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Dressed-particle approach in the nonrelativistic classical limit
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For a nonrelativistic classical particle undergoing arbitrary oscillations in external fields, the generalized
effective potential ¥ is derived through calculating the nonlinear eigenfrequencies of the particle-field system.
Specifically, the ponderomotive potential is extended to a nonlinear oscillator, resulting in multiple branches
near the primary resonance. For a pair of particle natural frequencies in a beat resonance, W scales linearly with
the internal actions and is analogous to the dipole potential for a two-level quantum system. Thus cold quantum
particles and highly excited quasiclassical objects permit uniform manipulation tools, particularly, one-way

walls.
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I. INTRODUCTION

Multiscale adiabatic dynamics of classical particles in os-
cillating and static fields is simplified within the oscillation-
center (OC) approach, which allows separating fast quiver
motion of the particles from their slow translational motion
[1-3]. Hence the average forces are embedded into the prop-
erties of the OC, yielding a quasiparticle with a variable
effective mass mgg [4,5]. In each given case, m.; can be
Taylor-expanded at nonrelativistic energies so as to appear as
an effective potential ¥ [4], e.g., ponderomotive [6-9] or
diamagnetic [10]. Yet the nonrelativistic limit must permit
also an independent calculation of W. For linear oscillations,
the generalized effective potential was derived in Ref. [3].
However, a comprehensive method of finding ¥ for nonlin-
ear quiver motion has not been proposed.

The purpose of this work is to calculate, from first prin-
ciples, the generalized effective potential ¥ for a nonrelativ-
istic classical particle undergoing arbitrary oscillations in
high-frequency or static fields. We proceed by finding eigen-
modes in the particle-field system; hence V¥ is obtained like
in the dressed-atom approach [11-14] but from nonlinear
classical equations. Specifically, we show that the pondero-
motive potential extended to a nonlinear oscillator has mul-
tiple branches near the primary resonance. We also show
that, for a pair of natural frequencies in a beat resonance, ¥
scales linearly with the internal actions and is analogous to
the dipole potential for a two-level quantum system. Thus
cold quantum particles and highly excited quasiclassical ob-
jects permit uniform manipulation tools, particularly, station-
ary asymmetric barriers, or one-way walls [15-24].

The work is organized as follows. In Sec. II, we obtain the
general form of the effective potential W. In Sec. III, we
derive the equations for oscillation modes. In Sec. IV, we
calculate the ponderomotive potential from the infinitesimal
frequency shift of the oscillating field coupled to a particle at
a primary resonance, both linear and nonlinear; see also the
Appendix. In Sec. V, we find W near a beat resonance and
show the analogy with the dipole potential. In Sec. VI, we
explain how W allows one-way walls. In Sec. VII, we sum-
marize our main results.

II. GENERALIZED EFFECTIVE POTENTIAL

Consider a classical particle undergoing adiabatic oscilla-
tions in arbitrary external fields. Mapping out the quiver dy-
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namics yields that the slow, OC motion is governed by the
Lagrangian (see Appendix A in Ref. [4]),

Lo=(L)-w T, (1)

where (L) is the true particle time-averaged Lagrangian,

w = is the canonical frequency vector, and (9, J) are the
angle-action variables of the particle free oscillations, if any,
with J=const. Suppose that (L) depends on the OC coordi-
nate r only through the oscillation parameters 3 [25]; hence
L can be calculated, to the leading order, as if 3 were fixed.
Yet in the latter case there would be no average force, so in
the OC comoving frame (henceforth denoted by prime) L
must be a constant determined by P’ and J. Assuming the
gauge such that L'=-mc? at zero quiver velocity, this con-
stant is defined uniquely, like for a true particle [26], and can
be represented as L£)=—mgxc?, ¢ being the speed of light.
Accounting for the time dilation, the OC Lagrangian in the
laboratory frame then reads

Lo=—megc?V1 —v*c?, (2)

where v=r is the OC velocity, m. (B’ ;J) can be under-
stood as the effective mass, B’'=P'(r,v), and the depen-
dence on J is parametric.

Assume nonrelativistic dynamics, i.e., v<<c and
Om= mey;—m<<m, where m is the true mass; then

Lo=imv*=U, U= dmc’. 3)

Hence the effective potential can be found by calculating om
from the relativistic particle trajectory in given fields, as
shown in Ref. [4]. However, a general nonrelativistic ap-
proach is also possible as follows. Consider the OC extended
space including the angles 9. For that, the Lagrangian
equivalent to Eq. (3) can be written as

L=Loyr,v)+9- T, (4)

so the added Euler-Lagrange equation correctly describes the

adiabatic oscillations, reading J =0. Hence the correspond-
ing Hamiltonian H(r,P;9,J) equals
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P 1

=—+V, ¥=U-—0U>, (5)
2m 2m
where P=mv—g,U/ is the canonical momentum.

We now require that the variables (9, J) include oscillat-
ing field modes to which the particle is coupled. Then, like in
the dressed-atom approach [11,12], ¥ depends on r and P
only parametrically, through the eigenfrequencies
w(r,P,J). Correspondingly, W(J=0)=0, and one gets
from w=4d,H that

xp:fw.dj. ©)

Thus finding the effective potential W is equivalent to deriv-
ing the eigenspectrum @ of the particle-field system.

