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A diffusive Hamiltonian flow triggered by a resonant drive is confined to a phase subspace determined
by the resonance structure. The diffusion path is found for an arbitrary, possibly nonstationary discrete
system by applying generalized Manley–Rowe relations to an extended Hamiltonian.
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A diffusive Hamiltonian flow of particles can be triggered in
phase space through the interaction with waves resonant to par-
ticle natural oscillations, such as Larmor rotation [1,2]. If the dif-
fusion is slow compared to the oscillations, certain conservation
laws persist; hence the flow dimension is smaller than that of the
phase space. For a given Hamiltonian, the diffusion path is found
from the motion equations; on the other hand, it is entirely deter-
mined by the resonance structure and thus could allow a universal
form [3]. However, a general solution for an arbitrary number of
resonances has not been reported.

In this Letter, we show, by using the generalized Manley–Rowe
relations [4], how the diffusion path is deductively obtained for
multiple resonances in any discrete system. To do this, we offer an
extended Hamiltonian which connects the oscillation center energy
[5,6] with the formally introduced particle action conjugate to the
wave frequency. Unlike in Refs. [7–11], nonstationary quiver fields
are allowed, and non-analytic variable transformations are avoided.

Consider a dynamical system with a Hamiltonian H(Γ, t),
where Γ is the canonical space, and t is time. Suppose two charac-
teristic time scales and denote t with τ in slow functions and with
ξ in fast functions; hence dτ ξ = 1, and ∂t = ∂ξ + ∂τ [12,13]. Define
an equivalent extended phase space, where (ξ,−E) is an indepen-
dent canonical pair, with E = H(Γ, t) being the energy. Then the
new Hamiltonian is

H = H(Γ, ξ, τ ) − E + A(ξ), (1)

where A(ξ) = ∫ ξ
∂τ H dt̃ is approximately the averaged work, with

the integral taken along the system trajectory.
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Perform a canonical transformation (ξ,−E) → (ζ, W ) as deter-
mined by the generating function

F (ξ, W ) = W ξ −
ξ∫

A(ξ̃ )dξ̃ . (2)

This results in ζ = ∂W F = ξ , and −E = ∂ξ F = W − A, so the new
Hamiltonian reads

H = H(Γ, ξ, τ ) + W , (3)

with dτ W = −∂ξH, yielding a corollary dtE = ∂t H .
Suppose that H contains multiple scales in ξ ; say, it is periodic

in θ = ωξ , ω being a constant frequency vector. Then Eq. (3) gives
an equivalent Hamiltonian

H = H(Γ, θ, τ ) + ω · I, (4)

where I is the action vector conjugate to the angle θ , at dimω = 1
expressed as I = (A − E)/ω.1,2 Suppose also that the phase space
is separated such that

Γ = (q,p) × (ϕ, J), (5)

1 H is understood as the Hamiltonian accounting for additional degrees of free-
dom which are associated with the oscillatory field. The latter has the energy∑

i ni h̄ωi = W , where ni = Ii/h̄ is the number of quanta in ith mode, and the total
energy of the system is governed by dτ (E + ∑

i ni h̄ωi) = ∂τ H .
2 For ∂τ H ≡ 0, the fact that −E/ω is the action corresponding to oscillations at

the quiver field frequency ω was previously shown in Refs. [7–11] using a non-
analytic variable transformation.
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and the system is close to integrable in (ϑ,J ), where ϑ = ϕ ⊕ θ ,
and J = J ⊕ I, with (ϕ, J) being some angle-action variables;
dτϕ = �. This means that

H = H0 + εH∼, (6)

where ε is vanishingly small, and H0 is a ϑ-independent ‘oscilla-
tion center’ Hamiltonian [5,6], which can be derived, e.g., from the
averaged Lagrangian 〈L〉 [14]:

H0 = p · v −L≈ E, L= 〈L〉 − � · J, (7)

with p = ∂vL, and v = dτ q. Hence J is an adiabatic invariant,
meaning3

dτE ≈ ∂τ H0, J = const, (8)

unless the frequency vector � ≡ � ⊕ ω allows resonances [15].
Otherwise, put the resonance condition as

R̂ · � = 0, (9)

where R̂ is an integer n×n matrix, with n = dim� and rank r < n.
At nontrivial R̂, the invariance is preserved for the projection of J
on ker R̂ [4,16]:

J ker ≡ P̂ker · J = const (10)

(here P̂ker is the projection operator); hence n − r so-called
Manley–Rowe relations [17,18] independent of ε → 0. Should those
allow an expression in terms of E and J,4 a diffusion path in Γ is
obtained:

J ker(Γ ) = const. (11)

Below we illustrate this technique on known sample problems.
First, suppose a resonance

νΩ ≈ �ω, (12)

with integer ν and �, for simplicity assuming a monochromatic
field, a single frequency Ω , and ∂τ H ≡ 0. Rewrite Eq. (12) in the
form (9), where

R̂ =
(

ν −�

0 0

)
, (13)

yielding a one-dimensional ker R̂ with a basis vector g = (�, ν)T.
Hence g · J = � J + ν I is conserved, or

dE/d J = ω�/ν, (14)

which is a generalization of the diffusion paths known for wave-
particle interactions [1] to any H0.

For example, for a particle in a magnetic field B = ez B , Eq. (14)
yields dE/dμ = (ω�/ν)(mc/q), where μ = q J/mc is the mag-
netic moment associated with the Larmor rotation at frequency
Ω = qB/mc, m/q is the particle mass-to-charge ratio, and c is the
speed of light. Assuming a wavevector k = eyk, the guiding cen-
ter displacement satisfies dx = −(�/ν)(kc/qΩ)dμ [19]. Hence one
can also obtain a diffusion path in (x,E) plane reading dE/dx =
−mΩω/k (cf. Ref. [19]) used, for instance, in α-channeling theory
[2,20].

To illustrate dealing with multiple Ωi , suppose

ν1Ω1 + ν2Ω2 ≈ �ω. (15)

3 For a particle in an external field, this regime corresponds to acquiring an
effective rest mass, resulting in an effective average potential at nonrelativistic en-
ergies [14].

4 Ii belong to the extended space (footnote 2); thus, at dimω > 1, not all combi-
nations of Ii are expressed through E .
This corresponds to

R̂ =
(

ν1 ν2 −�

0 0 0
0 0 0

)
; (16)

hence two independent vectors in ker R̂:

g(1) = (�,0, ν1)
T, g(2) = (0, �, ν2)

T, (17)

so Eq. (10) yields conservation laws

� J1 + ν1 I = const, � J2 + ν2 I = const, (18)

with a corollary ν2 J1 − ν1 J2 = const. Then, like in the previous
case, channeling occurs along a straight line in (J,E) space, now
reading

d J1/ν1 = d J2/ν2 = dE/ω�. (19)

Like Eq. (14), the obtained equalities are also understood from
the conservation of the total number of quanta and energy in the
particle-field system; see, e.g., Ref. [21] for a similar treatment.

In summary, a diffusive Hamiltonian flow triggered by a res-
onant drive is confined to a phase subspace determined by the
resonance structure. The diffusion path is found for an arbitrary,
possibly nonstationary discrete system by applying generalized
Manley–Rowe relations to an extended Hamiltonian. For a particu-
lar system, the algorithm for obtaining the path is summarized as
follows: (i) expressions are derived for the actions J and the oscil-
lation center energy E [Eq. (7)], (ii) the resonance condition is put
in the form (9), and (iii) the path is obtained from the fact that the
projection of J on ker R̂ remains constant [Eq. (10)]. For the two
examples illustrating this technique, known results are reproduced.
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