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A class of optimization problems in networks of intersecting diffusion domains of a special form of
thin paths has been considered. The system of equations describing stationary solutions is equivalent
to an electrical circuit built of intersecting conductors. The solution of an optimization problem has been
obtained and extended to the analogous electrical circuit. The interest in this network arises from, among
other applications, an application to wave–particle diffusion through resonant interactions in plasma.
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1. Introduction

Diffusion, or random-walk processes are, in principle, straight-
forwardly treated in any geometry. Although the treatment is
straightforward, in practice, it may be difficult to extract general
properties of solutions in complex domains. However, certain ge-
ometries may be amenable to useful simplifications. An example
of particular interest is when the diffusion is restricted to narrow
one-dimensional paths. Networks of such domains are frequently
used to model porous media [1–5] and fiber networks in brain
white matter [6]. Also, a discrete model of diffusion path network,
in which particles exhibit random-walk steps between nodes of
some graph [7], is used to study computer and social networks
[8–13], as well as city traffic [14].

Consider a rectangular network formed of vertical and horizon-
tal intersecting diffusion paths (see Fig. 1). The diffusion tensor on
each path is assumed diagonal with the transverse diffusion be-
ing much weaker than the diffusion along the path. The diffusion
tensor in each intersection region is set to be equal to the sum of
tensors of intersecting paths. The particle distribution f (x, y) can
then be found by solving the diffusion equation:

∂ f

∂t
= −∇ · [D̂(�x) · ∇ f

]
, (1)
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Fig. 1. Diffusion domain comprised of four intersecting paths. The diffusion tensor D̂
on a path σdn outside of the intersection regions is D̂ p(σdn) = Ddn

�d0 + μ�τ0(d), and

D̂ = D̂ p(σ1)+ D̂ p(σ2) in the volume formed by intersection of two paths σ1 and σ2,
where μ is the coefficient of a weak transverse diffusion, d ∈ {x, y}, n ∈ {1,2}, and
�τ0(d) is equal to �y0, when d is equal to �x0 and vice versa. Boundary conditions are:
f = 0 at the thick boundaries; f ′ = 0 (i.e. no particle flux) at the thin boundaries;
and the input particle flux density is given through the dashed boundaries.

where D̂ is a piecewise constant diffusion tensor, yielding a unique
stationary solution of Eq. (1), assuming proper boundary condi-
tions [15].

As will be shown in Appendices A and B, the stationary so-
lution of Eq. (1) in a rectangular network of thin diffusion paths
can be reduced to a set of linear equations, which can be solved
for any particular configuration. However, the dependence of parti-
cle fluxes on diffusion coefficients is not linear; any change of the
diffusion coefficient of a single path results in a redistribution of
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the flux in the whole network. The goal of the present study is to
solve an optimization problem of flux rearrangement in a network
of diffusion paths. Specifically, we find the diffusion coefficients
minimizing a weighted sum of the outgoing fluxes.

The solution of the optimization problem is shown to be a limit
of a system with the diffusion coefficients equal to 1, β , . . . , βk ,
with k < 5 as β goes to infinity. As demonstrated in Ref. [3], the
network of diffusion paths is equivalent to the network of inter-
secting one-dimensional conductors (wires). As a result, all theo-
rems true for one of the systems can be immediately applied to
the other. The equivalence of systems is demonstrated and the op-
timization problem in networks of diffusion paths is extended to
specific electrical circuits.

Besides being interesting by itself, the optimization problem
has an important application to α-channeling [16] in tokamaks
[17–19] and mirror machines [20,21]. In inhomogeneous magnetic
field and an electrostatic wave, a charged particle exhibits random-
walk motion along an effectively one-dimensional curve in the
velocity space (Appendix C). In a system with several waves, the
corresponding paths might intersect, forming a network which is
capable of transporting particles between certain areas of the ve-
locity space. In application to cooling down α particles in fusion
devices, this concept is known as α-channeling. Maximization of
the energy extracted from α particles by variation of the wave
amplitudes and hence the effective diffusion coefficients of the cor-
responding paths results in the optimization problem solved in this
Letter.

The Letter is organized as follows. In Section 2, we reduce the
original system of finite-size intersecting diffusion paths to an ap-
proximate system of one-dimensional equations and discuss the
relation of the random-walk in networks of paths to the random-
walk on oriented graphs. In Section 3, we show the equivalence
between the network of diffusion paths and the network of in-
tersecting conductors. The main result of the Letter, a solution
of the general optimization problem, is given in Section 4. Sec-
tion 5 summarizes our conclusions. In Appendix A, we prove that
a network of thin diffusion domains can be reduced to a system
of intersecting one-dimensional paths. A local optimization of the
weighted sum of outgoing fluxes by varying diffusion coefficients
is considered in Appendix B. In Appendix C, we show the physical
context of the optimization problem. In particular, we discuss the
α-channeling concept and its optimization in tokamaks and mirror
machines.

