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Manley–Rowe relations are formulated for a discrete Hamiltonian system with an arbitrary number of
resonances. Assuming that the resonances are defined as R̂|ω〉 = 0, where R̂ is an n × n integer matrix
of rank r < n, and |ω〉 ≡ (ω1, . . . ,ωn)T is the frequency vector, the projection of the action vector | J 〉 on
ker R̂ is an adiabatic invariant. Hence n − r independent integrals, from where the conventional Manley–
Rowe relations for a single resonance follow as a particular case.

© 2008 Elsevier B.V. All rights reserved.
Manley–Rowe relations are conservation laws, which constrain
the energies exchanged by oscillatory degrees of freedom un-
der nonlinear resonant interactions [1–3]. Originally obtained for
electrical circuits [4–24], these relations yield a quantum analogy
[25–27] and occur at classical wave interactions [28–38], sharing a
common mathematical description [39–44]. However, their general
form for multiple resonances has not been understood1; hence the
problem is yet to be solved.

The purpose of this Letter is to point out that the general
Manley–Rowe relations can be derived deductively via the formal-
ism of Ref. [45], offering a compact vector form of the integrals for
any dynamical system with an arbitrary number of resonances. We
restate the results of Ref. [45], suggest their quantum mechanical
interpretation, and show how the conventional Manley–Rowe re-
lations follow for a single resonance as a particular case. We also
consider a sample system with multiple resonances to illustrate
how the general formalism can yield conservation laws concisely
as compared with ad hoc techniques.

Consider a classical dynamical system described by n actions
| J 〉 and conjugate phases |ϕ〉 exhibiting oscillations at frequen-
cies |ϕ̇〉 = |ω〉, where we assume the notation |x〉 ≡ (x1, . . . , xn)T.
Suppose that some of these oscillations are in resonance,2 the con-
dition reading

R̂|ω〉 = 0, (1)
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1 See Ref. [3, p. 5] for a discussion on the insufficiency of the analysis offered in
Ref. [6].

2 Any of the frequencies being commensurate is also considered a resonance.
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where R̂ is an n × n matrix of rank r < n,

R̂ =
n∑

i=1

∣∣e(i)〉〈r(i)
∣∣, (2)

e(i)
j = δi j , and |r(i)〉 are integer vectors. Eq. (1) yields r independent

equations:〈
r(i)

∣∣ω〉 = 0, i = 1, . . . , r, (3)

where we assume, for brevity, that those are the first r of |r(i)〉
vectors that are linearly independent; then Eqs. (3) are equivalent
to

r∑
i=1

∣∣e(i)〉〈r(i)
∣∣ω〉 = 0. (4)

Introduce∣∣q(i)〉 = { |r(i)〉, i = 1, . . . , r,

|g(i−r)〉, i = r + 1, . . . ,n,
(5)

where {|g(i)〉} is any integer basis in ker R̂ found from

R̂
∣∣g(i)〉 = 0. (6)

Then Eq. (4) rewrites as

P̂ Q̂ |ω〉 = 0, (7)

where P̂ is a projection operator of rank r:

P̂ =
r∑∣∣e(i)〉〈e(i)

∣∣, (8)

i=1
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and Q̂ is an integer matrix of rank n:

Q̂ =
n∑

i=1

∣∣e(i)〉〈q(i)
∣∣. (9)

Since Q̂ is invertible, there exists a canonical transformation
( J ,ϕ) → (I, θ), such that |θ〉 = Û |ϕ〉, with Û = Q̂ det Q̂ −1, so
Eq. (7) yields

P̂ |Ω〉 = 0, (10)

where |Ω〉 ≡ |θ̇〉 = Û |ω〉. The corresponding generating function
F (ϕ, I) is obtained from θi = ∂Ii F and reads

F (ϕ, I) = 〈I|Û |ϕ〉, (11)

therefore | J 〉 = Û †|I〉, where we used J i = ∂ϕi F .
For |θ〉 increased by 2π |k〉, where |k〉 is an arbitrary integer

vector, |ϕ〉 = Û−1|θ〉 is increased by 2π Û−1|k〉, where Û−1|k〉 is
also integer. Thus the system is periodic in |θ〉, meaning that |θ〉
can be considered phase variables, and the corresponding frequen-
cies read

|Ω〉 = det Q̂ −1
n∑

i=r+1

∣∣e(i)〉〈g(i−r)
∣∣ω〉

. (12)

Here Ωi = 〈e(i)|Ω〉 is zero for i = 1, . . . , r but nonzero for i =
(r + 1), . . . ,n, because |g(i)〉 are linearly independent from all in-
teger vectors orthogonal to |ω〉 [Eqs. (3)]. By definition, Ωi are
also mutually incommensurate; hence, assuming that they (and
the beat frequencies) are large compared to the rest inverse time
scales in the system, the corresponding n − r actions Ii are adia-
batic invariants [46]. Then, for each i = (r + 1), . . . ,n,

