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Simplified model of nonlinear Landau damping
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The nonlinear interaction of a plasma wave with resonant electrons results in a plateau in the
electron distribution function close to the phase velocity of the plasma wave. As a result, Landau
damping of the plasma wave vanishes and the resonant frequency of the plasma wave downshifts.
However, this simple picture is invalid when the external driving force changes the plasma wave fast
enough so that the plateau cannot be fully developed. A new model to describe amplification of the
plasma wave including the saturation of Landau damping and the nonlinear frequency shift is
proposed. The proposed model takes into account the change of the plasma wave amplitude and
describes saturation of the Landau damping rate in terms of a single fluid equation, which simplifies
the description of the inherently kinetic nature of Landau damping. A proposed fluid model,
incorporating these simplifications, is verified numerically using a kinetic Vlasov code. © 2009
American Institute of Physics. [DOI: 10.1063/1.3160604]

I. INTRODUCTION

The problem of nonlinear Landau damping is a classical
problem in plasma physics. Landau damping was first pre-
dicted analytically by Landau' and later observed many
times in various physical systems both experimentally2 and
numerically.3 Classical Landau damping occurs through the
interaction of a plasma wave with warm plasma. Electrons,
moving with velocities close to the phase velocity of the
wave, strongly interact with the wave, since they travel for a
long time seeing the same electric field of the wave. As a
result, these electrons get accelerated or decelerated, depend-
ing on their original phase in the plasma wave. The average
velocity of nearly resonant electrons approaches the phase
velocity of the wave. If the original number of near-resonant
electrons moving slower than the phase velocity is larger
than the number of electrons moving faster than the phase
velocity, the total energy of the resonant electrons increases.
This extra energy comes from the energy of the plasma
wave.

For about 40 years, nonlinear studies of Landau damping
focused on different aspects of the phenomenon such as
time-evolution of the plasma wave and nonlinear reduction
of the Landau damping rate,*” the nonlinear frequency shift
of the plasma wave due to trapped particles,g_10 long-time
asymptotic evolution of nonlinear Landau damping,ll and
plasma echo."” Recently, the importance of nonlinear Landau
damping has been explored with regard to backward Raman
scattering13 and backward Brillouin scattelring'4 in laser-
plasma interactions.

The applications of high-power laser systems include
various parametric processes, which employ plasma waves.
The use of plasma is partially motivated by the fact that
plasma cannot be damaged by heating. Moreover, plasma
waves can mediate parametric interactions with high effi-
ciency. Raman scattering is one example of this parametric
interaction. In this process, two electromagnetic (laser)
waves propagate in plasma. If the difference between their
frequencies is on the order of the plasma frequency w,
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=(4me’n/m)?, a plasma wave can be resonantly excited by
the ponderomotive potential of the electromagnetic waves.
Since the amplitude of the ponderomotive force is propor-
tional to its wavenumber, counterpropagating electromag-
netic waves generate the plasma wave with the highest effi-
ciency. The wavelength of the generated plasma wave is
almost half the laser wavelength in this setup. The short
wavelength of the plasma wave results in its small phase
velocity, which can lead to a large number of the electrons,
resonantly interacting with the wave. Therefore, a plasma
wave with small wavelength is likely to experience notice-
able Landau damping, which might affect the wave coupling
and reduce the growth rate of the instability. On the other
hand, the interaction of the plasma wave with near-resonant
electrons can nonlinearly reduce the Landau damping rate
and enhance the parametric coupling. Whether Raman scat-
tering is a desirable or an undesirable effect, the accurate
calculation of the influence of nonlinear Landau damping on
the output signal will be required. Moreover, it would be
advantageous if the main effects could be captured in a
simple model.

In this paper we study nonlinear Landau damping of a
plasma wave, which is nearly resonantly amplified by the
external force. For example, the plasma wave can be driven
parametrically. This study is relevant to a number of impor-
tant applications. One application is the laser reflectivity in
inertial confinement fusion experiments (see, for example,
Ref. 15). Another is backward Raman amplifier in plasma,16
where the mitigation Landau damping effects are particularly
critical in extreme compression regimes17 or the compression
of extremely short Waveleng.gths.18 Yet another application is
Raman current drive,19 where, like for other methods of cur-
rent drive, the current drive efficiency can be large if the
plasma wave accelerates high energy electrons.”’ The pur-
pose of this paper is to develop and to verify a simple model
of nonlinear Landau damping, which can quantitatively de-
scribe the class of problems mentioned above. Also, the same
approach can be applied for studying Landau damping of the
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ion-acoustic wave in the case of parametric wave coupling.