2. Basic equations

The optimization of a flux distribution in a rectangular net-
work of diffusion paths can be performed analytically if each path
can be approximated as a one-dimensional curve. As discussed in
Appendix A, if the transverse diffusion is negligible, the path char-
acteristic widths are much smaller than all distances between the
paths, and the input flows are quasi-homogeneous, then Eq. (1)
yields a stationary solution with a spatial scale much larger than
the characteristic path width. Hence, particle flux distribution in
a network of thin diffusion paths can be estimated by calculating
fluxes in a network of one-dimensional paths (see Fig. 2). Particle
density fluxes and particle densities in such network satisfy condi-
tions: (a) particle conservation, reading

jx
i, j − jx

i, j−1 + j y
i, j − j y

i−1, j = 0 (2)

and (b) relation between the linear fall of particle density along
the path, supporting the constant particle flux between two adja-
cent intersection volumes, and the flux itself:

jx
i, j = f i, j+1 − f i, j

D �x
, j y

i, j = f i+1, j − f i, j

D �y
, (3)
x,i j y, j i
Fig. 2. An example of a network comprised of one-dimensional paths. Circles show
sinks, while arrows at the ends of diffusion paths correspond to given input fluxes.

where f i, j is the particle density at the intersection of the hor-
izontal and vertical diffusion paths with indices i and j corre-
spondingly, further called the volume (i, j), �xi and �yi are the
distances between horizontal and vertical paths with indices i and
i + 1 respectively, and jx

i, j , j y
i, j are density fluxes through the seg-

ments linking volume (i, j) with volumes (i, j + 1) and (i + 1, j)
correspondingly. The outgoing fluxes are denoted by jx

i,0 and j y
0, j .

The optimization problem of particular physical interest for such a
network is to find �Dx and �D y minimizing a linear combination of
the outgoing fluxes:

min
�Dx, �D y

(
n̄∑

i=1

wxi jx
i0 +

m̄∑
j=1

w yj j y
0 j

)
, (4)

where m̄ and n̄ are total numbers of horizontal and vertical
paths correspondingly, weights wxi and w yi are constants, den-
sities at the left and bottom sides of the network are zero [ jx

i,0 =
f i,1/(ai Dx,i) and j y

0, j = f1, j/(b j D y, j)] and input fluxes at the top

j y
n, j and to the right jx

i,k are given.
Random-walk of particles in a network of diffusion paths can

be represented as a random-walk on an oriented graph with nodes
corresponding to the intersection volumes, sinks and sources and
with edges corresponding to possible particle transitions between
these nodes. A probability pij of a particle jump from the node i
to the node j is defined by assigning weights to all graph edges
according to pij = ξi j/

∑
k ξik , where ξi j is a weight of the edge

connecting the node i with the node j, or zero if there is no such
edge. One can show then that for every diffusion path network,
there exists a weight distribution such, that the probabilities of
particle jumps between the nodes are the same in both systems.
Due to the fact that the inverse is not true, and some optimiza-
tion problems of the form (4) for the graphs with variation over
the edge weights cannot be reformulated for the diffusion path
networks, one can argue that the class of optimization problems
on oriented graphs is wider. For instance, the problem of max-
imum extractable energy from plasmas under wave-induced dif-
fusion [22] can be reduced to an optimization of a random-walk
on a certain graph. Another example is an optimization of outgo-
ing fluxes (4) in a graph corresponding to the network of diffusion
paths, in which jumps between two nodes are permitted in only
one direction. Restricting all jumps to be directed towards the
sinks, and the weights of the edges located on the same path to
be equal, one defines a well posed optimization problem. The so-
lution of this problem can be found using dynamic programming
[23] by successively adding horizontal and vertical paths to the
system. It can be shown that the optimum is achieved for a sys-
tem with path weights proportional to 1, β, . . . , βk with k < 5 as
β goes to infinity. The same property holds for the system of dif-
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Fig. 3. (a) Electrical circuit equivalent to the simplest diffusion network formed by four intersecting diffusion paths. (b) The same circuit when the resistivity of the second
vertical diffusion path is much smaller than all the others.
fusion paths, however the proof of this fact is different and will be
given in Section 4.

3. Equivalence to electrical circuit

Replacing j by currents, f by potentials, and D by conductivi-
ties of a unit length ρ−1 in Eqs. (2) and (3), the optimization prob-
lem (4) becomes equivalent to an analogous optimization problem
for electrical circuit comprised of intersecting homogeneous wires
with grounded left and bottom ends ( f = 0) and given currents
through top and right ends. Equivalence between two systems al-
lows to apply any knowledge about one system to another. For
example, the distribution of currents in the circuit can be found as
a solution of a variational problem:

min
�I∈S

n∑
k=1

I2
k �lkρk,

where n is a number of the edges, �I is an n-dimensional vector
of the currents, ρ−1

k is the conductivity of a unit length of the
kth edge, �lk is the length of this edge, and S ⊂ R

n is such that∑
i∈e(v) Ii = 0 for every circuit node v , with e(v) being a set of

indices of edges adjacent to it. Thus reformulated, the variational
problem in the network of intersecting diffusion paths reads:

min
�j∈S

n∑
k=1

j2
k�lk/Dk,

where a vector of currents �I is replaced by a vector of particle
fluxes �j, and conductivities ρ−1

k are replaced by diffusion coeffi-
cients Dk .

