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For a nonrelativistic classical particle undergoing arbitrary oscillations in external fields, the generalized
effective potential � is derived through calculating the nonlinear eigenfrequencies of the particle-field system.
Specifically, the ponderomotive potential is extended to a nonlinear oscillator, resulting in multiple branches
near the primary resonance. For a pair of particle natural frequencies in a beat resonance, � scales linearly with
the internal actions and is analogous to the dipole potential for a two-level quantum system. Thus cold quantum
particles and highly excited quasiclassical objects permit uniform manipulation tools, particularly, one-way
walls.
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I. INTRODUCTION

Multiscale adiabatic dynamics of classical particles in os-
cillating and static fields is simplified within the oscillation-
center �OC� approach, which allows separating fast quiver
motion of the particles from their slow translational motion
�1–3�. Hence the average forces are embedded into the prop-
erties of the OC, yielding a quasiparticle with a variable
effective mass meff �4,5�. In each given case, meff can be
Taylor-expanded at nonrelativistic energies so as to appear as
an effective potential � �4�, e.g., ponderomotive �6–9� or
diamagnetic �10�. Yet the nonrelativistic limit must permit
also an independent calculation of �. For linear oscillations,
the generalized effective potential was derived in Ref. �3�.
However, a comprehensive method of finding � for nonlin-
ear quiver motion has not been proposed.

The purpose of this work is to calculate, from first prin-
ciples, the generalized effective potential � for a nonrelativ-
istic classical particle undergoing arbitrary oscillations in
high-frequency or static fields. We proceed by finding eigen-
modes in the particle-field system; hence � is obtained like
in the dressed-atom approach �11–14� but from nonlinear
classical equations. Specifically, we show that the pondero-
motive potential extended to a nonlinear oscillator has mul-
tiple branches near the primary resonance. We also show
that, for a pair of natural frequencies in a beat resonance, �
scales linearly with the internal actions and is analogous to
the dipole potential for a two-level quantum system. Thus
cold quantum particles and highly excited quasiclassical ob-
jects permit uniform manipulation tools, particularly, station-
ary asymmetric barriers, or one-way walls �15–24�.

The work is organized as follows. In Sec. II, we obtain the
general form of the effective potential �. In Sec. III, we
derive the equations for oscillation modes. In Sec. IV, we
calculate the ponderomotive potential from the infinitesimal
frequency shift of the oscillating field coupled to a particle at
a primary resonance, both linear and nonlinear; see also the
Appendix. In Sec. V, we find � near a beat resonance and
show the analogy with the dipole potential. In Sec. VI, we
explain how � allows one-way walls. In Sec. VII, we sum-
marize our main results.

II. GENERALIZED EFFECTIVE POTENTIAL

Consider a classical particle undergoing adiabatic oscilla-
tions in arbitrary external fields. Mapping out the quiver dy-

namics yields that the slow, OC motion is governed by the
Lagrangian �see Appendix A in Ref. �4��,

L0 = �L� − � · J , �1�

where �L� is the true particle time-averaged Lagrangian,

�� �̇ is the canonical frequency vector, and �� ,J� are the
angle-action variables of the particle free oscillations, if any,
with J=const. Suppose that �L� depends on the OC coordi-
nate r only through the oscillation parameters P �25�; hence
L0 can be calculated, to the leading order, as if P were fixed.
Yet in the latter case there would be no average force, so in
the OC comoving frame �henceforth denoted by prime� L0�
must be a constant determined by P� and J. Assuming the
gauge such that L�=−mc2 at zero quiver velocity, this con-
stant is defined uniquely, like for a true particle �26�, and can
be represented as L0�=−meffc

2, c being the speed of light.
Accounting for the time dilation, the OC Lagrangian in the
laboratory frame then reads

L0 = − meffc
2�1 − v2/c2, �2�

where v� ṙ is the OC velocity, meff�P� ;J� can be under-
stood as the effective mass, P�=P��r ,v�, and the depen-
dence on J is parametric.