We consider the evolution of the plasma wave to be fast
enough that issues of the time-asymptotic behavior of the
plasma wave are already resolved.'" Fast enough dynamics
also implies that collisions do not affect the system unlike
the opposite case scenario,™ where steady-state solutions
can be found. In our studies, we also assume that the ampli-
tude of the plasma wave grows in time. The classical results
for saturation of Landau damping in the presence of strong
plasma wave of a constant amplitude6’7 are thus not appli-
cable. Moreover, the plasma wave starts to grow in the linear
regime from a small amplitude, wz<v, where wp
=(e|E|k/m)"?* is the bounce frequency and v, is the linear
Landau damping rate. By the time the system enters the pa-
rameters region of Mazitov and O’Nf:il,6’7 wp> 1, the Lan-
dau damping rate is most likely to be significantly reduced,
which does not allow one to use the approach described in
those papers.

Landau damping, in principle, should be described in at
least three-dimensional (3D) time-coordinate-velocity space.
Analytical and even numerical studies of a fully kinetic prob-
lem can be challenging if many plasma wavelengths are
taken into account. The development of a simplified model,
which describes the interaction of the wave with near-
resonant particles, will allow reducing the complexity of the
system. In developing a simple model of nonlinear Landau
damping, we focus on the evolution of the main plasma wave
parameters, such as its amplitude and phase. In that way, we
reduce the kinetic description of the nonlinear Landau damp-
ing to a set of fluid equations. In parametric interactions, the
wavenumber of the plasma wave is typically well-defined by
the resonance condition for the interacting waves. This sim-
plifies the description, since we need to describe Landau
damping of a single plasma wave mode only, unlike the clas-
sic quasilinear model®' or fluid models for Landau damping
of an arbitrary plasma wave.”” The main finding here is the
simplified set of equations, which is shown empirically to
describe the essential physics.

The paper is organized as follows. In Sec. II we develop
the simplified model for Landau damping and derive fluid
equations for the Landau damping rate and the nonlinear
frequency shift of the plasma wave. In Sec. III we verify the
proposed model numerically and demonstrate that it has
about 90% accuracy within the applicability limits. In Sec.
IV we summarize the main results of the paper.

Il. ANALYTICAL MODEL

In this section we develop a model describing nonlinear
Landau damping. The derivations are not fully rigorous, but
rather to some extent heuristic. They serve as an analytical
motivation for the proposed model. After developing the
model, we verify it computationally. We show that this
simple heuristic model describes the kinetic solution well in
cases of interest.

We study a plasma wave, which is amplified by a near-
resonant external electric field. We assume that the plasma
wave grows slowly enough compared to the characteristic
time for the evolution of the electron distribution function,
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which is on the order of the inverse bounce frequency,
d,wp/ w,23< 1. This regime was considered earlier and it was
studied using a quasistatic adiabatic approach d,wp/ wf;—>0.9
The nonlinear quasistatic solution results in zero Landau
damping rate and some nonlinear frequency shift of the
plasma wave caused by the change of the electron distribu-
tion function. However, this solution does not describe the
change of the plasma wave, since it is assumed to be a given
function of time. While developing the model, which can
self-consistently describe the evolution of the plasma wave
driven by an external force, we will find the first nonvanish-
ing term (on the order of d,wp/ wj) of Landau damping.