An example illustrating the transition from the optimization
problem (4) to that for an electrical circuit is the optimiza-
tion problem for the intersection of two pairs of parallel wires
(Fig. 3(a)). Redirection of all input currents to the horizontal (ver-
tical) exit with index x1 (y1) is possible in a limit β → 0 of the
configuration ρx1 = βρy1 = β2ρx2 = β2ρy2 (ρy1 = βρx1 = β2ρx2 =
β2ρy2). This solves the optimization problem in the case when wx1
or w y1 are smaller than the other weights. The case when wx2
(w y2) is the smallest weight is more difficult because it is impos-
sible to direct all input currents into the corresponding exit even
if ρx2 (ρy2) is much smaller than the other weights. However, as
shown in Section 4, the minimum of the weighted sum is reached
when the resistance ρx2 (ρy2) is the smallest and the system is re-
duced to the circuit shown on Fig. 3(b). The optimization problem
is then reformulated as:

min
�j

w = min
�j

[wx1 j1 + wx2 j2 + w y1 j3 + w y2 j4 + w y2 j5], (5)

where output currents are connected by ji = j1 + j2 + j3 + j4 +
j5, j2/ j5 = �x1/a2, j1/ j4 = �x1/a1. Substituting these expressions
into Eq. (5), the problem reduces to the minimization of a linear
function

w = wx1 j4�x1/a1 + wx2 j5�x1/a2 + w y2 j4 + w y2 j5

+ w y1( ji − j4�x1/a1 − j5�x1/a2 − j4 − j5)

over a triangle in ( j4, j5) space, formed by three inequalities:
j4 � 0, j5 � 0, ji � j4(�x1/a1 +1)+ j5(�x1/a2 +1). The minimum
of a linear function is reached in one of the triangle’s vertices [24],
and thus three different solutions are possible:

(a) ρy2 = βρx2 = β2ρx1 = β2ρy1,

(b) ρy2 = βρx1 = β2ρx2 = β2ρy1,

(c) ρy2 = βρy1 = β2ρx1 = β2ρx2.

4. Solution for the diffusion path network

In the general case of n × m rectangular network of diffusion
paths, the minimum in Eq. (4) is reached in the limit β → ∞ of
a network with finite diffusion coefficients equal to 1, β, . . . , βk

with k < 5. This property, which is the main result of the Letter,
is proved in this section in two steps. First, we note that the diffu-
sion path with a minimum-weighted sink (we take this weight to
be equal to 0 for distinctness) should have a diffusion coefficient
much greater than the diffusion coefficients of the paths intersect-
ing it. Then, using independence of the subnetworks obtained by
partition of the original network by the minimum-weighted path,
solutions in each subsystem is obtained separately.

When the sink of the leftmost (bottom) diffusion path has the
smallest weight, the optimization problem has a trivial solution. In
this case, all particles can be directed to the minimum-weighted
path by making its diffusion coefficient large compared to the dif-
fusion coefficient of the bottom horizontal (leftmost vertical) path,
which should in turn be much larger than diffusion coefficients of
other paths.
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In a more general case, when the minimum-weighted sink is
not on the leftmost or the bottom path, the optimum is also
achieved when the diffusion coefficient Dmin of the minimum-
weighted path is much larger than the coefficients D int of the
paths intersecting it. This can be proved using a random-walk pro-
cess analogy. Compare a configuration in which Dmin ∼ D int with
the same configuration having Dmin � D int. For each particle tra-
jectory which does not cross the minimum-weighted path in the
large-Dmin system, there is an identical particle trajectory in the
finite-Dmin system with the same realization probability and the
same output weight. On the other hand, for each trajectory cross-
ing the minimum-weighted path (and then leaving immediately)
in the large-Dmin system, there is a family of trajectories in the
finite-Dmin system with the same path before the crossing and the
same overall probability, but larger or equal average output weight.
Thus, averaging over all trajectories, one concludes that the weight
defined by Eq. (4) in the large-Dmin system is smaller or equal to
the weight in the finite-Dmin system.

The minimum-weighted path divides the network into two sub-
networks. An optimal solution to the right of this path (we choose
vertical orientation of the minimum-weighted path for distinct-
ness) is trivial: all vertical diffusion paths have diffusion coeffi-
cients much smaller than the diffusion coefficients of every hori-
zontal path. In this case, all particles entering the system to the
right of the minimum-weighted path are captured by it. On the
other hand, the part of the network to the left of the minimum-
weighted path, which we will call enclosed, can be treated as an
isolated part in which points of intersection with the minimum-
weighted path are replaced by particle sinks with zero weights
(the minimum weight in the system). To specify the network ge-
ometry, the number of vertical and horizontal paths in the en-
closed system are denoted by m and n correspondingly, fluxes
entering the system from above are denoted by ji

k , distances be-
tween horizontal or vertical diffusion paths with indices i and i +1
are denoted by �xi and �yi , and the distances from the leftmost
vertical path to the left sinks and from the bottom horizontal path
to the bottom sinks are denoted by ai and bi correspondingly.

To solve the optimization problem in a general case, we first an-
alyze a horizontal path with fixed vertical input and output fluxes.
Then we solve an optimization problem in a class of networks,
in which the relations between vertical fluxes and corresponding
differences of densities of adjacent intersection volumes are omit-
ted. We prove that there are many optimal solutions, one of which
can be asymptotically reached in a conventional diffusion path net-
work.

