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A plasma wave can mediate laser coupling in a plasma-based resonant backward Raman amplifier
for high power amplification of short laser pulses. The resonant nature of amplification requires a
long lifetime of the plasma wave. However, the plasma wave can be heavily Landau damped in
warm plasma. On the other hand, Landau damping can be saturated in the presence of a strong
plasma wave. We study backward Raman amplifier in the nonlinear regime of Landau damping
using a simplified fluid model. We find the regime in which initially high linear Landau damping can
be significantly saturated. Because of the saturation effect, higher temperatures can be tolerated in
achieving efficient amplification. The plasma temperature can be as much as 50% larger compared
to the case of unsaturated Landau damping. © 2009 American Institute of Physics.
#DOI: 10.1063/1.3160606$

I. INTRODUCTION

The plasma-based resonant backward Raman amplifier
!BRA" is a promising scheme for compression of powerful
laser pulses to ultrashort durations.1 In this scheme, two
counter-propagating laser pulses are coupled through reso-
nant Raman scattering. In this three-wave interaction pro-
cess, the generated plasma wave mediates energy transfer
from the long pump pulse to its Stokes component, which is
seeded with a short laser pulse. The counter-propagating ge-
ometry of the laser pulses allows continuous amplification of
the seed pulse by the pump. The amplitude of the seed pulse
grows in time and eventually becomes much larger than the
amplitude of the original seed and the pump pulses. The
duration of the amplified pulse remains short and is deter-
mined by the time required to deplete the pump pulse. This
time is roughly the inverse growth rate of the backward Ra-
man instability. While the seed pulse is being amplified, the
interaction becomes stronger and the pump depletes at the
front of the amplified pulse. Therefore, the back part of the
amplified pulse is shadowed by the front part and is not
amplified, which leads to the effective shortening of the am-
plified pulse. Earlier research showed that the regime of am-
plification and compression is efficient until the amplified
pulse reaches the duration of the original seed pulse.2

The currently used chirped pulse amplification !CPA"
scheme3 approaches a technological limit at high fluencies.
The solid state gratings, used in CPA, cannot tolerate high
power laser radiation. The damage of the gratings can be
reduced only through reducing the power density handled,
which then requires larger gratings. That leads to the huge
increase in their cost. On the other hand, plasma in BRA
cannot be destroyed by powerful laser radiation. The plasma
is reproduced every shot, which avoids the damage of expen-
sive elements. Modern experiments now show good progress
on the implementation of the BRA scheme.4–7

There are many issues that can prevent amplification in
the BRA, such as plasma wavebreaking,8,9 the self-focusing
and the self-modulation instabilities,9–11 and the generation

of precursors.12 In this paper we consider the nonlinear Lan-
dau damping and the nonlinear frequency shift of the plasma
wave. These effects are caused by the change of the electron
distribution function at velocities close to the phase velocity
of the plasma wave. The influence of these effects on Raman
scattering was noted before.13,14 However, the detailed study
of these effects is complicated due to their kinetic nature. We
apply a simple but numerically justified fluid model of non-
linear Landau damping15 to study the nonlinear kinetic ef-
fects in BRA.

First, we study the influence of nonlinear Landau damp-
ing on seed amplification. The generated plasma wave can
experience strong damping. It can be either collisional damp-
ing at low plasma temperature or Landau damping at high
plasma temperature. Therefore, there is an optimal plasma
temperature at which damping of the plasma wave is the
smallest. This temperature is the most favorable for BRA.
However, the inverse Bremsstrahlung losses of the pump
pulse might result in a significant increase in the plasma
temperature.16 Eventually, the amplification could enter a re-
gime of strong Landau damping. Strong Landau damping
reduces the amplitude of the plasma wave, which makes am-
plification inefficient, since the plasma wave mediates cou-
pling between the laser pulses. On the other hand, the plasma
wave strongly interacts with electrons, which travel with ve-
locities close to the phase velocity of the wave. As a result,
the electron distribution function itself changes, which sig-
nificantly reduces the Landau damping.

The plasma wave is generated behind the seed pulse,
which travels almost with the speed of light. The generated
plasma wave is amplified through Raman scattering of the
pump and experiences Landau damping at the same time.
The electron distribution function is modified, which leads to
the saturation of Landau damping. Depending on the ampli-
tude, the plasma wave either damps prior saturation of Lan-
dau damping or saturates Landau damping and then gets am-
plified with high efficiency. We will find conditions for the
regime of saturated Landau damping. Thus, we extend the
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parameters region for efficient amplification even at high
plasma temperatures.

Then we take into account the effect of the nonlinear
frequency shift caused by the resonant particles. The plasma
wave, generated behind the seed pulse, matches the exact
resonant conditions. Later its frequency downshifts due to
the nonlinear dynamics of the resonant electrons. Therefore,
some phase shift between three interacting waves !the pump,
the amplified seed, and the plasma wave" appears. That re-
duces the efficiency of the three-wave interaction and even-
tually can saturate energy transfer from the pump to the am-
plified pulse.