Assume nonrelativistic dynamics, i.e., v�c and
�m�meff−m�m, where m is the true mass; then

L0 = 1
2mv2 − U, U = �mc2. �3�

Hence the effective potential can be found by calculating �m
from the relativistic particle trajectory in given fields, as
shown in Ref. �4�. However, a general nonrelativistic ap-
proach is also possible as follows. Consider the OC extended
space including the angles �. For that, the Lagrangian
equivalent to Eq. �3� can be written as

L = L0�r,v� + �̇ · J , �4�

so the added Euler-Lagrange equation correctly describes the

adiabatic oscillations, reading J̇=0. Hence the correspond-
ing Hamiltonian H�r ,P ;� ,J� equals
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H =
P2

2m
+ �, � = U −

1

2m
��vU�2, �5�

where P=mv−�vU is the canonical momentum.
We now require that the variables �� ,J� include oscillat-

ing field modes to which the particle is coupled. Then, like in
the dressed-atom approach �11,12�, � depends on r and P
only parametrically, through the eigenfrequencies
��r ,P ,J�. Correspondingly, ��J=0�=0, and one gets
from �=�JH that

� =	 � · dJ . �6�

Thus finding the effective potential � is equivalent to deriv-
ing the eigenspectrum � of the particle-field system.

The canonical frequencies can be redefined such that
�→�+const, adding a constant to �. Albeit arbitrarily
large, this contribution does not affect the motion equations,
so we abandon the requirement that � must remain small
compared to mc2; hence actual physical frequencies can be
used for �. Specifically, for uncoupled linear modes one
gets from Eq. �6� that �=�0,

�0 = � · J + � · I , �7�

where �� ,J� and �� ,I� stand for the frequencies and the
actions of the particle and the field partial oscillations, cor-
respondingly. For an unbounded field �I→��, the second
term in Eq. �7� is infinite; as it is fixed though, the force on
the OC is determined only by � ·J. On the other hand,
particle-field coupling would produce yet another term,
���−�0. To show how it also flows from Eq. �6� is the
purpose of the next sections.

III. PARTIAL MODE DECOMPOSITION

Suppose there are weakly nonlinear oscillations ��t�, both
of the particle �3� and of external fields �27�, so their La-

grangian reads L̃�� , �̇�= L̃0+ L̃int, where L̃int is a perturbation

to a bilinear form L̃0 �28�,

L̃0 = 1
2 ��̇ · M̂�̇� − ��̇ · R̂�� − 1

2 �� · Q̂�� . �8�

Here M̂, R̂, Q̂ are N�N real matrices; M̂ and Q̂ are symmet-

ric, R̂ is antisymmetric, and rankM̂ =N�dim�. At zero R̂,

L̃0�� , �̇� can be diagonalized to yield

L̃0 = 

j=1

N

Lj, Lj =
1

2
Mj	̇ j

2 −
1

2
Qj	 j

2, �9�

where Lj describe individual modes 	 j �29�. Then

D̂j	 j = �	j
L̃int, D̂j = Mjdt

2 + Qj , �10�

� and dt standing for the variational and time derivatives.
Yet, such decomposition does not hold in the general case, so
we redefine eigenmodes, following Ref. �30�.

Extend the configuration space by introducing

��� = �− �M̂−1,��, �r� = ��,M̂−1��T �11�

�the index T denotes matrix transpose� as the new, “left” and

“right,” coordinate vectors, where �=M̂�̇− R̂� is the old ca-
nonical momentum. Then

L̃0 = 1
4 ���̇�M̂�r� − ���M̂�ṙ�� + 1

2 ���F̂�r� , �12�

where we omitted a full time derivative and introduced

M̂ = �M̂ 0

0 M̂

, F̂ = �R̂ M̂

F̂ R̂

 , �13�

with F̂= R̂M̂−1R̂− Q̂. Thus the resulting equations are

��̇�M̂ + ���F̂ = 0, M̂�ṙ� − F̂�r� = 0, �14�

both equivalent to

M̂�̈ − 2R̂�̇ + Q̂� = 0. �15�

Equation �15� has 2N eigenmodes � j = �̄ je
−i
jt, with 
 j

hence assumed real and nonzero; therefore, for each � j, there

also exists a mode �−j =�
j
*, and �̄ j are generally not orthogo-

nal. The corresponding eigenmodes of Eqs. �14� are

�� j� = ei
jt��̄ j�, �rj� = e−i
jt�r̄ j� , �16�

with vector amplitudes

��̄ j� = �− i
 j�̄ j
* − �̄

j
*R̂M̂−1, �̄

j
*� , �17�

�r̄ j� = ��̄ j,− i
 j�̄ j − M̂−1R̂�̄ j�T, �18�

and M̂ jk���̄ j�M̂�r̄k�=−2i� jk, where

� jk = 1
2 �̄

j
* · ��
 j + 
k�M̂ − 2iR̂� · �̄k. �19�

The matrix �̂ is diagonal for distinct 
 j, as seen from Eq.
�15�, or can be diagonalized when some of the frequencies
coincide �30�; thus