Consider a single horizontal diffusion path with vertical fluxes
jk entering from the above, vertical outgoing fluxes ik , and the left
outgoing flux j0. The equation for j0 then reads:

j0ak + ( j0 − �1)�x1 + ( j0 − �1 − �2)�x2 + · · ·
+ ( j0 − �1 − �2 − · · · − �m)�xm = 0,

where �k = jk − ik . This solution is correct when particle densi-
ties in all intersection volumes are nonnegative, which results in
m conditions:

j0 � 0,

j0ak + ( j0 − �1)�x1 � 0,

· · ·
j0ak + ( j0 − �1)�x1 + ( j0 − �1 − �2)�x2 + · · ·

+ ( j0 − �1 − �2 − · · · − �m−1)�xm−1 � 0.

Consider the optimization problem in a network of diffusion
paths, in which vertical fluxes and corresponding differences of
densities are not related. In such a network, the fluxes on all seg-
ments of vertical diffusion paths, or �i j = j y

i, j − j y
i−1, j , can be

defined independently. Limiting all particle densities and outgoing
vertical fluxes to be positive, nm +m linear conditions are imposed
on the system:

j0 =
∑m

i=1
∑i

j=1 �kj�xi

ak + �x1 + · · · + �xm
� 0, (6)

j0ak + ( j0 − �k1)�x1 � 0, . . . , (7)

j0ak +
m−1∑
i=1

�xi

(
j0 −

i∑
j=1

�kj

)
� 0 (8)

for 1 � k � n, and

n∑
k=1

�kl � ji
l for 1 � l � m. (9)

Under these conditions, the minimum weight of the enclosed sys-
tem is nonnegative and the expression for the linear weight func-
tion w reads:

w =
n∑

k=1

wxk

∑m
i=1

∑i
j=1 �kj�xi

ak + �x1 + · · · + �xm
+

m∑
k=1

w yk

(
ji
k −

n∑
l=1

�lk

)
. (10)

The solution of a linear optimization problem is reached in the
vertex of nm-dimensional manifold defined by Eqs. (6)–(9). This
vertex corresponds to the intersection of nm hyperplanes (out of
nm + m conditions), limiting it. In terms of conditions (6)–(9), this
means that 0 � s � m vertical output fluxes are zero and there
are at least nm − s intersection volumes with vanishing f . Due to
the fact that the horizontal flux cannot emerge from the intersec-
tion volume with zero density, there should be exactly s volumes
with nonzero densities in the system with all input fluxes greater
than zero. Furthermore, every vertical path with vertical output
flux equal to zero should contain just one such volume; hence-
forth we call such configurations primitive.

The found optimum cannot necessarily be realized in an ordi-
nary network of intersecting horizontal and vertical diffusion paths.
However, we show here that any such optimum can be trans-
formed to another configuration with exactly the same weight,
which can be represented as a network of both horizontal and
vertical diffusion paths. We use a convenient notation, character-
izing each primitive configuration by (m + 1)-dimensional vector
(α1, . . . ,αm,0), where αk is equal to l if the nonzero density vol-
ume is situated on the intersection of the vertical path with index
k and the horizontal diffusion path with index l, and αk is equal
to zero if there is no such intersection volume on this vertical
path. Considering a primitive solution of the minimization problem
corresponding to a vector (α1, . . . ,αm,0), we can construct other
primitive configurations with the same weight applying a follow-
ing lemma.

Lemma 1. For every primitive configuration of the form (α1, . . . ,αl, s, r,
. . . , r,0,αq, . . . ,αm,0) [or (α1, . . . ,αl, s, r, . . . , r,0)], where s > 0,
r > 0 and s �= r, there exists another primitive configuration correspond-
ing to the vector (α1, . . . ,αl, s, s, . . . , s,0,αq, . . . ,αm,0) [or (α1, . . . ,

αl, s, s, . . . , s,0)], which has the same weight.

Proof. Consider a primitive configuration defined by:

f II
i j = 0, i �= s,

f II
sj = Dxr f I

r j
, l + 2 � j � q − 2,
Dxs
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Fig. 4. Construction of a primitive configuration described by vector (. . . , s, s, s, . . . , s,0, . . .) from a primitive solution defined by vector (. . . , s, r, r, . . . , r,0, . . .). Denoting
by f II particle densities in the constructed system and by f I particle densities in the original system, the construction is defined by relation f II

sj = Dxr f I
r j/Dxs for indices

j � l + 2. As a result, all flows except for ja , jb and jc are left unchanged. All segments without arrows indicate the segments with zero fluxes. Relation jc = ja − jb proves
that all outgoing flows are the same in both systems.
where f I
i j and f II

i j are particle densities in the original and con-
structed solutions correspondingly (Fig. 4). In the considered con-
figuration all horizontal fluxes between nonzero density volumes
are left the same as in the original system, except for the vol-
umes on vertical paths with indices l + 1 and l + 2. This, in
turn, means that all outgoing fluxes for vertical paths with in-
dices ranging from l + 3 to q − 2 are left equal to zero. Noting that
jc = ja − jb , we also see that