The paper is organized as follows: In Sec. II we present
a model which describes the nonlinear Landau damping and
the nonlinear frequency shift of the plasma wave in BRA.
This model describes the kinetic phenomenon of Landau
damping in terms of fluid equations, which can be easily
incorporated into the three-wave model for BRA. In Sec. III,
we study the effect of the nonlinear Landau damping in
BRA, neglecting the nonlinear frequency shift of the plasma
wave. We find the regime for saturation of Landau damping
and describe the amplitude profile of the amplified pulse. In
Sec. IV we take into account the nonlinear frequency shift of
the plasma wave caused by the nonlinear change in the elec-
tron distribution function in the domain close to the phase
velocity of the plasma wave. We find a condition for neglect-
ing the nonlinear frequency shift in Raman amplifier. In Sec.
V we determine whether the nonlinear Landau damping or
the nonlinear frequency shift of the plasma wave limit the
amplification the most. We show that in Maxwellian plasma
the nonlinear frequency shift can be neglected for typical
parameters of BRA. In Sec. VI we summarize the main re-
sults of the paper.

II. MAIN EQUATIONS

The BRA can be described by the coupled equations for
the wave envelopes of the laser pulses and the plasma wave.
We consider plasma to be warm, so that Landau damping of
the plasma wave can be significant. At the same time, the
electron distribution function can significantly change in the
presence of a strong plasma wave. That results in the partial
saturation of Landau damping and the nonlinear frequency
shift of the plasma wave. The equations describing BRA
under these conditions take the following form !see, for in-
stance, Ref. 17":

#ta + c#za = − %!!pbf , !1"

#tb − c#zb = %!!paf!, !2"

#t f + "nlf − i#$nlf = %!!pab!/2, !3"

where a and b are the electric field envelopes of the pump
and the seed, respectively, in units of mc!a,b /e; f is the elec-
tric field of the plasma wave in units of mc%!!p /e, $nl and
"nl are the nonlinear frequency shift and the Landau damping
rate of the plasma wave, respectively, ! and !p are the laser
and plasma frequencies, respectively, t is time and z is space

coordinate in the direction of the pump propagation, and c is
the speed of light.

The problem as modeled by Eqs. !1"–!3" requires a ki-
netic description since both the nonlinear Landau damping
rate and the nonlinear frequency shift of the plasma wave
depend on the time-dependent electron distribution function.
As a result, the problem becomes very complicated for ana-
lytical and even numerical study. Alternatively, we propose
to approximately describe the nonlinear Landau damping of
the plasma wave through the model presented in Ref. 15. The
numerical study of this model showed good accuracy for the
problem of driven plasma waves. The advantage of this
model is that the inherently kinetic effect of Landau damping
is described in terms of fluid equations. This simplified de-
scription allows, in some cases, even analytical progress.
Moreover, this model describes all the stages of the nonlinear
saturation of Landau damping: the linear damping, the tran-
sition stage, and the advanced nonlinear stage when the pla-
teau in the distribution function is formed. The detailed dis-
cussion of this model can be found in Ref. 15. Other
simplified models for nonlinear Landau damping in the
three-wave interaction were recently proposed.17,18 The
model used here15 was found to be somewhat more precise
for the regimes of interest to us here. However, the accuracy
of the other models is approximately the same and either
could have been chosen as well for studying the BRA prob-
lem.

The use of the simplified fluid model for nonlinear Lan-
dau damping15 allows one to describe this effect in BRA in
terms of a set of partial differential equations !PDEs",

#%a − #&a = − bf , !4"

#&b = af!, !5"

#%f + "f − i#$f = ab!, !6"

#%!!"0 − ""&f &3/2" = '"&f &2, !7"

#$ = − $0&f &1/2. !8"

Here "=2"nl /%!!p is the normalized nonlinear Landau
damping rate and "0=−( /2!!p /!"3/2c2F!!Vph" / !!#$D" is
the normalized linear Landau damping rate; #$
=2#$nl /%!!p is the normalized nonlinear frequency shift
of the plasma wave due to resonant electrons and
$0=0.385!!p /!"3/2#c3F"!Vph"$ / !!#$D". '=9%2(2 /64
) !! /!p"1/4'2!! /!p"1/4 is the nonlinear coupling coeffi-
cient between the plasma wave and the resonant particles.
!(!a, !b, and $(! f are the frequencies of the pump
pulse, the seed pulse, and the plasma wave, respectively. D
=D!$ ,kf" is the plasma dielectric function, which corre-
sponds to the electron distribution function F!V". Vph
=$ /kf is the phase velocity of the plasma wave. &

=−z%!!p /c is the normalized amplification length. %= !t
+z /c"%!!p /2 is the longitudinal coordinate in the frame
moving with the seed pulse.

The electric field of each waves is a product of its enve-
lope a ,b , f and fast oscillations ei*a,b,f =ei!a,b,ft−ika,b,fz. The fre-

072105-2 N. A. Yampolsky and N. J. Fisch Phys. Plasmas 16, 072105 !2009"

Downloaded 08 Jul 2009 to 198.35.13.103. Redistribution subject to AIP license or copyright; see http://pop.aip.org/pop/copyright.jsp



quencies !a,b,f and the wave numbers ka,b,f satisfy the dis-
persion relations and the exact resonant conditions for the
three-wave interaction,

D!$,kf" = 0, ka,b
2 − D!!a,b,ka,b"!a,b

2 /c2 = 0, !9"

!a = !b + $, ka = kb + kf . !10"

Here, six variables !the frequencies and the wave numbers of
two laser pulses and the plasma wave" are constrained by
five equations. Therefore, only one independent variable re-
mains !for example, the pump frequency !". The dispersion
relations for the laser pulses are almost not affected by the
presence of plasma, since we consider very underdense
plasma !p+!. In this case !b=!a−$, &ka,b&'!a,b /c,
kf '!2!a−$" /c, and D!$ ,kf"=0.