The change of the nonlinear frequency shift was ob-
tained in earlier papers.9’23 In those papers, the time-
asymptotic nonlinear frequency shift was derived from the
unsimplified Vlasov equation. That solution assumed fully
saturated Landau damping rate. If the plasma wave is driven
by external force, it evolves in the linear regime first and
reaches the nonlinear stage when its amplitude becomes
large enough. Therefore, the nonlinear quasistatic solution
for the fully saturated Landau dampingg’23 is not applicable
here. We will find the first nonvanishing term of the Landau
damping rate on the order of d,wp/ w%. At the same time, we
will use the time-asymptotic expression for the nonlinear fre-
quency shift of the plasma wave, since it is the first nonva-
nishing in the case of d,wp/ w,23—>0. We consider the plasma
temperature to be large and the plasma wave amplitude to be
small so that the fluid corrections to the nonlinear frequency
shift can be neglected.24

We apply the quasilinear approach to describe the satu-
ration of the Landau damping rate. To be precise, the quasi-
linear theory describes the case of a broadband plasma wave
rather than a single wave. It can be applied if resonance
domain in the velocity space caused by the broadband
plasma wave is larger than the resonance domain of a single
wave, ov=v,,Ak/k> wB/k.21 These parameters are the same
for a single plasma wave. As a consequence, the amplitude
of the plasma wave experiences oscillations on the bounce
frequency time scale.” However, these oscillations can be not
of interest in particular applications in which only the aver-
age amplitude of the plasma wave plays role. At the same
time, the quasilinear theory correctly describes the energy
transfer between the plasma waves and the average distribu-
tion function. In Appendix we show that the quasilinear
theory can be a reasonable model, which correctly describes
the interaction of a single plasma wave with most of the
resonant particles. Thus, it stands to reason that the time-
asymptotic quasilinear limit (J,05/ w3 — 0) might be a good
model even for a single wave in many situations of interest.
This approach is similar to the approach considered in Ref.
25.

In quasilinear theory, the plasma wave is considered to
be small enough so its change can be described in the wave
envelope approximation,

E(z,1) = E(t) &0k (1)
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where E(z,7) is the complex amplitude of the plasma wave
and E(z) is its envelope; E,(t) is the amplitude of the external
electric field envelope and &) is the nonlinear frequency
shift of the plasma wave in respect to the linear frequency
Qg; v is the Landau damping rate; k is the wavenumber of
the plasma wave; D({),k) is the plasma dielectric function
defined by Eq. (3); e, m are electron charge and mass, re-
spectively; ¢ is time, z is longitudinal coordinate along the
wavevector of the plasma wave.

The Landau damping rate and the frequency shift of the
plasma wave correspond to the background distribution func-
tion Fy(v,t), which satisfies the quasilinear equation

(1)2 0"F0
DQ,k=1+—Bf”—d =0, 3
QO=1+7" Q™ G
dFy=Re] 1| E g AFo )
o= Re 2i| m "O-kv |’

Equation (3) describes the change in both the Landau damp-
ing rate and the nonlinear frequency shift of the plasma
wave. However, we apply the quasilinear theory to describe
only the saturation of the Landau damping rate. Alterna-
tively, we use the nonlinear quasistatic solution for the non-
linear frequency shift,”* since it is lowest order solution at
dwp! wy—0.

First, we consider that the domain of the near-resonant
particles has sharp boundaries in velocity space. The width
of the resonant region is proportional to the bounce fre-
quency,

0 Fo(0.0)=0, |v—vu > awplk, (5)
where « is a numerical factor, which we deduce later. The
Taylor expansion of the distribution function is valid within
the resonant domain, since the width of the resonant domain
is much smaller than the characteristic scale of the distribu-
tion function, wg/k<<Fy/dyF,. The first two terms of the
Taylor expansion are required to describe the effect of Lan-
dau damping Fo(v,1)=F(vpn, 1) +(0=0pn) 3, Fo(vph,t). Using
the conservation laws (A10) and (A11), we find the equation
describing the saturation of Landau damping,

3
Il (v - Vwp(t)] = Vﬁwz(t), (6)

where v is the linear Landau damping rate.

Now we deduce the empirical numerical factor a by
comparing solutions of the exact nonlinear”® and the simpli-
fied model Eq. (6). We consider the adiabatic amplification
of the plasma wave until it reaches some amplitude E. The
time-asymptotic stage results in saturated Landau damping
and a steady-state plasma wave. The near-resonant particles
are accelerated during the wave-particle interaction, which
results in a plasma current (plasmon momentum transfers
into electron momentum).
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To obtain the numerical factor o, we now compare cur-
rents predicted by different theories. The change of the elec-
tron momentum predicted by the nonlinear kinetic solution®®
can be written as