∑
k �I

k,l+1 = ∑
k �II

k,l+1 = ji
l+1 and∑

k �I
k,l+2 = ∑

k �II
k,l+2 = ji

l+2, which suggests that outgoing fluxes
for vertical paths with indices l + 1 and l + 2 are equal to zero, too.
This proves that the weight of constructed system is equal to the
weight of the original configuration because all outgoing fluxes are
the same in both configurations. �

Applying the lemma repeatedly, one can prove that for any
primitive configuration there exists a configuration with the same
weight, which is described by either a vector (s1, . . . , s1,0, . . . ,0,

s2, . . . , s2,0, . . . ,0, sk, . . . , sk,0), or a vector (0, . . . ,0, s1, . . . , s1,

0, . . . ,0, s2, . . . , s2,0, . . . ,0, sk, . . . , sk,0) with si > 0. Noticing then
that for every primitive configuration of the form (. . . ,0, r, . . . , r,
0, . . . ,0) with r > 0, there exists another primitive configu-
ration having the same weight and described by the vector
(. . . ,0, s, . . . , s,0, . . . ,0) with s > 0, one can state that an arbitrary
primitive optimum is equivalent to another primitive configuration
with all nonzero density volumes situated on a single horizontal
diffusion path with index denoted further by s. Interestingly, such
configurations can be asymptotically reached as β → ∞ in a con-
ventional network of intersecting horizontal and vertical diffusion
paths. The diffusion coefficients in the diffusion path network are
to be set as follows (if there is at least one nonzero intersection
volume in the system): the diffusion coefficient of the horizontal
path with index s is to be much larger (∼ β3) than the diffusion
coefficients of the rest of horizontal paths (∼ β) and vertical paths
with nonzero density volumes (∼ β2); remaining vertical paths are
to have D y ∼ β4.

Having determined the form of the optimal solution, Eq. (10)
can be rewritten as

w = wxs

∑m
i=1

∑i
j=1 �sj�xi

as + �x1 + · · · + �xm
+

m∑
l=1

w yl
(

ji
l − �sl

)
, (11)

where �sl � ji
l ; then the value of s can be then found by minimiz-

ing

wxs
. (12)
as + �x1 + · · · + �xm
By substituting the corresponding values to Eq. (11), the optimiza-
tion problem is reformulated as a minimization of

min
m∑

j=1

μ j�sj (13)

over a manifold limited by Eqs. (6)–(8) and m conditions �sl � ji
l .

The solution of this optimization problem defines which of vertical
diffusion paths are to have diffusion coefficients proportional to β4

and which are to be proportional to β2.

5. Conclusions

The optimization of the exit flux rearrangement in the rectan-
gular network of one-dimensional diffusion paths as defined by
Eq. (4) is obtained. The solution is also applicable to the electrical
circuit comprised of intersecting conductors.

The solution of the optimization problem was obtained by ex-
tending the class of the networks over which the optimization
was performed and showing that one of the optimal solutions is
asymptotically achieved in the original class as diffusion coeffi-
cients of certain diffusion paths become large compared to the
others. More specifically, the largest diffusion coefficient, propor-
tional to β4, where β → ∞, should be assigned to the minimum-
weighted diffusion path (vertical for distinctness). To the right of
this diffusion path all vertical paths are assigned D y ∼ 1. The
remaining diffusion coefficients are to be determined solving a
simpler optimization problem (13) and finding index s, which min-
imizes Eq. (12). Solution of Eq. (13) determines which vertical
paths in the enclosed system are to have D y ∼ β4 and which
D y ∼ β2. Horizontal paths with indices k �= s are assigned Dx ∼ β

and Dx ∼ β3 is assigned to the horizontal path with index s.
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Appendix A. One-dimensional model of the particle distribution
function

In this appendix we show that a spatial scale of the parti-
cle density distribution in a rectangular network of thin diffusion
paths greatly exceeds a characteristic diffusion path width. This
fact allows us to employ a one-dimensional model for the distribu-
tion function, considering dependence only in the path direction.
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(a) (b)

Fig. 5. (a) Two intersecting diffusion paths and their geometrical sizes; (b) intersection volume and the boundary conditions.
Consider first the simplest network formed of two straight ef-
fectively one-dimensional diffusion paths intersecting at a right
angle (Fig. 5(a)). In steady state Eq. (1) reads

Dxx(x, y)
∂2 f

∂x2
+ D yy(x, y)

∂2 f

∂ y2
= 0. (A.1)

It is solved for the distribution function f in the domain comprised
of two, horizontal and vertical narrow stripes, with widths wh and
w v correspondingly. At one exit of each path (distances rh and rv

apart from the intersection region) the particles are absorbed and
f = 0, at the other two exits input particle flux densities are given,
and since the problem is linear, one of the two can be taken equal
to zero.