The physical picture of the pulse amplification in BRA
can be described as follows: A short seed pulse travels to-
ward a long pump pulse. In our model the seed pulse is
approximated with the #-function waveform of a given inte-
grated amplitude )bd%=, /2+1. The beatwave of the seed
and the pump pulses generates the plasma wave, which re-
mains behind the seed pulse while it travels with the speed of
light. The pump scatters back on the generated plasma wave
and amplifies it. The backscattered light forms the amplified
pulse, which travels behind the seed pulse. The amplified
pulse grows, since the undepleted pump constantly enters the
interaction region. Initially, the amplified pulse amplitude
grows exponentially in time with the growth rate of the
monochromatic wave instability bmax-e.&, .=a0 /%2. The
full pump depletion occurs when the amplified pulse be-
comes powerful enough, so that all the energy of the pump is
consumed by the amplified pulse. At that point, amplification
enters the so-called nonlinear stage. The amplified pulse can
be approximated with the “(-pulse” self-similar solution
during this stage.1 The form of the amplified pulse remains
the same during amplification while the peak amplitude and
duration of the pulse change. The amplitude of the (-pulse
grows linearly with the amplification length and its duration
contracts inversely with the amplification length. As a result,
the energy of the amplified pulse linearly grows with the
amplification length, which corresponds to absorption of all
the power of the incident pump. This regime of amplification
will be described quantitatively in Sec. III #Eqs. !31"–!33"$.

The plasma wave is amplified due to Raman scattering
and it is Landau damped at the same time. The saturation of
the growth can be observed at large Landau damping rate
"0/.. However, this restriction is only applicable at the
linear stage of amplification, when the amplified pulse grows
exponentially. For example, if Landau damping was not
taken into account, then amplification eventually would enter
the nonlinear regime, which is described by compressing in
time the (-pulse solution. The amplified pulse then becomes
short enough, #%01 /"0, so that Landau damping could not
affect amplification, since the plasma wave cannot be
damped in such a short time. Moreover, in a small region
behind the seed pulse, %01 /"0, the plasma wave is not af-
fected by Landau damping during the full amplification pro-
cess. Therefore, the amplification can reach the nonlinear
stage of the (-pulse regime even at strong nonsaturated Lan-

dau damping. A long amplification length, however, may be
required to reach this stage. That leads to reduced efficiency
of amplification, since the pump remains undepleted longer
than if there were no damping of the plasma wave.

The nonlinear saturation of Landau damping can reduce
the duration of the linear stage of amplification !small pump
depletion" compared to the case of the nonsaturated Landau
damping. This idea is demonstrated in Fig. 1, where three
different models are compared to each other: the model with
no Landau damping, the model with linear Landau damping,
and model !4"–!7" with the nonlinear saturation of Landau
damping.

A plasma wave of large amplitude is required to suppress
Landau damping. Earlier research showed that a given
plasma wave of the amplitude !B*"0 can saturate Landau
damping.19,20 Here !B=%2!!3!p"1/4%&f & is the bounce fre-
quency of the plasma wave of amplitude f . The amplitude of
the plasma wave generated by the seed pulse is typically
small and cannot result in the saturated Landau damping.
However, the plasma wave amplitude grows during amplifi-
cation and eventually becomes large enough to saturate Lan-
dau damping. On the other hand, the plasma wave can be
Landau damped to zero before reaching the level for satura-
tion of Landau damping.

We are interested in the regime of saturated Landau
damping. In this regime, the plasma wave eventually be-
comes strong enough that the seed amplification is not
strongly affected by Landau damping. The seed is both am-
plified and compressed while it propagates, reaching the re-
gime close to the (-pulse. The duration of the amplified
pulse in this regime is much smaller than the Raman length,
b /#%b+.−1. At the same time, the pulse grows much slower
than during the linear stage, b /#&b1.−1. Then the amplitude
profiles of the waves are quasistationary in this regime,
#%1#&. Under this condition, the first integral of Eqs. !4"–!8"
can be found,

0 20 40 60 80
0

2
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10

η

b/
a 0

FIG. 1. !Color online" Amplified pulse in the model with quasilinear satu-
ration of Landau damping !solid blue line" is compared to the amplified
pulses in the models with linear Landau damping !dashed red line" and no
Landau damping !dotted black line". 2=a0

2%& is the scaled longitudinal co-
ordinate along the amplified pulse. The parameters of the simulations are the
same as in Fig. 3.
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#%+ &a&2

2
+

&f &2

2
+

!"0 − ""&f &3/2

'
, = 0. !11"

This expression is a combination of the Manley–Rowe rela-
tion and the energy conservation law. It states that each
pump photon generates one plasmon. Some plasmons are
Landau damped. The number of damped plasmons is related
to the Landau damping rate through the energy conservation
law.

The efficient amplification of the seed pulse is possible
only if an insignificant part of the plasma wave energy is
required to saturate Landau damping. This regime can be
achieved at high enough pump amplitude.