3
wpm

64
AI‘)kin = ;TaUF(vph’O)?- (7)
On the other hand, the simplified fluid theory deduced heu-
ristically here predicts the change of the electron momentum

as
2a° wam
APﬂuid: TavF(Uph?O) 153 . (8)
Comparing these two results, we conclude that a*=32/3 in
order to correctly describe the final stage of Landau damp-
ing. Then the self-consistent set of equations describing non-
linear Landau damping of a driven plasma wave:

E(1)
idgD’
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m

OE - i8QE + vE =

wp =

772
(o= D)) = vl (10)

2
w
&prw%mﬁigﬁa@mm. (11)

This model describes both the nonlinear Landau damp-
ing rate and the nonlinear frequency shift of the externally
driven plasma wave. These effects are described in terms of
fluid equations rather than kinetic equations. Equation (10)
describes the saturation of the Landau damping rate. This
phenomenon is described for an arbitrary ratio of the bounce
frequency and the Landau damping rate. Thus, Landau
damping can be described appropriately both in the linear
and the nonlinear regimes. Note from Eq. (10) that, for a
constant amplitude of the plasma wave, the Landau damping
rate decays exponentially. The timescale of this decay is on
the order of the inverse bounce frequency, which is consis-
tent with more rigorous derivations (e.g. Ref. 7).

The model (9)—(11) describes Landau damping for an
externally driven plasma wave. It takes into account that the
resonant domain in velocity space expands, while the ampli-
tude of the plasma wave grows. This results in reduced satu-
ration of Landau damping, since new particles become reso-
nant with the growing plasma wave. To illustrate this, we
consider a rapidly growing plasma wave. We consider this
growth to be exponential-like. A time-asymptotic analysis of
Eq. (10) for a given time dependence of the plasma wave
amplitude results in the approximate solution for the Landau
damping rate,”

128 1

Vzvoﬁm. (12)

Now the Landau damping rate decreases much slower than
for a constant-amplitude plasma wave. The timescale of this
saturation is the same as the timescale of the amplitude
growth, J, log v=4, log wg, rather than the inverse bounce
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frequency. Such a slow saturation of Landau damping may
be important.

To establish the regime of validation of the model, recall
that the simplified fluid model of nonlinear Landau damping
(9)—(11) was derived using a number of assumptions. First,
the oscillatory part of the distribution function should be
small compared to the background distribution function,
which limits the maximum allowed amplitude of the plasma
wave,

2
Kvs

0

The same condition states that the initial background distri-
bution function Fy(v,t=0) does not change a lot within the
resonant domain, making valid its Taylor expansion within
the resonant domain.

We also assumed that the amplitude of the plasma wave
does not change rapidly compared to the bounce frequency
timescale,

dwp < W, (14)

This condition allows one to use expression (11) for the non-
linear frequency shift of an adiabatically driven plasma
wave. This condition also guaranties that the width of the
resonant domain in velocity space is proportional to the
bounce frequency rather than the bandwidth of the plasma
wave envelope.

We assumed the amplification of the plasma wave,

g > 0. (15)

This condition states that the near-resonant electrons remain
within the resonant domain, while the amplitude of the
plasma wave changes in time. Otherwise, some energy of the
damped plasma wave would be associated with the electrons
outside of the resonant domain, and the total particle energy
would not be proportional to the slope of the distribution
function. In other words, the increase in the plasma wave
amplitude results in the trapping of the electrons, which did
not interact with the wave at early time. Therefore, extra cold
electrons are trapped, which changes the slope of the distri-
bution function in the resonance domain. This effect is ab-
sent for the reducing amplitude of the plasma wave. In that
case the saturation of Landau damping is similar to the case
of a constant plasma wave, d,v < vwg.

The condition for the electrons remaining trapped also
implies that the change of the resonant velocity v,,=({),
+680)/k does not result in the electron untrapping, A&
< awpg. This condition is satisfied automatically in Maxwell-
ian plasma.

The simplified model describes the average evolution of
the Landau damping rate and the nonlinear frequency shift. It
does not describe oscillations of the wave envelope on the
bounce frequency timescale. The plasma wave should be
driven long enough in order to observe this averaging out,
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Finally, the plasma temperature should not be very high,
so that the dispersion relation (3) allows a solution for the
linear plasma wave mode,28

kUT

— < 0.67. (17)

@)

lll. NUMERICAL VERIFICATION OF SIMPLIFIED FLUID
MODEL

In this section we compare the results of a numerical
simulation of the Vlasov—Poisson set of Egs. (A1) and (A2)
with a solution of the simplified fluid models (9)—(11).