When the parameter μ, which is responsible for a weak
transverse diffusion, is negligible, an approximate solution out-
side of intersection region reads: f (x, y) = h1(y) + h2(y)x −
μh′′

1(y)x2/(2Dx) − μh′′
2(y)x3/(6Dx) + O (μ2) for horizontal path,

or f (x, y) = h1(x)+h2(x)y −μh′′
1(x)y2/(2D y)−μh′′

2(x)y3/(6D y)+
O (μ2) for vertical path, where h1 and h2 are arbitrary smooth
functions with characteristic spatial scales Li = (h′′

i /hi)
−1/2. Fur-

thermore, when condition (μ/min Di)(max l2i /min L2
i )  1, with li

being a path length, is satisfied, the solution outside of the inter-
section region can be approximated by the leading order terms.
Thus, the solution in the original domain might be obtained by
solving the diffusion equation in the intersection volume with a
new set of boundary conditions (see Fig. 5(b)):

∂ f

∂ y

∣∣∣∣
y=0

≈ 0, Dx wh
∂ f

∂x

∣∣∣∣
x=w v

≈ −h(y),

∂ f

∂ y

∣∣∣∣
y=−wh

≈ f (x,−wh)

rv
,

∂ f

∂x

∣∣∣∣
x=0

≈ f (0, y)

rh
, (A.2)

where h(y) is the horizontal input flux density.
Eq. (A.1) with boundary conditions (A.2) can be solved by sep-

arating variables:

f ≈
∞∑

k=0

ck

[(
1 + 2

λxkrh − 1

)
exp(λxkx) + exp(−λxkx)

]
cosλyk y,

where ck are constant coefficients, λxk = √
λk/Dx , λyk = √

λk/D y ,
and λk is found from the equation:

tan−1(wh
√

λk/D y
) = rv

√
λk/D y . (A.3)

Assuming that the width of the horizontal path wh is much
smaller than the distance from the intersection volume to the par-
ticle sink rv , Eq. (A.3) can be solved approximately:

λy0 ≈ 1

(rv wh)1/2
 1

wh
,

λyk ≈ πk + 1 ≈ πk
, for k > 0.
wh rvπk wh
The relation λy0  λyk for k > 0 suggests that if the input flux
density h(y) is quasi-homogeneous, ck  c0. Neglecting the terms
of order wh/rv , the fraction of the input particle flux absorbed at
the left loss boundary is then given by:

J x=0

J x=w v

≈ 1

1 + λ2
x0 w vrh

=
(

1 + D y w vrh

Dx whrv

)−1

=
(

1 + D y w vrh

Dx whrv

)−1

.

Thus, in a steady state regime, the net particle flux J incoming by
the horizontal diffusion path divides into two outgoing fluxes Jh
and J v :

Jh ≈ J ·
(

1 + D y w vrh

Dx whrv

)−1

, J v = J − Jh. (A.4)

Particularly, when D y w vrh is much smaller or much larger than
Dx whrv , the major part of the input flux will be absorbed at the,
whereas in a symmetric system with D y w vrh = Dx wxrv , the input
flux is divided into two equal fluxes.

Consider a network comprised of n̄ horizontal and m̄ vertical
paths, and denote by �Dx and �D y vectors of diffusion coefficients
of horizontal and vertical diffusion paths correspondingly. The flux
distribution in a such network is a sum of distributions in two sim-
pler systems: (i) the system with zero vertical input fluxes and the
horizontal input flux densities equal to �ji

x(y) and (ii) the system
with zero horizontal input fluxes and the vertical input flux den-
sities equal to �ji

x(y). The solution f i jk in the intersection region
formed by horizontal and vertical diffusion paths with indices i
and j can be found in the form f i jk = Xijk(x)Yijk(y), where Xijk
and Yijk satisfy

X ′′
i jk

Xi jk
= λi jk

Dxi
,

Y ′′
i jk

Yi jk
= − λi jk

D yj
,

with k enumerating eigenfunctions and eigenvalues λi jk . For con-
venience, we assign the origin to the volume’s left bottom corner.

Considering, for example, a system with zero vertical input
fluxes, the vertical eigenfunctions Yijk(y) can be found indepen-
dently in each column as follows. Noticing that the intersection
volumes on a vertical path are restricted to have the same hori-
zontal structure, one concludes that λi jk for different values of i are
connected through λi jk = λ jk Dxi . Values of λ jk can then be found
using vertical boundary conditions simplified when μ is negligible:
(a) boundary condition at the bottom intersection region:

Y ′
1 jk(0) = Y1 jk/b j,

where b j is the distance to the particle sink on the vertical path
with index j; (b) zero input flux density condition at the top
intersection region Y ′

njk(yn) = 0, and (c) conditions necessary to
connect adjacent intersection volumes:

Y ′
i, j,k(yi) = Y ′

i+1, j,k(0),

Yi+1, j,k(0) − Yi, j,k(yi) = Y ′
i, j,k(yi)�yi = Y ′

i+1, j,k(0)�yi,
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where yi is the width of the horizontal path with index i, and
�yi is the distance between horizontal paths with indices i
and i + 1. These equations can be solved approximately when
the vertical and the horizontal diffusion path widths xi and y j
are much smaller than all distances between paths �x j , �yi
and distances to the sinks ai and b j , by considering the lead-
ing zeroth-order terms in the expansion by small parameters εi =
max{xi/�x j, xi/a j, yi/�y j, yi/b j}. Assuming λ j y2

i Dxi/D yj  1 and
λ j > 0 (which we later show to be consistent with our final result),
we can use small-value expansions, as we did solving Eq. (A.3), to
obtain a simplified equation for the zeroth eigenvalue λ j0:

si+1 = si

1 − si

Dx,i+1

Dx,i

yi+1

yi
+ �yi

b j
τi+1,

sn = 1, s1 = τ1, (A.5)

where τi = λ j0 Dx,i yib j/D y, j . For any k, the solution for τk of this
recursive scheme is of order of one when all equation parameters
are of order of one, which suggests that all possible solutions for
λ j0 are of order of (yb)−1 and assumption used above holds. It can
be proved that, in the general case, Eq. (A.5) has exactly n non-
negative and no negative solutions, which justifies the assumption
λ j > 0.