'

2
%a0 1 "0. !12"

This limit has the following interpretation: the amplitude of
the pump should be high enough so that its full depletion
results in a strong plasma wave, !B12%2"0. As mentioned
above, the amplitude of the plasma wave on the same order
of magnitude is required to saturate Landau damping. Con-
straint !12" is a necessary condition for efficient seed ampli-
fication. However, this condition does not ensure that the
amplification reaches the nonlinear stage, since the plasma
wave grows from a small amplitude and can be damped prior
to saturation of Landau damping.

Equation !7" describes the nonlinear saturation of Lan-
dau damping in the presence of a strong plasma wave. For a
given time dependence of the plasma wave amplitude f!%"
this equation is a linear ordinary differential equation !ODE".
We are interested in the regime when Landau damping can
be significantly reduced and does not affect much the ampli-
fication. The amplitude of the plasma wave rapidly grows in
this regime so that )0

% fd%!' f2 /#%f . Under this condition we
find the asymptotic solution of Eq. !7":

"

"0
' 1, '-

0

%

%&f &d%! + 1, !13"

"

"0
'

3

')0
%%&f &d%!

, '-
0

%

%&f &d%! 1 1. !14"

Using these asymptotic expressions we construct

" =
"0

1 + '/3)0
%%&f &d%!

, !15"

which meets both the limiting cases in Eqs. !13" and !14".
The Landau damping rate saturates much slower in this

regime than if the amplitude of the plasma wave were con-
stant: "̇ /"= !̇B /!B rather than "̇ /"=!B. The physics of this
effect is the following. The width of the resonant region in
the distribution function is proportional to the bounce fre-
quency of the plasma wave. A growing plasma wave results
in the increase in the number of the resonant particles. The
distribution of new resonant particles is the same as the
original one !prior to the wave-particle interaction". As a
result, extra cold particles enter the resonant region, since the
original distribution function decreases with electron veloc-

ity. The excess in cold particles modifies the distribution
function in the resonant region and increases its slope. That
leads to the increase in the Landau damping rate, which
tends to approach its linear value of "0. The saturation of
Landau damping of an amplified plasma wave is a competi-
tion of two processes. Landau damping transfers energy from
the plasma wave to the resonant particles tending to form the
plateau in the distribution function. The growth of the plasma
wave amplitude tends to restore the distribution function
back to the original one. As a result, the saturation of Landau
damping is slowed down. This effect plays an important role
in BRA and requires detailed analysis.

III. SEED AMPLIFICATION IN THE REGIME
OF NONLINEAR LANDAU DAMPING

The plasma wave starts to grow from a small amplitude
f!%=0"=, /2+1. The generated plasma wave is amplified by
the pump and damps due to Landau damping at the same
time. As discussed above, we are mostly interested in the
regime of the efficient pulse amplification. Landau damping
is expected to be nonlinearly saturated in this regime. We
also expect that only a small fraction of the plasma wave
energy is required to be lost in order to form the plateau in
the electron distribution function #condition !12" is satisfied$.
As a result, Landau damping is expected to be reduced in the
domain where the pump is not depleted yet. Therefore, we
analyze the saturation of Landau damping without taking
into account the pump depletion. The pump depletion will be
taken into account later in this section. Then the saturation of
Landau damping in BRA can be described by the following
set of equations:

#&b = a0f , !16"

#%f + "f = a0b , !17"

" =
"0

1 + '/3)0
%%&f &d%!

. !18"

This set of equations should be solved together with the
boundary conditions,

f!% = 0" = ,/2, b!& = 0" = 0. !19"

The transformation b=B exp!−)"d%!" together with f
=F exp!−)"d%!" reduces Eqs. !16" and !17" to the damping
free case. This damping free system becomes linear and can
be solved using Green’s function.21

f = ,a0e−)0
%"d%!I0!2a0

%&%"/2, !20"

b = ,e−)0
%"d%!#%I0!2a0

%&%"/2, !21"

where I0 is zero-order modified Bessel function !Green’s
function in the damping-free regime". Green’s function has a
self-similar form since it depends only on the self-similar
variable 2=a0

2&%.
If Landau damping is saturated, then the integral )0

3"d%!
converges. Therefore, the asymptotic growth of the plasma
wave is exactly the same as if no Landau damping were
present in plasma. The only contribution of Landau damping
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to amplification is the effective reduction in the seed pulse
amplitude. In the domain of saturated Landau damping the
effective seed amplitude reaches the asymptotic value of

,eff!% → 3" = ,e−)0
3"d%!. !22"

Equations !20" and !18" describe the self-consistent pro-
file of the Landau damping rate and should be solved simul-
taneously. As a result, we derive the second order ODE de-
scribing the longitudinal profile of the plasma wave,

d22
2 G!2" = −

'%,a0/2
3"0

!d2G"2%I0!2%2"e−G/2, !23"

G!0" = 0, d2G!0" =
"0

a0
2&

, !24"

G = − ln. 2f

a0,I0!2%2"/, 2 = a0
2&% . !25"

Here G is the attenuation factor, which describes the reduced
plasma wave amplitude due to Landau damping. This attenu-
ation factor is related to the effective seed pulse amplitude,
,eff=,e−G. The effective amplitude of the seed pulse is al-
ways smaller than the original seed pulse amplitude ,eff0,,
since the attenuation factor is positive. Note that the attenu-
ation factor fully describes the solution of Eqs. !16"–!18".