We consider a homogeneous plasma wave, which is
driven with a given external force. We consider the driving
force to be monochromatic, i.e., its amplitude and frequency
are constant in time: E(f)=E, exp' s~ E; Qg=const.
The plasma wave grows if the frequency of the source is
close to the resonant frequency of the plasma wave, Qg
~Re (). In the beginning of amplification, the plasma wave
grows in the linear regime of Landau damping. The amplifi-
cation then enters the nonlinear stage of Landau damping, in
which the Landau damping rate is significantly reduced.
However, the growth of the plasma wave can still be satu-
rated due to dephasing between the plasma wave and the
driving force, since the nonlinear frequency shift increases
with the plasma wave amplitude. The frequency of the driv-
ing force was chosen to be smaller than the linear frequency
of the plasma wave in order to partially compensate the non-
linear frequency shift. As a result, the dephasing between the
plasma wave and the external force remained small and the
plasma wave amplitude was monotonically growing. Such a
compensation mechanism of the dephasing is efficient at
relatively small amplification time as seen below in Fig. 1.
Further amplification of the plasma wave would eventually
result in dephasing. The frequency chirp of the driving force
would be required in order to compensate the nonlinear fre-
quency shift of the plasma wave at longer amplification time.

The plasma wave can be described in terms of the am-
plitude and phase envelopes,

E(Z,t) —Re E(l)ei¢(t)€iﬂol_ikz — Re(E(t)eif&()(z)dzeiﬂot—ikz) )
(18)

This representation of the plasma wave is not unique, since
some arbitrary fraction of the wave phase can be associated
with the complex wave amplitude E(r). This representation
becomes unique if both E and ¢ are real functions.

The electric field amplitude oscillates at any given coor-
dinate z,

E(zg.1) = E(f)Re(e'Q0+90+id0) (19)

We can find the amplitude and the phase of the signal in its
maxima. Then we can interpolate these data and restore the
time dependence of the amplitude and the phase of the
plasma wave if the envelopes change slowly within the
plasma wave period. The frequency of the electric field is
defined as the time derivative of its phase. To compare solu-
tions of two different models, we define their amplitudes and
phases consistently as described above.
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The solution of the Vlasov—Poisson set of Egs. (A1) and
(A2) results in a time-dependent amplitude of the electric
field. The frequencies of both the plasma wave mode and the
external force affect the frequency of the generated electric
field. In order to determine the frequency of the plasma
wave, we assume that the plasma wave is the only mode,
excited by the driving force. This assumption is in agreement
with the detailed numerical studies.” Then the plasma wave
frequency and the damping rate can be deduced from Eq. (9).
If the solution of this equation is E(r)e’®”, then we have
from Eq. (9)

_ Ey(1) ) d,E(1)
v(t)-Re(iE(t)ei(/)&QD “Ew (20)
50(1) = Ey(1)

f)=d,$+Re E0e®sD)’ (21)

This technique allows one to find full time dependence of the
plasma wave parameters such as its frequency and the damp-
ing rate and compare the semianalytical and Vlasov code
results.

A numerical study of nonlinear saturation of Landau
damping was performed with a standard Vlasov code, which
uses a time split-scheme for solving Vlasov and Poisson
equations. The common normalization, in which e=m=1,
was used. The evolution of the plasma wave with a single
wavelength [k|=1 was simulated. We performed runs excit-
ing the plasma wave either with a single traveling wave or
with a standing wave (two counter propagating waves).
There was no significant difference between these two cases
for small enough amplitudes of the plasma wave. The typical
dimensionless plasma parameters were: v;=0.25-0.4, o,
=1. The driving force E, was typically constant in time and
its amplitude in different runs varied from 1075 to 1073, The
frequency of the driving force was constant and downshifted
with respect to the linear frequency of the plasma wave,
which avoids early dephasing between the plasma wave and
the driving force. Typical numerical parameters of the simu-
lations are time step dr=0.1, maximum calculation time
tmax= 1500, maximum calculated velocity domain |v|<2.5,
number of grid points in velocity space Ny=1024, and num-
ber of grid points in space N,=32.