Once the eigenvalues λ j0 and corresponding eigenfunctions are
calculated, the horizontal quasi-homogeneous input flux density
can be decomposed by eigenfunctions of the rightmost vertical
path. Quasi-homogeneity of the input flux density suggests that
its decomposition is dominated by the zeroth eigenfunctions cor-
responding to eigenvalues λ j0, because all other eigenfunctions
oscillate a few times on a width of at least one of diffusion paths.
Noticing that the decomposition of zeroth eigenfunction of one
vertical diffusion path by eigenfunctions of the adjacent path con-
tains just zeroth eigenfunctions to the zeroth order term in a small
parameter ε = maxεi , one can couple zeroth-order eigenfunctions
of adjacent vertical diffusion paths and find an approximate solu-
tion everywhere in the system. Obtained solution is a linear com-
bination of just zeroth eigenvalues (to the zeroth order in small
parameters), which suggests that the spatial scale of the particle
distribution function is much larger than the characteristic path
width.

Appendix B. Derivative calculation

In practical applications, the optimal solution obtained in Sec-
tion 4 might be impossible to achieve. In α-channeling imple-
mentation, for instance, infinitely large diffusion coefficient would
imply an infinitely large wave amplitude. One can resolve this
by introducing additional limitations on the parameter space or
adding terms depending on �Dx and �D y into the optimized func-
tional. Numerical algorithms suitable for solution of such extended
optimization problem, like gradient descent method, might require
calculation of derivatives of the weight function w with respect
to the diffusion coefficients. In this section we outline such calcu-
lation for an isolated system enclosed by the minimum-weighted
diffusion path.

Denote by �xi a vector of particle densities and their derivatives
down the path for the intersection volumes situated on a horizon-
tal path with index i: �xi = ( f i1, f i2, . . . , f im, f ′

i1, . . . , f ′
im), where f ′

i j
is a y-derivative of f down the vertical path with index j. To solve
for particle densities given incoming fluxes, two 2m × 2m linear
operators t̂i and T̂k are introduced:

�xi+1 = t̂i(Dxi)�xi,

T̂k = t̂kt̂k−1 · · · t̂1 =
(

Âk B̂k

ˆ ˆ
)

, T̂0 = Î,

Ck Dk
where Î is an identity operator. Given the m-dimensional vector of
input fluxes �I0 entering the system from above, the state vector at
the bottom diffusion path is calculated:

�x1 = κ̂−1( �Dx)

(
Λ̂−1

y
�I0

Λ̂−1
b Λ̂−1

y
�I0

)

=
( Ĉn + D̂nΛ̂−1

b 0

0 Ĉn + D̂nΛ̂−1
b

)−1
(

Λ̂−1
y

�I0

Λ̂−1
b Λ̂−1

y
�I0

)
,

where (Λ̂b)i j = δi jb j and (Λ̂y)i j = δi j D yj are m×m matrices and t̂n

is constructed by introducing a virtual horizontal path with index
n + 1 having vanishing Dx,n+1 and situated arbitrary distance �yn

apart from the adjacent path. The value of the weight function can
then be calculated:

w =
[

�wT
yΛ̂yΛ̂

−1
b +

(
wx1 Dx1

a1
Î + wx2 Dx2

a2
T̂1 + · · ·

+ wxn Dxn

an
T̂n−1

)
1

]
�x1, (B.1)

where ( Ŝ)1 denotes the first row of the matrix Ŝ , and �wx , �w y are
vectors of positive weights of the leftmost horizontal and vertical
sinks relative to the weight w0 of the rightmost horizontal sinks.
Using ( Ŝ−1)′ = − Ŝ−1 Ŝ ′ Ŝ−1, and

∂ t̂i

∂ Dxk
= δk,i

(
�yi ĉ′

i 0

ĉ′
i 0

)

= δk,i D−1
xi

(
t̂i − Î − �y

(
0 Î

0 0

))
= δk,i D−1

xi

(
t̂i(Dxi) − t̂i(0)

)
,

one can differentiate Eq. (B.1) with respect to Dxk to obtain:

∂ w

∂ Dxk
=

[
wxk

ak
Î + Â

(
t̂k − t̂k(Dxk = 0)

)]
1

T̂k−1�x1

− [ �wT
yΛ̂yΛ̂

−1
b + (B̂)1

] · κ̂−1 κ̂ − κ̂(Dxk = 0)