The attenuation factor increases behind the seed pulse. It
monotonically grows until it saturates, G!→0. When the at-
tenuation factor saturates, the plasma wave grows until it
depletes the pump. On the other hand, the attenuation factor
can remain unsaturated. It can increase with a constant slope
G!!2→3"=const. The amplitude of the plasma wave damps
to zero in this regime, since f -e−GI0!2%2"→0. Either of
these regimes can be observed at different amplification
lengths. A small amplification length & results in large initial
slope of the attenuation factor G!!0". The saturation of Lan-
dau damping does not occur in this regime. While the am-
plification length increases, G!!0" decreases, and the satura-
tion of the attenuation factor can be observed. Therefore,
there exists a critical initial slope G!! of the attenuation factor,
which separates two regimes of Landau damping. It depends
only on 4='%0.5,a0 / !3"0", since it is the only parameter of
Eq. !23". The critical initial slope G!! results in the critical
amplification length which separates two different regimes of
amplification,

&Landau = "0/!a0
2G!!" . !26"

Landau damping cannot be suppressed at small amplification
length &0&Landau. The plasma wave starts to grow from a
small amplitude and damps before it becomes strong enough
to modify the distribution function. At large amplification
length &/&Landau, the plasma wave rapidly grows and be-
comes strong enough to change the distribution function.
Landau damping is suppressed and further amplification is
not affected by damping in this regime. The nonlinear regime
of amplification, which is accompanied with the pump deple-
tion, can be observed only if &/&Landau.

Equation !23" can be rewritten in the following form:

G!!0" − G!!2" = -
0

2

− 4!G!"2%I0!2%2"e−G/2d2 . !27"

This integral can be evaluated using the saddle point ap-
proximation. In the zero-order approximation !4+1" the at-
tenuation factor G is close to its unperturbed value G
'2d2G!0" for small values of 2. The slope changes in a
narrow domain, since the kernel of the integral has a well-
defined narrow maximum. Thus, we can estimate the critical
initial slope of the attenuation factor, which separates two
types of solutions: saturated and not saturated.

G!! =
1

2 ln. !G!!"1/4

4!4("1/44
/ , 4 =

'%,a0/2
3"0

, !28"

where the numerical factor of 4 was introduced for a batter
fit with numerical results. This expression approximates well
the numerically found G!! for 400.01 as demonstrated in
Fig. 2. Note that G!! logarithmically depends on ', the pa-
rameter describing saturation of Landau damping. Therefore,
the critical amplification length &Landau is insensitive to the
accuracy of a model describing nonlinear Landau damping.
This fact justifies earlier approximation !15" for the nonlin-
ear Landau damping rate.

Now we describe the longitudinal profile of the ampli-
fied pulse close to its maximum. In this domain, the pump
depletion is significant at large enough amplification length,
&/&Landau. The linear !no pump depletion" solutions !20" and
!21" correspond to the linear part of the (-pulse, which cor-
responds to the effective seed amplitude ,eff. One can expect
the nonlinear profile of the amplified pulse to be close to the
(-pulse.

The Landau damping rate is significantly reduced in the
domain of the amplified pulse maximum. At the same time,
the amplitude of the plasma wave does not change signifi-
cantly in this domain. Thus, we introduce the effective unde-
pleted pump amplitude ã0 as the maximum amplitude of the

10
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−110
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1
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G
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FIG. 2. !Color online" Numerically !solid blue line" calculated dependence
of the parameter G!! and its analytical !dashed red line" approximation with
expression !28". Parameter G!! characterizes the amplification length re-
quired for significant saturation of Landau damping as defined by Eq. !26";
4 is proportional to the ratio of the bounce frequency of the seeded plasma
wave and the linear Landau damping rate as defined by Eq. !28".
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plasma wave, which can be excited. This amplitude is re-
duced in the presence of Landau damping, since some energy
of the plasma wave is absorbed by the resonant particles. The
effective undepleted pump amplitude ã0 can be determined
from the Manley–Rowe relation !11",

ã0
2 +

2"0ã3/2

'
= a0

2. !29"

The effective undepleted pump amplitude is well defined if it
is close to the original pump amplitude, a0− ã0+a0 #condi-
tion !12"$.

The nonlinear solution close to the amplified pulse maxi-
mum can be described with the following set of equations:

#%a = − bf , #&b = af ,
a2

a0
2 +

f2

ã0
2 = 1. !30"

This set of equations allows a self-similar solution similar to
the damping-free case. We seek the nonlinear solution in the
following form:

a = a0 cos
U

2
, f = ã0 sin

U

2
, b =

a0

2ã0
#%U . !31"

This set of equations can be reduced to the Sine–Gordon
equation. The solution tends to approach the self-similar
(-pulse solution,

2̃U"!2̃" + U!!2̃" = sin U , !32"

U!0" = ,eff, U!!0" = 0, 2̃ = ã0
2%& . !33"

The linear solution in the domain of the undepleted pumps
!20" and !21" corresponds to the linear part of the (-pulse.
The linear solution becomes inaccurate close to the amplified
pulse maximum. The position of the pulse maximum can be
determined from the linear solution found above,2