Typical results of the Vlasov simulations and their com-
parison with the solution of the analytical models (9)—(11)
are presented in Fig. 1. Note that the time dependence of the
wave amplitude and the damping rate of the plasma wave
can be well approximated by the simplified models (9)—(11).
The electric field, calculated using a Vlasov code, exhibits
slow oscillations. The timescale of these oscillations is on the
order of the inverse bounce frequency. Therefore, these os-
cillations can be interpreted as an influence of an individual
particle motion in the potential of the electric field. Since our
simplified approach does not take into account individual
particle motion, it misses this feature. However, our simpli-
fied model correctly describes the average change of the
electric field. Comparing the two solutions, we find that the
nonlinear frequency shift of the plasma wave can be de-
scribed by Eq. (11) (the second order corrections on the
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FIG. 1. (Color online) The results of numerical simulations using a Vlasov
code (solid blue lines) and their approximations with the simplified model of
nonlinear Landau damping (dashed red lines). Parameters of the simulation:
v7=0.35, Ey=2X 1074, Q4=1.1961, and (Q,=1.2112). The upper left plot
shows the time dependence of the plasma wave amplitude. The upper right
plot shows the phase mismatch between the plasma wave and the driving
source. The lower plots show the Landau damping rate (lower left plot) and
the nonlinear frequency shift (lower right plot) of the plasma wave derived
from Egs. (20) and (21).

plasma wave amplitude was used for a better fit*’) with a
numerical factor slightly different from the theoretical value
of 1.09. In a numerical run presented in Fig. 1, this factor
was 1.1; typically the difference varies within 10% range.
This difference is probably caused in the initial stage of the
amplification, when the plasma wave is small and does not
grow adiabatically. Also, this difference can be partially
caused by small corrections to the dispersion relation in the
case of a driven plasma wave.”” In the analysis presented in
Figs. 1 and 2, we adjusted the theoretically predicted factor
of 1.09 in Eq. (11) to fit the time-asymptotic dependence of
the nonlinear frequency shift in the Vlasov simulations.

The accuracy of the simplified model was checked for
different plasma temperatures and amplitudes of the driving
force. The results are presented in Fig. 2. We introduce a
norm of the function in order check if solution of the simpli-
fied model Ejy,;  is close to the solution of the Vlasov simu-
lation Evyj,eoys

Eui —-E 'svzdt 1/2
f| fluid V1d0| :| ) (22)

f|EV1asov|2dt

Both the amplitudes and the phases of two solutions should
be close to each other so that the norm is small. Using this
norm, the numerical results presented in Fig. 2 show that the
simplified fluid models (9)—(11) matches the Vlasov simula-
tions to an accuracy of about 90%. The norm has the minima
versus both the plasma temperature and the amplitude of the
driving force, which defines the parameters region for the
simplified fluid model. The boundaries of this parameter re-
gion are described in Sec. II and are consistent with the
numerical results. The maximum amplitude of the driving
force and the minimum thermal velocity are determined by
condition (13). The growth of the norm at high plasma tem-

”Eﬂuid - EVlasov” = [
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FIG. 2. (Color online) Accuracy of the simplified fluid model of Landau
damping. The upper plot shows the difference between the solutions of the
fluid and the Vlasov models vs the amplitude of the driving force E, at vy
=0.35. The lower plot shows the difference between the solutions vs the
plasma temperature at Ey=2X 107,

perature is caused by approaching the limits (16) and (17).
The relatively poor accuracy of the fluid model at small am-
plitude of the driving force can be explained by long time of
the linear regime of Landau damping. During this stage, the
nonlinear frequency shift does not reach its time-asymptotic
value and, therefore, it cannot be described by Eq. (11). This
results in a significant phase mismatch between the two so-
lutions for the electric field.