Dxk
�x1, (B.2)

where

Â =
(

wx,k+1 Dx,k+1

ak+1 Dxk
Î + wx,k+2 Dx,k+2

ak+2 Dxk
t̂k+1

+ wx,k+3 Dx,k+3

ak+3 Dxk
t̂k+2t̂k+1 + · · ·

)
,

B̂ = wx1 Dx1

a1
Î + wx2 Dx2

a2
T̂1 + · · · + wxn Dxn

an
T̂n−1,

and where we used Dxkκ̂
′ = κ̂( �Dx) − κ̂(Dxk = 0). Consider a net-

work formed from the original by removing kth horizontal path, or
equivalently by taking Dxk = 0; henceforth we call such network
reduced. Denote by �Ir such vector of input fluxes entering the re-
duced system, that the values of f at its bottom horizontal path
are equal to �x1:(

Λ̂−1
y

�Ir

Λ̂−1
b Λ̂−1

y
�Ir

)
= κ̂(Dxk = 0)�x1,

the last term in the right-hand side of Eq. (B.2), multiplied by Dxk ,
can be interpreted as the difference of weights of the original sys-
tem with �I = �I0 and the same system with �I = �Ir . The first term
in the right-hand side of Eq. (B.2), multiplied by Dxk , is equal to
the sum of weights of horizontal paths with indices k,k + 1, . . . ,n
in the original system minus the sum of weights of paths with in-
dices k + 1, . . . ,n in the reduced system with �I = �Ir . Noticing that
all outgoing vertical fluxes and horizontal fluxes leaving through
sinks with indices 1, . . . ,k − 1 of the reduced system with �I = �Ir
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are equal to the same fluxes of the original system with �I = �I0 (be-
cause �f1 is the same in both systems), Eq. (B.2) finally takes the
form:

Dxk
∂ w

∂ Dxk
=

[
�wT

yΛ̂yΛ̂
−1
b +

n∑
i=1

wx,i Dx,i

ai
T̂ i−1

]
1

· κ̂−1κ̂(Dxk = 0)�x1

−
(

�wT
yΛ̂yΛ̂

−1
b +

n∑
i=1,i �=k

wx,i Dx,i

ai
T̂ i−1(Dxk = 0)

)
1

�x1.

According to this relation, the derivative of the system weight with
respect to Dxk is simply equal to the difference of weights of the
original system with �I = �Ir and the reduced system with �I = �Ir .

Appendix C. Physical background

In the presence of exact or approximate integrals of motion,
particle trajectories are constrained to lie in a lower-dimensional
manifold of the phase space, thus restricting particle diffusion in
stochastic systems. A particle resonantly interacting with an elec-
trostatic wave in a magnetic field is an example of the system with
constrained diffusion. The equation of particle motion reads:

m �̇v = −Re iqϕ0�ke−iωt+ik‖z+i�k⊥�r⊥ + q

c
�v × �B, (C.1)

where m, q, �r and �v are the particle mass, charge, position and
velocity correspondingly; �B = �̂zB‖ is the magnetic field assumed
constant; ϕ0k, ω, and �k are the wave amplitude, the frequency
and the wave-vector correspondingly. Introducing new coordinate
z̃ = z − ωt/k‖ , one can make a canonical transformation in the
Hamiltonian corresponding to Eq. (C.1), to obtain [25]:

mv2⊥ + m(v‖ − ω/k‖)2

2
+ Re qϕ0e−iωt+ik‖z+i�k⊥�r⊥ = C,

where C is a constant of motion. When the wave amplitude is
small and qϕ0  C , this integral restricts the particle trajectory in
the velocity space to a ring with the center at �vc = �z0ω/k‖ , and
with a width �u ∼ qϕ/mC , where �z0 is a unit vector directed
along the z axis. If the resonance condition ω − k‖u‖ = nΩ =
neB/mc is satisfied, a typical change of the particle velocity due
to interaction with the wave greatly exceeds the ring width �u
and the particle trajectory in the velocity space is directed along
the arcs forming the ring.

In physical systems where the wave-particle interaction is not
a continuous process, but is broken into many short acts, in which
particle phases are not correlated (an example being a mirror ma-
chine with localized rf regions), the particle dynamics is stochas-
tic. In this case, the volume of the phase space subjected to the
strongest diffusion contains resonant particles moving along the
circle v2⊥ + (v‖ − ω/k‖)2 = const. Due to resemblance of this vol-
ume to a thin neighborhood of one-dimensional curve, it is fre-
quently referred to as a diffusion path. A single wave at finite am-
plitude can also induce this diffusion [26].
The α-channeling concept is based on arranging diffusion paths
in the velocity space, in such a way that they connect areas of
phase space where hot α particles are born to the much lower-
energy areas where they are lost [16]. As a result of population
inversion created along these paths, an average flux of α parti-
cles is induced, and the particles leave the system and cool at the
same time, quickly converting their initial energy to the wave. In
mirror machines, for instance, α-channeling can be implemented
by arranging several rf regions along the device axis [20,21]. Vary-
ing parameters of the wave regions, the configuration of diffusion
paths in the phase space can be optimized to extract maximum
energy from α particles. In optimal configurations, it might be
advantageous or even unavoidable for several diffusion paths to
intersect, and, because the paths intersect with the loss boundary
at different values of energy, the optimization problem of select-
ing wave amplitudes (and thus effective diffusion coefficients at
the paths) minimizing the output energy of all leaving particles is
posed. Similar optimization problems occur when α-channeling is
applied to tokamaks [17–19].
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