M̂ jk = − 2i� j� jk, � j � 
 j��̄ j
* · M̂�̄ j� , �20�

� j =−�−j. �Hence modes with 
 j =0 are orthogonal to the oth-
ers and can be considered separately, as implied below.�
Therefore any ��� and �r� are decomposed as

��� = 

j=−N

N

�� j��̄ j�, �r� = 

j=−N

N

�rj�r̄ j� , �21�

where the primes stand for skipping j=0, and

� j =
i

2� j
���M̂�r̄ j�, rj =

i

2� j
��̄ j�M̂�r� . �22�

Since ��� and �r� are real, one has rj =�
j
*�� j

�2 and
�−j =�

j
*; hence Eq. �9� is recovered, but with

Lj =
i� j

2
��̇ j� j

* − � j�̇ j
*� − � j
 j�� j�2. �23�

The resulting equations for individual modes are
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D̂j� j = ��
j
*L̃int, D̂j = � j�
 j − idt� , �24�

similar to reduced Eqs. �10�. Particularly, at zero L̃int,

� j = �2J je
−i
j, 
̇ j = 
 j, J j = const. �25�

On the other hand, Lj = �
̇ j −
 j�J j; thus �
̇j
Lj =J j is also the

action corresponding to the angle 
 j:

J j = � j�� j�2, �26�

so 
 j is the canonical frequency. Then the mode energy is

 jJ j �thus � j �0 for stable modes with 
 j �0, henceforth
implied�, and Eq. �7� is recovered.

Below we apply Eqs. �24� to find eigenmodes for nonzero

L̃int, with � becoming partial oscillations; hence the effective
potential is obtained from Eq. �6�.

IV. PRIMARY RESONANCE

A. Linear oscillator

First, we calculate � for a linear coupling between a pair
of modes �1 and �2, say,

L̃int = ��1�2
* + �*�1

*�2, �27�

where �=const. In this case, Eqs. �24� read

D̂1�1 = �*�2, D̂2�2 = ��1. �28�

Then the eigenfrequencies � are governed by

�1�2�� − 
1��� − 
2� = ���2, �29�

yielding two roots �1,2 independent of J1,2:

�1,2 =

1 + 
2

2
���
1 − 
2

2

2

+
���2

�1�2
. �30�

Hence one obtains

� = �1J1 + �2J2. �31�

As a particular case, consider interaction of a particle in-
ternal mode having unperturbed frequency � and action

J=����2 with an external oscillating field E= Ēe−i�t having
unperturbed frequency � and action I=�E�E�2. Given that the
field occupies a volume V→�, the frequency shifts �� and
�� due to coupling are infinitesimal, so Eq. �30� yields

��� =
���2

�� − ���E
, ���E =

���2

�� − ���
. �32�

Since �E�V, one has ��J���I, whereas

�� I =
���2

�� − ���
�Ē�2 �33�

is nonvanishing. Then, from Eq. �31�, one gets

� = �J + �0, �0 = − 1
4��Ē�2, �34�

where �0 is the so-called ponderomotive potential �for the
general expression, see the Appendix�, an insignificant con-

stant �I is removed, and �=4���2���−����−1. Since

�0 =
��

2 �Ē�2

� − �
, �35�

where ��
2 ����2 /��0, the effective potential becomes infi-

nite at the linear resonance �Fig. 1�a��. However, nonlinear
effects remove this singularity, as we show below.

B. Nonlinear oscillator

Consider the effective potential near a nonlinear reso-
nance, with a Duffing oscillator as a model system. Then

L̃int = ��E* + �*�*E + 1
2����4, �36�

where �=const, yielding

D̂� = �*E + ����2�, D̂EE = �� . �37�

Separate the driven motion from free oscillations,
�=Xe−i��+���t+Ye−i��+���t, so
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FIG. 1. �a� Resonant ponderomotive potential �0 �Eq. �35�� in

units �����
2 �Ē�2 /� vs �−� in units �. �b� Solid: squared normal-

ized frequency shift h=��I /�0 vs �=��0 / ����2,
��J=0�� ��−��−3; dashed: approximations h2=1 and h2= ���−1. �c�
W��� �Eq. �42��; consists of branches W1�0 and W2�0. �d� Effec-
tive potential � in units �c��2�c