We also compare the accuracy of our model to that of
other similar models recently proposed.‘“’32 The results are
presented in Fig. 3. In order to adequately compare the ac-
curacy of saturation of Landau damping, we use the same
expression for the nonlinear frequency shift of the plasma
wave as described in this paper. Moreover, the largest dis-
crepancy between the exact kinetic and simplified fluid mod-
els in Fig. 2 comes from the phase mismatch of two solu-
tions. We eliminate this effect by plotting the norm of the
absolute, rather than complex, amplitude in Fig. 3. The re-
sults presented in Fig. 3 indicate that all three simplified fluid

Phys. Plasmas 16, 072104 (2009)

0.35

0.3F J

0.25r J

I |Ef|uid|_|EVIasov| I

0.1f 1

0.05f

0 L L
026 028 0.3

0.32 034 036 038 04 042
(b) Vr

FIG. 3. (Color online) Accuracy of the simplified fluid models of Landau
damping. The difference between the absolute amplitudes of the kinetic and
fluid solutions are shown for the same parameters as in Fig. 2. Blue stars
represent the simplified model presented in this paper. Green circles and
black squares represent the solutions predicted by Lindberg er al. (Ref. 32)
and Benisti and Gremille (Ref. 31) models, respectively.

models provide reasonable agreement with the kinetic solu-
tion. However, the accuracy of our fluid models (9)—(11) is
better than that of the models described in Refs. 31 and 32.
At the same time, those fluid models have their own advan-
tages.

The main advantage of the fluid model proposed by Be-
nisti and Gremillet is the ability to explicitly express the
nonlinear Landau damping rate in terms of the local plasma
wave amplitude and its growth rate [Eq. (49) in Ref. 31].
Therefore, the growth of the plasma wave is described by the
first-order ordinary differential equation (ODE), rather than
the second-order set of ODEs (9)—(11) presented in this pa-
per. The simplified fluid model for saturated Landau damp-
ing proposed by Lindberg et al.¥? uses the same approach as
in Ref. 31. The authors use a reasonable but heuristic ap-
proach to describe the transition stage of saturation of Lan-
dau damping. Surprisingly, the accuracy of their model is
almost the same as that of the more accurate Benisti and
Gremillet’s model in the regime of relatively short transition
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stage (relatively large amplitude of the external force in Fig.
3). The advantage of this model is its potential ability to
correctly describe saturated Landau damping in the presence
of strong plasma wave beyond the limitation (13). However,
the description becomes kinetic in this regime since it re-
quires evaluation of an integral in velocity space at each time
step. We did not investigate this regime of model of Lindberg
et al. and limited ourselves to the study of the “small-
amplitude” regime [Eq. (16) in Ref. 32].

IV. CONCLUSIONS

We developed a simplified model for the nonlinear satu-
ration of Landau damping. It self-consistently describes the
growth of a plasma wave, driven by a near-resonant external
force. The simplified model describes the saturation of Lan-
dau damping and the nonlinear frequency shift in terms of
fluid equations. It does not describe a number of kinetic ef-
fects, such as the plasma echo and oscillation of the plasma
wave amplitude on the bounce frequency timescale. How-
ever, it describes the saturation of Landau damping as well as
the linear damping and the transition stages, when Landau
damping is not fully saturated. The solution of the simplified
model approximates well both the amplitude and the phase
of the plasma wave.

This model was verified through numerical simulations
using a Vlasov code. The introduced norm (22) allows com-
paring two solutions quantitatively, which showed about
90% accuracy of the simplified model within its applicability
limits. The proposed model can be used for solving compli-
cated systems, when nonlinear Landau damping of the
plasma wave is present. It can be included in fluid codes
instead of using full kinetic codes, for example, in describing
Landau damping. This model can also be used for finding
analytical solutions, since the equations has a much simpler
form than does the original Vlasov—Poisson set of equations.
For example, this model can be successfully applied to study
nonlinear Landau damping in the backward Raman
ampliﬁer.27 Also, using the technique employed here, it
should be possible to generalize the model to describe non-
linear Landau damping of the ion-acoustic wave.
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APPENDIX: QUASILINEAR MODEL FOR A SINGLE
PLASMA WAVE

The appendix argues that the use of the quasilinear limit
even for a single wave may be appropriate in capturing most
of the essential physics.
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We start from the one-dimensional (1D) Vlasov—Poisson
set of equations, describing the change of the distribution
function and the amplitude of the electric field,

e(E+E)
GF +vd.F+ ———2§,F=0, (A1)
m
J.E= 47T€l’lf Fdv, (A2)

where E(z,1) is the amplitude of the plasma wave, E%(z,?) is
the amplitude of the external electric field, F(z,v,t) is the
electron distribution function, e, m are electron charge and
mass, respectively, n is the electron density, ¢ is time, z is
longitudinal coordinate along the wavevector of the plasma
wave, and v is the electron velocity.