,I0!2%2m"e−G!2m" = 4. !34"

Then the effective integrated seed amplitude ,eff should be
calculated based on the attenuation factor at the position of
the amplified pulse maximum. As a result, the nonlinear so-
lution close to the amplified pulse maximum,

a = a0 cos
U

2
, f = ã0 sin

U

2
, b =

a0

2ã0
#%U , !35"

2̃U"!2̃" + U!!2̃" = sin U , !36"

U!0" = ,eff, U!!0" = 0, 2̃ = ã0
2%& . !37"

d22
2 G!2" = −

'%,a0/2
3"0

!d2G"2%I0!2%2"e−G/2, !38"

G!0" = 0, d2G!0" =
"0

a0
2&

, 2 = a0
2%& , !39"

,I0!2%2m"e−G!2m" = 4, ,eff = ,e−G!2m". !40"

This solution should have a longitudinal shift, so that the
position of the pulse maximum appears at 2m.

This approximated solution is verified numerically
through the numerical simulations of the original model
!4"–!7" !here the nonlinear frequency shift is assumed to be
zero". The results presented in Fig. 3 show good accuracy of
the approximated solution.

We now verify that this regime of amplification falls into
the parameter region appropriate for the simplified model of
Landau damping.15 The amplitude of the plasma wave
should grow slowly compared to the bounce frequency time-
scale, #t!B+!B

2 . The growth rate of the plasma wave
changes along the pulse profile and is time dependent, #t f
-#%f -& / 2̃. It is possible that the growth rate of the plasma
wave exceeds the bounce frequency close to the seed pulse.
However, the Landau damping rate is close to the linear
value in that domain, so violation of this restriction is not
important. The simplified model should be valid in the do-
main of the nonlinearly modified Landau damping rate,
')%fd%*1. Using the (-pulse solution !35"–!37", we can
show that #t!B /!B

2 *%f +1 in that domain. Therefore, the
plasma wave grows slowly enough for the model to be ac-
curate.

The simplified model describes the saturation of Landau
damping of a growing plasma wave, #%&f &/0. Therefore, it
can be used to describe the plasma wave between the seed
pulse and the amplified pulse maximum. The Landau damp-
ing rate is significantly reduced close to the maximum of the
amplified pulse. As a result, the plasma wave is not affected
by Landau damping in that domain and its evolution still can
be described by the simplified model.

A further restriction that limits the amplitude of the
pump is that the initial electron distribution function does not
significantly change within the resonant domain #v*!B /kf
+vT

2 /vph. The condition is violated for the numerical simu-
lations presented in Figs. 1 and 3. These simulations were

0 20 40 60 80
0

1

2

3

4

5

η

b/
a 0

FIG. 3. !Color online" Longitudinal dependence of the amplified pulse am-
plitude. Solution of numerically solved set of Eqs. !4"–!7" !solid blue line" is
compared with analytical approximation !35"–!40" !dashed red line". The
parameters of simulation: a0=0.006, .&=30, "0 /.=15, ! /!p=10, and ,
=0.01. Here . is dimensionless growth rate of backward Raman instability
.=a0 /%2; 2=2.2%& is scaled longitudinal coordinate along the amplified
pulse. For these parameters &Landau'& /2.
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performed to demonstrate that Eqs. !4"–!7" result in solution
!35"–!40". Thus, this solution should be used with caution for
analyzing amplification by a strong pump. However, the
Landau damping rate is significantly reduced when the am-
plitude of the plasma wave becomes large so that model
!35"–!40" is invalid. Further pulse amplification is not sig-
nificantly affected by Landau damping and the simplified
model can still be applied. Other effects of a large plasma
wave amplitude, such as the wavebreaking, can be consid-
ered regardless to the effect of Landau damping.

IV. NONLINEAR FREQUENCY SHIFT

The change in the distribution function results in the
change in the plasma susceptibility and, therefore, in the
change of the frequency of the plasma wave mode. Both the
real and the imaginary parts of the frequency change during
the wave-particle interaction. The change in the imaginary
part of the frequency corresponds to the saturation of Landau
damping, which was considered in the previous section. The
change in the real part of the frequency we consider in this
section.

The nonlinear frequency shift prevents efficient amplifi-
cation due to dephasing between the interacting waves,

a = &a&expi*a!%,&", !41"

f = &f &expi*f!%,&", !42"

b = &b&expi*b!%,&", !43"

5* = *b + * f − *a. !44"

The dephasing grows away from the seed pulse. The energy
transfer from the pump to the amplified pulse changes its
sign when the phase difference 5* reaches the value of ( /2.
Therefore, a quantitative estimate of the dephasing is re-
quired.

The amplitude profiles of the waves are well approxi-
mated with the solution !35"–!37". The first spike of the
(-pulse solution can be approximated well with the
“2(-pulse” solution,1

U2( = 4 arctan!,effI0!2%2̃"/4" = 4 arctan!U0" . !45"

We assume that the phase difference 5* between the waves
is much smaller than ( /2, which is a favorable regime for
amplification. Under these conditions, the equations for the
wave phases can be deduced from Eqs. !4"–!6" and have the
following form:

#%*a = −
4U0#%U0

1 − U0
4 !*b + * f − *a" , !46"

#&*b = − ã0
21 − U0

2

1 + U0
2

U0

#%U0
!*b + * f − *a" , !47"

#%* f = −
a0

2

ã0
2

1 − U0
2

1 + U0
2

#%U0

U0
!*b + * f − *a" + #$!2̃" , !48"

The expression for #$ is described by Eq. !8" and has a
self-similar form, since the amplitude of the plasma wave
depends only on the self-similar coordinate 2̃.

