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A diffusive Hamiltonian flow triggered by a resonant drive is confined to a phase subspace determined
by the resonance structure. The diffusion path is found for an arbitrary, possibly nonstationary discrete
system by applying generalized Manley-Rowe relations to an extended Hamiltonian.
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A diffusive Hamiltonian flow of particles can be triggered in
phase space through the interaction with waves resonant to par-
ticle natural oscillations, such as Larmor rotation [1,2]. If the dif-
fusion is slow compared to the oscillations, certain conservation
laws persist; hence the flow dimension is smaller than that of the
phase space. For a given Hamiltonian, the diffusion path is found
from the motion equations; on the other hand, it is entirely deter-
mined by the resonance structure and thus could allow a universal
form [3]. However, a general solution for an arbitrary number of
resonances has not been reported.

In this Letter, we show, by using the generalized Manley—Rowe
relations [4], how the diffusion path is deductively obtained for
multiple resonances in any discrete system. To do this, we offer an
extended Hamiltonian which connects the oscillation center energy
[5,6] with the formally introduced particle action conjugate to the
wave frequency. Unlike in Refs. [7-11], nonstationary quiver fields
are allowed, and non-analytic variable transformations are avoided.

Consider a dynamical system with a Hamiltonian H(T,t),
where I" is the canonical space, and t is time. Suppose two charac-
teristic time scales and denote t with t in slow functions and with
& in fast functions; hence d;£ =1, and 9; = 3¢ + 9; [12,13]. Define
an equivalent extended phase space, where (¢, —&) is an indepen-
dent canonical pair, with £ = H(I', t) being the energy. Then the
new Hamiltonian is

H=H(T,&,1t)—-E+AG), (1)

where A(§) = [ 5 d; Hdt is approximately the averaged work, with
the integral taken along the system trajectory.
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Perform a canonical transformation (&, —&) — (¢, W) as deter-
mined by the generating function

&
F(E,W)=W¢ —/A(é)dé. (2)

This results in { =dwF =&, and —€ = 98:F = W — A, so the new
Hamiltonian reads

H=H(F,§,T)+W, (3)

with d; W = —8¢H, yielding a corollary d;£ = 9;H.

Suppose that H contains multiple scales in &; say, it is periodic
in § = w&, w being a constant frequency vector. Then Eq. (3) gives
an equivalent Hamiltonian

H=HT,0,7)+w-1, (4)

where I is the action vector conjugate to the angle 6, at dimw =1
expressed as I = (A — &)/w.!2 Suppose also that the phase space
is separated such that

I'=(q,p) x (@.)), (5)

! H is understood as the Hamiltonian accounting for additional degrees of free-
dom which are associated with the oscillatory field. The latter has the energy
> inihw; = W, where n; = I;/h is the number of quanta in ith mode, and the total
energy of the system is governed by d; (£ + )_;nihw;) = d; H.

2 For d;H =0, the fact that —£/w is the action corresponding to oscillations at
the quiver field frequency w was previously shown in Refs. [7-11] using a non-
analytic variable transformation.
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and the system is close to integrable in (#, J), where # =@ &0,
and J =] @1, with (¢,]) being some angle-action variables;
dr@ = Q. This means that

H=Hgo+€H-, (6)

where € is vanishingly small, and Hp is a #-independent ‘oscilla-
tion center’ Hamiltonian [5,6], which can be derived, e.g., from the
averaged Lagrangian (L) [14]:

Ho=p-v—-L=~¢E, L=(L)-2], (7)

with p = dyL, and v=d,q. Hence J is an adiabatic invariant,
meaning?

d:E ~ d:Hy, J = const, (8)

unless the frequency vector w = Q @ @ allows resonances [15].
Otherwise, put the resonance condition as

R-w =0, (9)

where R is an integer n x n matrix, with n =dim @ and rank r <n.
At nontrivial R, the invariance is preserved for the projection of J
on kerR [4,16]:

Txer = f’ker - J = const (10)

(here f’ker is the projection operator); hence n — r so-called
Manley-Rowe relations [17,18] independent of € — 0. Should those
allow an expression in terms of £ and J,* a diffusion path in I" is
obtained:

T ker(I") = const. (11)

Below we illustrate this technique on known sample problems.
First, suppose a resonance

VR ~lw, (12)

with integer v and ¢, for simplicity assuming a monochromatic
field, a single frequency £2, and 9. H = 0. Rewrite Eq. (12) in the
form (9), where

ﬁ:(g _OZ>, (13)

yielding a one-dimensional kerR with a basis vector g= ().
Hence g- J = ¢] + vl is conserved, or

dé/d] =wt/v, (14)

which is a generalization of the diffusion paths known for wave-
particle interactions [1] to any Hy.

For example, for a particle in a magnetic field B=e,B, Eq. (14)
yields d€/du = (wt/v)(mc/q), where pu = qJj/mc is the mag-
netic moment associated with the Larmor rotation at frequency
§£2 =qB/mc, m/q is the particle mass-to-charge ratio, and c is the
speed of light. Assuming a wavevector k = ek, the guiding cen-
ter displacement satisfies dx = —(¢£/v)(kc/q$2)du [19]. Hence one
can also obtain a diffusion path in (x, ) plane reading d€/dx =
—mQw/k (cf. Ref. [19]) used, for instance, in a-channeling theory
[2,20].

To illustrate dealing with multiple £2;, suppose

V1821 4+ 1282 ~ Lw. (15)

3 For a particle in an external field, this regime corresponds to acquiring an
effective rest mass, resulting in an effective average potential at nonrelativistic en-
ergies [14].

4 J; belong to the extended space (footnote 2); thus, at dim > 1, not all combi-
nations of I; are expressed through &.

This corresponds to

R vy vy —4
R= ( 0 0 O ) ; (16)
0 0 O

hence two independent vectors in kerR:

gV = 0", g?=(1¢wm), (17)

so Eq. (10) yields conservation laws

£J1 + v11 = const, £ ]y + val = const, (18)
with a corollary v, J1 — v1J2 = const. Then, like in the previous
case, channeling occurs along a straight line in (J,£) space, now
reading

dji/vi=d]2/v; =dE/wl. (19)

Like Eq. (14), the obtained equalities are also understood from
the conservation of the total number of quanta and energy in the
particle-field system; see, e.g., Ref. [21] for a similar treatment.

In summary, a diffusive Hamiltonian flow triggered by a res-
onant drive is confined to a phase subspace determined by the
resonance structure. The diffusion path is found for an arbitrary,
possibly nonstationary discrete system by applying generalized
Manley-Rowe relations to an extended Hamiltonian. For a particu-
lar system, the algorithm for obtaining the path is summarized as
follows: (i) expressions are derived for the actions J and the oscil-
lation center energy £ [Eq. (7)], (ii) the resonance condition is put
in the form (9), and (iii) the path is obtained from the fact that the
projection of J on kerR remains constant [Eq. (10)]. For the two
examples illustrating this technique, known results are reproduced.
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