We linearize Egs. (A1) and (A2) and seek the solution as
a sum of slowly changing in time background distribution
function Fy(v,7) and fast oscillating distribution function
Fi(z,v,1) &% which corresponds to the plasma wave,

F(z,0,1) = Fo(v,1) + Re{F(v,1)e" =}, (A3)

|| <|Fy. (A4)
Here () and k are the complex frequency and the wavenum-
ber of the plasma wave, respectively. The characteristic time-

scale of F, and F is on the order of the inverse bounce
frequency, a)gl > (!, which validates this decomposition.

For simplicity, we consider F to be constant in time,
thus, applying the quasistatic solution for the plasma wave.
This solution is a reasonable approximation in the d,wp/ wf;
— 0 limit. The oscillating part of the distribution function

F=ie(E+E)/m d,Fy/ (Q—kv) becomes singular close to the
phase velocity of the plasma wave v,,=Re }/k. This singu-
larity results in Landau damping, like in the case of a linear
plasma wave. At the same time, the oscillating part of the

distribution function F becomes larger than the background
distribution function F, close to the resonant velocity, which
violates assumption (A4). However, Eq. (A4) can still be
valid for the most of the resonant particles |v—vph| ~wglk if
the amplitude of the plasma wave is small enough,

2.2

k*vy
CL)B< Q R
0

(A5)

where v;=\T/m is the thermal velocity of the original dis-
tribution function (here it is assumed to be Maxwellian) and
Q) is the frequency of a linear (small electric field) plasma
wave. Note that this condition becomes milder when the pla-
teau in the background distribution function is formed.

The linearized set of Vlasov—Poisson Egs. (A1) and (A2)
results in a solution for the amplitude of the plasma wave,

D(Q,k,)Eq = [D(Q,k,1) - 1]Egk, (A6)
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(1)2 0, FO
D=1+-% f ——dv, A7
k) Q-kv (A7)

where D is the plasma dielectric function and Eg,; is a Fou-
rier harmonic of the electric field, E(z,1)
=f EQ’keiQ"ikdedk. The change of a quasi-monochromatic
electric field E(z,7)=E(1)e'*"~* can be deduced from Eq.
(A6). Here we consider the carrier frequency of the electric
field ) to be equal to the resonant frequency of the linear
plasma wave, D(Qq+ivy,k,1=0)=0,

Ey(t
&,E—iéQE+VE=%.

l(?Q (AS)

Here 8Q)=Re(Q2-{)) is the frequency shift of the plasma
wave due to the nonlinear change of the background
distribution function, D(Q,k,1)=0; v=Im(Q)
~—m(w,/k)*d,Fy/ doD is the Landau damping rate of the
plasma wave.

Averaging in time the Vlasov equation we find the equa-
tion describing the change of the background distribution
function F|,. This equation has a quasilinear form,

1
2i

eE

m

: (?UFO

A9
'Q-kv (49)

&tFO =Re

Here we took into account that during the near-resonant am-
plification of the wave, its amplitude becomes much larger
than the amplitude of the driving force, E> E°. This equation
describes the average change of the distribution function,
since the steady-state solution for the oscillatory part of the

distribution function F was used. The solution for F misses
the oscillations at the bounce frequency timescale, since the

solution for F fails close to the phase velocity of the plasma
wave. However, these oscillations will be averaged out if the
interaction time is large compared to the inverse bounce fre-
quency. These oscillations might not be important in some
applications such as parametric interactions.

Even though Eq. (A9) is approximate, it still satisfies the
basic conservation laws. Combining Egs. (A8) and (A9) in
the absence of the external force, E,=0, one can demonstrate
the conservation of the number of particles, the momentum,
and the energy. Here the momentum and the energy of the
plasma wave include both the electrostatic and particle parts,

&,(nf Fodv) =0,

(A10)
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|E|* k

d,\ nm | vFydv :2V89(DQ)E5, (A11)
nm [, |E?

I\ — | v°Fydv | =2vdo(DQ)—. (A12)
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