This set of equations allows a self-similar solution
*a,b,f =%6a,b,f!2̃". For small amplitudes of the seed pulse
,eff+1, the maximum of the amplified pulse is located far
from the seed pulse 2̃m= !ln!8%(2̃m

1/4 /,eff""2 /411 !Ref. 1"
!U0=1 at 2̃= 2̃m". Therefore, the asymptotic expression for
the modified Bessel function can be used.

6a + 2̃6a! = −
4U0

2

1 − U0
4 !6b + 6 f − 6a"%2̃ , !49"

2̃6b! = −
a0

2

ã0
2

1 − U0
2

1 + U0
2 !6b + 6 f − 6a"%2̃ , !50"

6 f + 2̃6 f! = −
1 − U0

2

1 + U0
2 !6b + 6 f − 6a"%2̃ + #$!2̃" . !51"

The phase of the pump 6a remains small in the domain of
small pump depletion. It becomes significant only in a rela-
tively small domain close to the amplified pulse maximum,
&2̃− 2̃m&+2̃m. In this domain, the phase shift between the
waves decreases after reaching its maximum. In our analysis
we neglect the nonzero phase of the pump and estimate the
maximum phase difference between the waves caused only
by the plasma wave and the amplified pulse. Consistent with
the above assumption, we simplify Eqs. !50" and !51" using
U0+1 and a0= ã0. Then we find the solution far from the
seed pulse, 2̃11,

*b = −
4
5

#$!2̃"
%2̃

%, * f =
6
5

#$!2̃"
%2̃

% . !52"

The dephasing between the waves can be estimated at the
position of the amplified pulse maximum,

5* ' *b + * f = −
2
5

$0
%2̃m

ã0
3/2&

. !53"

The BRA should be operated in the regime &*b+* f&+( /2
for efficient amplification. This condition is of the order of
magnitude correct but slightly overestimated, since we did
not take into account the phase of the pump, which slightly
compensates the dephasing between the waves.

The plasma wave is detuned, since the frequency of the
plasma wave at the locations of the seed pulse and the am-
plified pulse maximum are separated by #$max=−$0

%ã0.
The dephasing caused by the nonlinear frequency shift can
be partially compensated by additional dephasing between
the waves. One might think that increasing the plasma den-
sity by some constant value can partially compensate the
nonlinear frequency shift !so that the exact resonant condi-
tion is observed at some intermediate amplitude of the
plasma wave". However, the uniform change in the linear
frequency of the plasma wave results in the same change of
the amplified pulse frequency, which can be derived directly
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from the nonlinear Eqs. !4"–!6". Therefore, inhomogeneous
detuning should be introduced in order to compensate the
nonlinear frequency shift. Either the plasma density gradient
or the pump chirp can result in this detuning. For efficient
compensation of the dephasing, the detuning factor should be

q *
#$max

%m
=

#$max

2̃m
ã0

2& , !54"

where the detuning factor is described as q=2!$!
−2!a!"c / !$p!aã0

2";9 %m( 2̃m / ã0
2& is the spatial coordinate of

the amplified pulse maximum. As a result, the detuning fac-
tor changes with the amplification length, which requires a
parabolic plasma density profile.

The nonlinear frequency shift can also be compensated if
the amplification is performed in partially ionized plasma.
Ionization of the low ionization levels can be reached at high
intensity of the amplified pulse due to tunnel or multiphoton
ionization.22 Therefore, the negative nonlinear frequency
shift due to the resonant particles can be compensated by an
increase in the plasma frequency. Both the ionization and the
nonlinear frequency shift have the largest effect close to the
amplified pulse maximum, which can result in their effective
compensation during the entire amplification.

V. MAXIMUM ALLOWED TEMPERATURE
FOR RAMAN AMPLIFIER

Kinetic effects, such as nonlinear Landau damping and
the nonlinear frequency shift of the plasma wave, constrain
the parameter region in which BRA can be operated. First,
we determine which of the considered effects limit amplifi-
cation the most. The amplification length should be large
enough so that the saturation of Landau damping can be
reached, &/2&Landau. In this case at least half of the pump
energy can be absorbed by the seed, which implies high ef-
ficiency of the amplifier. At this amplification length, the
dephasing caused by the nonlinear frequency shift can be
neglected if

2
5(

$0
%2̃m

ã0
3/2&Landau

+ 1. !55"

This condition can be simplified for Maxwellian plasma,

VT
2

c2

!

