !14".

The separation process is efficient when the period *nr is
much smaller than the resonant energy transfer time * #given
by Eq. !17"$. When this criterion is fulfilled, the energy trans-
fer from longitudinal to transverse degree of freedom for the
nonresonant isotope is, as required, small. From *nr.*, re-
sults the following separation criterion:

Po

8#A
/

m

,m
. !32"

Since the number of magnetic field line rotations N is
Po / !2#A", this criterion can also be written

N /
m

4,m
. !33"

For a given relative mass difference ,m /m, ion initial linear
momentum P0 and the rotating magnetic field parameter A
each have to be set to a certain value in order to satisfy this
separation criterion.

FIG. 5. Perpendicular to longitudinal momentum ratio vs normalized length. FIG. 6. Phase portrait in the !- ,J" plane for various value of A / P0. The
straight line corresponds to the resonant ion for which the phase-locking
condition Eq. !12" holds.
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IV. NUMERICAL VALIDATION

To validate our study, we have performed a numerical
simulation to solve Newton’s equations for two isotopes. As
a test case, let us take neon and the two ions 20Ne+ and
22Ne+, and the corresponding relative mass ratio ,m /m is
0.1. Hence, from Eq. !32", to separate Ne20 and Ne22, A / Po
must be set to a smaller value than 10−2. To validate this
separation criterion, we integrated Newton’s equation for
A / Po=10−1 and A / Po=10−2. The results are shown in Fig. 7.
Clearly, when the separation criterion is fulfilled #see Fig.
7!b"$, we observe isotope separation. Otherwise, if the sepa-
ration criterion is not satisfied #see Fig. 7!a"$, the resonance
mismatch of the nonresonant species is so weak that linear to

momentum conversion occurs for the two isotopes. Conse-
quently, the two species are not separated.

V. DISCUSSION

It may be useful to point out that the method of reso-
nance employed here enjoys certain similarities to resonant
mechanisms that occur in the context of other plasma pro-
cesses and other plasma applications. The use of guide fields
together with helical fields is a method for free electron laser
interaction, where the electron energy is extracted for the
purpose of radiation generation, and this method has been
considered in mathematical detail !see, e.g., Refs. 16–18".
The use of static perturbations superposed upon a large axial
field has also been adduced as a mechanism that may keep
electrons from running away in an applied axial electric field
in a tokamak.19 In both of these instances, the slowing down
occurs by means of resonant interaction with a static mag-
netic ripple field, which selects electrons with a specific par-
allel velocity. In the case of the free electron laser, the energy
of the oscillating electron can be radiated into an electromag-
netic mode. In the case of the runaway electrons in a toka-
mak, the maximum runaway energy may be clamped by the
resonance. The release of resonant particle energy to a wave
can also occur in a diffusive process, if the diffusion in en-
ergy is coupled to diffusion in space, such that a population
inversion occurs in the joint velocity-configuration space.20

In this respect, the tapered undulator performs a similar func-
tion in that the change in parallel energy is accompanied by
an increase in radial position through the increase in Larmor
radius.

VI. CONCLUSION

We have discovered and analyzed a class of tapered un-
dulator able to perform full mass-dependent phase-matched
conversion from linear momentum to angular momentum.
The position-dependent helicity of this class of undulator
depends on two parameters k0 and 0 and is given by the
following expression:

k!z" =
k0

cos% z

0
+ &

n=1

+$
Jn!n"

n
sin 2n' z

0
−

#

2
() . !34"

A given undulator corresponds to specific values of k0 and 0,
and a resonant interaction between the magnetic field and an
ion occurs if the following relations are fulfilled:

!c

vo
= k0, !35a"

po

2eA
vo

!c
= 0 . !35b"

Moreover, isotope separation occurs if p0 /eA/8#m /,m
#see Eq. !32"$, i.e., from !35", if the following condition is
fulfilled:

FIG. 7. Ratio of the perpendicular energy to the initial energy vs length. The
relative mass ration is equal to 10% !neon case". !a" For A / Po=10−1, the
separation criterion is not fulfilled and both isotope follow the same trajec-
tory. !b" For A / Po=10−2 the separation criterion is satisfied.
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k00 / 4#
m

,m
. !36"

R=k00 is the mass resolution of the devices. For conve-
nience, rather than k0 and 0, we will use in the following
analysis R and k0 for the device parameters. Expressed with
R and k0, the resonance condition !35a" and the isotope sepa-
ration conditions !35b" can be rewritten

!c

vo
= k0, !37a"

po

2eA
= R . !37b"

Noting the following scaling !c /vo+B0 /E1/2mi
1/2 and

po /eA+m1/2E1/2 /A, we remark that the conditions !37" for
resonance requires in fact to set only one value among the
parameters A, E, or B0. The values of the two others param-
eters being imposed by the two conditions !37".

Let us consider the following example of an undulator
with mass resolution R=100 and helicity at the entrance k0
equal to 10 m−1. These last characteristics correspond to the
following condition !A is the atomic mass and Z is the ion
charge":

k0 = 217
Z

A1/2' #1 keV$
E

(1/2' B

#1 T$( = 10 m−1. !38"

For neon, for example, A+20, this value can be obtained for
typical values E+25 keV and B+1 T. With these param-
eters, the full length of the device is

L =
#

2
0 =

#

2
R

k0
+ 15 m. !39"

It must be pointed out that this length can be reduced by
using multiply charged ions. Indeed, going back to SI vari-
ables, we see from !18", that this length scales as Z−2. How-
ever, the final radius vo /!c scales as Z−1.
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