2 /�= 2
3��0� vs �−� in units

�c��1/3��Ē�2/3 /�, assuming J=0 and ��0. Solid: Eq. �42� �con-
sists of branches �1�0 and �2�0�; dashed: Eqs. �43� and �44�.
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− �� �EĒ = �X , �38�

�� − ���X = �*Ē + 2��Y�2X + ��X�2X , �39�

− �� �Y = ��Y�2Y + 2��X�2Y . �40�

From Eq. �40�, it follows that ��J���XY�2, which we as-
sume, for simplicity, small compared to �0���I; hence �
��J+�, where �=�0

I �� dI is the modified ponderomotive
potential. The field frequency shift �� is found from Eqs.
�38� and �39�, which yield a cubic equation for h=��I /�0:

�1 + �h2�h = 1, �41�

where �=��0 / ����2, �0= ��Ē�2 / ����, �=�−�+� is the de-
tuning frequency, �=2�J /�2 is the nonlinear shift of the
resonance frequency, and the above condition of negligible
��J reads � / ��−���1. Thus

� =
�2�2

�
W���, W��� = 	

0

�

h��̃�d�̃ , �42�

where h��� has either one or three branches �Fig. 1�b��. In the
latter case, realized at − 4

27 ���0, one of those is unstable
�31�; hence two actual branches of �.

The asymptotic form of the ponderomotive potential is
found as follows. At ����1, Eq. �41� yields h�1, for either
sign of �, and additional roots specific for ��0 read
h� � ���−1/2. Among the latter two, h�0 is the one that is
unstable, so we keep only the remaining solutions. After re-
numbering them accordingly, one gets from Eq. �42� that
W1

+��, W2
−��, and W1

−�2����, where � denotes �→0�
�Fig. 1�c��. Hence approximate expressions follow for a large
detuning �� ���−1/3 sgn�:

�1
+ � �2

− � �0 =
��

2 �Ē�2

�
, �43�

�1
− � 2����Ē�

�����
�

, �44�

and Eq. �35� is recovered from Eq. �43� at small � and �=0.
On the other hand, at large �, W2 does not exist, whereas
h��→ �������−1/3 sgn� yields W1� 3

2 ���2/3 at �→ ��, or
�→0�; thus W1 is continuous near the resonance. Hence

one gets from Eq. �42� that �1��→0��3��Ē�4/3���2/3 / �2��,
i.e., the singularity vanishes �Fig. 1�d��.

V. BEAT RESONANCE

Suppose that L̃int also contains a term cubic in �, say,

�L̃int = ��1�2
*�3

* + �*�1
*�2�3, �45�

where �=const. That would normally yield a potential small
compared to �0, yet maybe except when


1 � 
2 + 
3. �46�

Below we study the beat resonance �46� neglecting the qua-

dratic L̃int, so the envelopes �̄ j =� je
i
jt satisfy

− i�1�̇̄1 = �*�̄2�̄3e−i�t, �47�

− i�2�̇̄2 = ��̄1�̄3
*ei�t, �48�

− i�3�̇̄3 = ��̄1�̄2
*ei�t, �49�

where ��
3+
2−
1 is the detuning frequency.

A. Linear coupling

Suppose that � is large enough, so Eqs. �47�–�49� can be

solved by averaging. Then split �̄ j into driven and free mo-

tion: �̄ j =Xje
−i�jt+Y je

−i�
jt, where �
 j �� j are the nonlinear
frequency shifts, and

�1 = �
2 + �
3 + � , �50�

�2 = �
1 − �
3 − � , �51�

�3 = �
1 − �
2 − � . �52�

Thus the corresponding equations read

− �1�1X1 = �*Y2Y3, − �
1�1Y1 = �*�Y2X3 + X2Y3� ,

− �2�2X2 = �Y1Y3
*, − �
2�2Y2 = ��Y1X3

* + X1Y3
*� ,

− �3�3X3 = �Y1Y2
*, − �
3�3Y3 = ��Y1X2

* + X1Y2
*� ,

where insignificant oscillating terms are neglected. Since
�
 j ��, one has

�
1 = −
J2 + J3

��
, �
2 =

J3 − J1

��
, �
3 =

J2 − J1

��
,

where ���1�2�3 / ���2�0. Then, from Eqs. �6�, one gets
�=�0+�,

� =
J1J2 + J1J3 − J2J3

�
1 − 
2 − 
3��
. �53�

Particularly, if the third mode corresponds to a macro-
scopic oscillating field tuned close to the beat resonance