!p

%2̃mG!!%a0 + 1, !56"

where VT=%T /m is the plasma thermal velocity. This condi-
tion is satisfied automatically for typical BRA parameters:
!VT

2 /c2*10−4 for T*100 eV plasma, ! /!p*10, %2̃m*10
for ,eff*10−2–10−4, G!!*10−1, a0*10−2". Therefore, the
amplification is limited by Landau damping rather than the
nonlinear frequency shift of the plasma wave. However, the
opposite case scenario is possible if the plasma is not Max-
wellian, for example, if BRA is operated in the ionization
front regime.23 Thus, the constraints on the regime for back-
ward Raman pulse compression differ from the restriction on
the plasma wave growth due to Raman backscattering.24 This
difference arises because the backward Raman instability is
seeded in the BRA. As a result, conventional Raman scatter-

ing seeded by the thermal noise develops over a longer time
until it first reaches the nonlinear stage of saturated Landau
damping and only then can it result in the pump depletion.
The nonlinear frequency shift of the plasma wave then re-
sults in much larger dephasing between the waves. Techni-
cally, this effect can be estimated by considering really small
seeding amplitude ,=,noise, which results in significantly in-
creased coordinate of the scattered pulse maximum 2̃m in Eq.
!56".

Let us consider the regime of amplification in which
saturation of Landau damping does not take place. Strong
Landau damping significantly reduces coupling, which can
result in small pump depletion. The linear solution can be
described by Eqs. !20" and !21" considering "="0=const.
However, it is possible that the amplification enters the non-
linear regime accompanied by significant pump depletion
even if Landau damping is strong. The linear solution fails
when the amplitude of the plasma wave becomes on the or-
der of the pump amplitude !34". Then the amplification en-
ters the nonlinear stage similar to the (-pulse regime. The
amplification length required for reaching the nonlinear stage
in this regime is

&"0
= 2%2m

"0

a0
2 . !57"

The duration of the linear stage !small pump depletion"
can be reduced if the saturation of Landau damping takes
place. In Sec. III it was shown that the amplified pulse ap-
proaches the (-pulse solution at the amplification length,

&Landau =
"0

a0
2G!!

. !58"

Therefore, the nonlinear saturation of Landau damping al-
lows one to tolerate 2G!!%2m times larger Landau damping
rate compared to the case of nonsaturated Landau damping.
This value becomes of the order of 10 for 4*0.1,
,*10−2–10−4. Note, that the asymptotic expression !28" is
inaccurate for these parameters and the parameter G!! should
be calculated numerically. The larger tolerable linear Landau
damping rate means larger tolerable plasma temperature.
However, the increase in plasma temperature is much smaller
since the linear Landau damping rate depends exponentially
on the plasma temperature. As an example, we consider the
BRA parameters described in Ref. 7. The parameters of the
experiment are the laser wavelength 7=0.8 8m, the plasma
density n=1.45)1019 cm−3, ! /!p=11.5, the pump inten-
sity of Ip=2.3)1014 W /cm2, corresponding to the pump
amplitude of a0=7.3)10−3, the plasma length of l=3 mm
corresponding to the dimensionless amplification length of
&=7000, and ,=0.01 !empirical value". Then the saturation
of Landau damping results in efficient amplification as high
as T=180 eV plasma temperature rather than T=120 eV,
which is the critical plasma temperature in the linear regime
of Landau damping. At the same time, the ratio of the linear
Landau damping rates at these temperatures is about a factor
of 4.
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VI. CONCLUSIONS

We studied kinetic effects in a BRA including the non-
linear Landau damping and the nonlinear frequency shift of
the plasma wave. The analysis was performed using the fluid
model developed in Ref. 15.

We found the regime of amplification in which Landau
damping is nonlinearly saturated in the presence of a strong
plasma wave. The amplitude profile of the amplified pulse
can be well approximated with the “(-pulse,” same as in
damping-free plasma. The (-pulse solution in this regime
corresponds to the reduced amplitude of the seed pulse. The
effective seed amplitude can be determined by solving the
second-order ODE !38"–!40".

The saturated Landau damping can be observed at large
enough amplification lengths &/&Landau, which is defined by
Eq. !26". This critical length depends on the amplitude of the
seed pulse. Therefore, the plasma wave, amplified from the
thermal noise, saturates Landau damping much less effi-
ciently than the plasma wave generated by the seed pulse,
since much larger amplification length is required for satura-
tion. This effect can be used to suppress premature pump
depletion seeded by the thermal noise.

The nonlinear frequency shift of the plasma wave due to
the resonant particles causes the dephasing between the in-
teracting waves. This dephasing reduces the energy transfer
from the pump to the amplified pulse. The derived quantita-
tive estimate !53" defines the parameters for avoiding
dephasing in BRA. It is shown that for typical BRA param-
eters the effect of the nonlinear frequency shift is much
smaller than the effect of Landau damping in Maxwellian
plasmas.

This study extends the parameter region in which BRA
can be operated with high efficiency, since large linear Lan-
dau damping rate can be strongly reduced during amplifica-
tion. As a result, higher plasma temperature can be tolerated
compared to the regime of nonsaturated Landau damping.
Raman compression regimes in which the Landau damping,
if unsaturated, becomes problematic occur particularly for
compression to very short times at relatively higher plasma
density25 and even more so for compressing very high fre-
quency light !which necessitates even higher plasma
densities".26 It is important, therefore, that the maximum al-
lowed linear Landau damping rate can be up to ten times
larger compared to the situation in which nonlinear satura-
tion of Landau damping was not taken into account. At the
same time, the increase in plasma temperature, while signifi-
cant, is smaller !about 50%", since the linear Landau damp-
ing rate depends exponentially on the plasma temperature.
The increase in plasma temperature corresponds to about
25% increase in k7D.
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