〈
J̇
∣∣g(i)〉 = det Q̂ −1

{
r∑

j=1

〈
İ
∣∣e( j)〉 〈r( j)

∣∣g(i−r)〉︸ ︷︷ ︸
0

+
n∑

j=r+1

〈
İ
∣∣e( j)〉︸ ︷︷ ︸

0

〈
g( j−r)

∣∣g(i−r)〉} = 0, (13)

which yields the desired integrals (cf. Refs. [45,47–50]):〈
J
∣∣g(i)〉 = const, i = 1, . . . , (n − r). (14)

Eqs. (14) show that the projection of | J 〉 on the R̂ null space is
conserved, in a vector form reading

P̂ker| J 〉 = const, (15)

where P̂ker is the operator projecting on ker R̂ . Eq. (15) generalizes
the conventional Manley–Rowe relations [4,39] as it applies to any
discrete system with an arbitrary number of resonances.

Since |ω〉 belongs to ker R̂ , one also obtains a corollary

〈 J̇ |ω〉 = 0, (16)

known as the energy conservation law; hence a quantum inter-
pretation of the above results: Given Eq. (16), the change of the
number of quanta |N〉 = h̄−1| J 〉 satisfies

〈	N|ω〉 = 0. (17)

Since |	N〉 is integer, Eq. (17) cannot be independent from Eq. (1),
which, by definition, lists all resonant combinations of frequen-
cies. Thus, 〈	N| = 〈ψ |R̂ , where 〈ψ | is some vector, meaning that
〈	N|g(i)〉 = 0; hence Eqs. (13)–(15) are recovered.3

3 For quantum mechanical derivations of the conventional Manley–Rowe rela-
tions, see Refs. [17,25–27,51–53].
Using the above results, the conventional Manley–Rowe rela-
tions [4] can be derived as a particular case corresponding to a
single resonance of the form

n∑
i=1

νiωi = 0, (18)

with integer νi . The matrix R̂ , of rank 1, is written as

R̂ =
(

ν1 ν2 . . . νn

0 0 . . . 0
0 0 . . . 0

)
, (19)

hence Eq. (6) yields n − 1 independent null space vectors:

∣∣g(i)〉 = n∑
j=1

(νi+1δi, j − νiδi+1, j)
∣∣e( j)〉. (20)

Thus Eq. (16) gives

νi+1 J i − νi J i+1 = const, (21)

and the latter rewrites as

d J1/ν1 = d J2/ν2 = · · · = d Jn/νn, (22)

which is a form equivalent [39] to the original result by Manley
and Rowe [4].

Unlike ad hoc techniques, the above derivation yields the in-
tegrals deductively and without specifying the interaction details.
Hence the analysis remains concise also for multiple resonances, as
seen in the following example. Consider a system of n oscillators
with

ω1 = ω2 = · · · = ωn, (23)

so R̂ is upper bidiagonal:

R̂ =

⎛
⎜⎜⎜⎜⎝

1 −1 0 · · · · · · 0
0 1 −1 0 · · · 0
.
.
.

.

.

.
. . .

. . .
. . .

.

.

.

0 · · · · · · 0 1 −1
0 · · · · · · 0 0 0

⎞
⎟⎟⎟⎟⎠ . (24)

As rank R̂ = n − 1, there is a single independent vector in ker R̂ ,
particularly∣∣g(1)

〉 = (1,1, . . . ,1)T. (25)

Therefore one integral is obtained from Eqs. (14), reading
n∑

i=1

J i = const, (26)

that is, conserved is only the total number of quanta. A compar-
ison of this analysis with an ad hoc derivation such as that in
Ref. [44] illustrates the power of Eqs. (14), (15) in application to
multi-resonance classical systems ranging, in general, from elec-
trical circuits [3,6] to particle traps, rf-heated mirror plasmas, or
Rydberg atoms and molecules in laser fields [44].

In summary, we point out that Manley–Rowe relations are de-
rived from the first principles of Hamiltonian mechanics via the
formalism of Ref. [45], offering a compact vector form of the inte-
grals for any dynamical system with an arbitrary number of res-
onances. Assuming that the resonances are defined as R̂|ω〉 = 0,
where R̂ is an n × n integer matrix of rank r < n, and |ω〉 ≡
(ω1, . . . ,ωn)T is the frequency vector, the projection of the action
vector | J 〉 on ker R̂ is an adiabatic invariant; hence n − r indepen-
dent integrals. We suggest a quantum mechanical interpretation of
this result and show how conventional Manley–Rowe relations are
yielded for a single resonance. We also consider a sample system
with multiple resonances to illustrate how the general formalism
can yield conservation laws concisely as compared with ad hoc
techniques.
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