� � �1 − �2, �54�

then J1,2� I� �Ē�2. Hence the “hybrid” ponderomotive poten-

tial that is obtained is simultaneously proportional to �Ē�2 and
the internal actions Jj:

� =
��

2

�
�J2 − J1��Ē�2, �55�

where �=�− ��1−�2�, and ��
2����2 / ��1�2��0.

B. Nonlinear coupling

At � �
 j, the internal mode equations

− i�1�̇̄1 = �*�̄2Ēe−i�t, − i�2�̇̄2 = ��̄1Ē*ei�t �56�

do not allow averaging, so the above derivation is modified
as follows. First, consider strictly periodic oscillations, in
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which case �̄���̄1 , �̄2�T rewrites as �̄= T̂�Ĉ�
−1x, where

T̂y =diag�e−iyt/2 ,eiyt/2�, and Ĉ�= T̂−! diag��1 ,�2�1/2,

!=arg��Ē*�+". Then

iẋ1 =
#

2
x2 −

�

2
x1, iẋ2 =

#

2
x1 +

�

2
x2, �57�

where #=2���Ē�. Equations �57� yield two eigenmodes at

frequencies �
1
2$, $= �#2+�2�1/2, so x= ÛT̂$x̄, where

Û = �cos % − sin %

sin % cos %

 , �58�

x̄��x̄+ , x̄−�T is constant, and % satisfies

cos 2% = − �/$, sin 2% = #/$ . �59�

Then

� = T̂�Ŝ� , �60�

where Ŝ� Ĉ�
−1ÛĈ& is a constant matrix, and Ĉ& is an arbi-

trary diagonal matrix introduced for uniformity. Hence we

take Ĉ&=diag��+ ,�−�1/2, where �����,

�� = 1
2 ��1 + �2� �

1
2$ , �61�

&�= &̄�e−i
�, 
̇�=��, and �̄= Ĉ&
−1x̄.

When the oscillation parameters evolve, treat Eq. �60� as

a formal change of variables for Eq. �23�. Then L̃=L++L−,
the field part being omitted, and

L� =
i��

2
�&̇�&

�
* − &̇

�
* &�� − ��
��&��2. �62�

Hence &� are independent linear modes with frequencies ��

and conserved actions J�=���&��2 �Sec. III�, and Eq. �6�
yields

� =
1

2
��1 + �2��J+ + J−� +

$

2
�J+ − J−� . �63�

At �'#, J�=J1,2 for ��0 and J�=J2,1 for ��0, so Eq.
�55� is recovered by Taylor expansion of Eq. �63�.

C. Quantum analogy

The above classical particle is the limit of a quantum sys-
tem with plentiful states coupled to the field simultaneously
and � j being the unperturbed transition frequencies �Fig.
2�a��. Yet, with � j→(, Eqs. �56� are also equivalent to those
describing a two-level system �13,14,32�, with the unper-
turbed eigenfrequencies �1 and �2 and the Rabi frequency
�R=# �Fig. 2�b��. Hence Eq. �63� yields as well the dipole
potential for a two-level quantum object, e.g., a cold atom
��11�, pp. 454–461�, �12�:

� =
(

2
��1 + �2� +

(

2
�n+ − n−���2 + �R

2 , �64�

where nj = �& j�2 are the occupation numbers �Jj→(nj�, satis-
fying n++n−=1. Similarly, Eq. �55� is equivalent to the di-
pole potential at weak coupling �32,33�:

� =
(�R

2

4�
�1 − 2n1� . �65�

�At n1=0, Eq. �65� is further analogous to Eq. �35�, with the
resonance at the transition frequency �1−�2.�

This parallelism originates from Eq. �24� yielding

Schrödinger-type equations for L̃int quadratic in internal
mode amplitudes. Therefore for any classical particle gov-
erned by a hybrid potential, an analog is possible which is
governed by a quantum dipole potential, and vice versa.
Hence the two types of objects permit uniform manipulation
techniques, as also discussed in Sec. VI.

VI. ONE-WAY WALLS

As an effective potential, � can have properties distin-
guishing it from true potentials. Particularly, it can yield
asymmetric barriers, or one-way walls �15–24�, allowing
current drive �34–36� and translational cooling
�17,22,24,37,38�. We explain these barriers as follows.

Suppose a ponderomotive potential of the form �35� �or,
similarly, �42��. Given �=��z�, with, say, �z��0, the av-
erage force Fz=−�z� is everywhere in +z direction, except at
the exact resonance where the effective potential does not
apply �Fig. 3�a��. Hence particles can be transmitted when
traveling in one direction but reflected otherwise, even as-

suming uniform Ē�z� �34–36�. In Ref. �15�, such dynamics
was confirmed for cyclotron-resonant rf fields, and, in Ref.

�16�, a similar scheme employing abrupt Ē�z� was proposed.
Hybrid potentials �Sec. V� permit yet another type of one-

way walls. Assume uniform � j and ��0; then � �Eqs. �55�
and �63�� is repulsive for cold particles �J1�J2� but attrac-
tive for hot particles �J1�J2�. Thus if particles incident, say,
from the left are preheated �via nonadiabatic interaction with
another field�, they will be transmitted, whereas those cold as
incident from the right will be repelled �Fig. 3�b��; hence the
asymmetry.

In agreement with the parallelism shown in Sec. V C,
similar one-way walls for cold atoms have been suggested
�17–21,24,39� and enjoyed experimental verification �22,23�.

FIG. 2. �a� Schematic of a quasiclassical particle containing two
harmonic oscillators with unperturbed frequencies �1 and �2. The
energy spectrum for each individual oscillator at large energies �clo-
seup on the right� is equidistant. The coupling with an oscillating

field Ē near the beat resonance �54� is described by Eqs. �56�. �b� A
two-level system, with unperturbed eigenfrequencies �1 and �2,
formally described by the same Eqs. �56�, assuming the Rabi fre-
quency �R=#.
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However, the result reported here is that quasiclassical par-
ticles like Rydberg atoms and molecules can, in principle, be
manipulated in the same manner, despite that their involved
eigenspectrum is different �Fig. 2�.

VII. CONCLUSIONS

We propose a method to calculate the generalized effec-
tive potential � for a nonrelativistic classical particle under-
going arbitrary oscillations in high-frequency or static fields.
We derive � from the oscillation eigenfrequencies in the
particle-field system �Eq. �6��, such as in the dressed-atom
approach �11–14� but from nonlinear classical equations
�Eqs. �24��. Specifically, we show that the ponderomotive
potential �Eqs. �35� and �A6�; Fig. 1�a�� extended to a non-
linear oscillator has multiple branches near the primary reso-
nance �Eq. �42�; Fig. 1�d��. We also show that, for a pair of
natural frequencies in a beat resonance, � scales linearly
with the internal actions �Eqs. �55� and �63�� and is analo-
gous to the dipole potential �Eqs. �64� and �65�� for a two-
level quantum system �Fig. 2�. Thus cold quantum particles
and highly excited quasiclassical objects permit uniform ma-

nipulation tools, particularly, stationary asymmetric barriers,
or one-way walls �Fig. 3�.
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APPENDIX: GENERAL EXPRESSION FOR THE
PONDEROMOTIVE POTENTIAL

Consider generalization of the ponderomotive potential
�34� and �35� to multiple internal oscillations and vector field

Ē = 

)

Ē), Ē) = e)Ē), �A1�

composed of modes ) with polarizations e). From Sec.
IV A, it is known that the internal energy �� ·J yields a
negligible contribution to �. Thus

�0 = 

)

��)I), �A2�

where the infinitesimal frequency shifts ��) of the field are
found as follows. Use �3�

L̃int = 1
2 Re�Ē* · d̄� , �A3�

where insignificant oscillating terms are removed, and d̄ is
the particle induced dipole moment; then Eq. �24� rewrites as

− ��)�)Ē) = 1
4e

)
* · d̄ . �A4�

Multiply Eq. �A4� by Ē
)
* and substitute d̄= �̂Ē, where �̂ is

the polarizability tensor; then

��)I) = − 1
4 Ē

)
* · �̂Ē . �A5�

Hence summation over all field modes yields the known ex-
pression �40,41�

�0 = − 1
4 �Ē* · �̂Ē� , �A6�

which holds for any internal modes contributing to �̂ �3�.
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