The canonical frequencies can be redefined such that
© — o +const, adding a constant to W. Albeit arbitrarily
large, this contribution does not affect the motion equations,
so we abandon the requirement that ¥ must remain small
compared to mc?; hence actual physical frequencies can be
used for w. Specifically, for uncoupled linear modes one
gets from Eq. (6) that V=P,

\POZQ'J‘F(O‘I, (7)

where (,J) and (w,I) stand for the frequencies and the
actions of the particle and the field partial oscillations, cor-
respondingly. For an unbounded field (I— <), the second
term in Eq. (7) is infinite; as it is fixed though, the force on
the OC is determined only by -J. On the other hand,
particle-field coupling would produce yet another term,
d=Vv-"¥,. To show how it also flows from Eq. (6) is the
purpose of the next sections.

II1. PARTIAL MODE DECOMPOSITION
Suppose there are weakly nonlinear oscillations &(z), both
of the particle [3] and of external fields [27], so their La-
grangian reads L (&, &)=L+ L;,, where L, is a perturbation
to a bilinear form £, [28],

Lo=3(&- M&) - (- RO -3(£- 09 (8)
Here M s Ii’, Q are N X N real matrices; M and Q are symmet-
ric, R is antisymmetric, and rankM=N= dimé&. At zero é
Lo(£,£) can be diagonalized to yield

N
~ | U |
Lo=2L, L= M& -0, 9)

j=1

where L; describe individual modes £; [29]. Then
ngjz 5§/Zinl’ Dszjdtz+Qj’ (10)

0 and d, standing for the variational and time derivatives.
Yet, such decomposition does not hold in the general case, so
we redefine eigenmodes, following Ref. [30].

Extend the configuration space by introducing
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= (-aM8), |N=EM ' mT (11)

(the index T denotes matrix transpose) as the new, “left” and

“right,” coordinate vectors, where a=M §—1€’§ is the old ca-
nonical momentum. Then

Lo =100l - Cepaliy] + 2(e/F ], (12)

where we omitted a full time derivative and introduced

. (M O . (R ™M
M= R A (13)
0 M F R

with =1€’1\;I‘11§—Q. Thus the resulting equations are
(Ep1+((|F=0, M7 -Flr)=0, (14)
both equivalent to
ME-2RE+ QE=0. (15)
it

Equation (15) has 2N eigenmodes §j:_§je‘i"1 , with »;
hence assumed real and nonzero; therefore, for each §j, there

also exists a mode §_j=§>.k, and E:j are generally not orthogo-
nal. The corresponding eigenmodes of Egs. (14) are

(Cl=e"E,  |rpy=er), (16)
with vector amplitudes
(|=(-ivg -ERME), (17)
7)) = (€.~ iv§ - M'RE)". (18)
and MjkE(Ej|l\7I|7k)=—2ip,~k, where
pi=3& -[(v;+ )M - 2iR] - &. (19)

The matrix p is diagonal for distinct v;, as seen from Eq.
(15), or can be diagonalized when some of the frequencies
coincide [30]; thus

A

My ==2ip;0p, p;= Vj(_f;-k -ME), (20)

p;j=—p-;. (Hence modes with »;=0 are orthogonal to the oth-
ers and can be considered separately, as implied below.)

Therefore any (€| and |r) are decomposed as
N

N
(t]= 2"ee), = 2"rlm, (21)

j=-N j=N

where the primes stand for skipping j=0, and

i A i =
j=2_pj<€|M|rj>, Vj=2_pj<€j|M|”>~ (22)

Since (€| and |r) are real, one has rj:€j5¢jy"§ and

b= z,bf, hence Eq. (9) is recovered, but with
l'p» Y %
Ly=" W0 = i) = oyl (23)

The resulting equations for individual modes are
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Dj'r/{,' = 6¢7Zint, D_,' = P_,'(Vj —id,), (24)
similar to reduced Eqs. (10). Particularly, at zero L,

b= \//2_\7je_iﬁj, Y=,

i =v;, J;=const. (25)

On the other hand, Lj:(wf)j—vj)J > thus ﬁié,ij:Jj is also the
action corresponding to the angle J;:

J;=pilwl. (26)

so v; is the canonical frequency. Then the mode energy is
ijj (thus pj>0 for stable modes with Vj>0, henceforth
implied), and Eq. (7) is recovered.

Below we apply Egs. (24) to find eigenmodes for nonzero

Zim, with ¢ becoming partial oscillations; hence the effective
potential is obtained from Eq. (6).

IV. PRIMARY RESONANCE

A. Linear oscillator

First, we calculate W for a linear coupling between a pair
of modes ¢, and i, say,

Lin= oty + 091 s, (27)
where o=const. In this case, Egs. (24) read
Dy =", Daythy= oy (28)
Then the eigenfrequencies @ are governed by

p1p2(w —v)(w - 1)) = |U|29 (29)

yielding two roots @, , independent of 7 5:

2 2
v+ v v -V lo]
@, = — 2 4+ \/(1—2> +—. (30)
2 2 P1P2

Hence one obtains

\I’=m1j1+w2j2. (31)

As a particular case, consider interaction of a particle in-
ternal mode having unperturbed frequency () and action
J=p|yf> with an external oscillating field E=Ee™ having
unperturbed frequency w and action /=pg|E|?. Given that the
field occupies a volume V— oo, the frequency shifts &) and
dw due to coupling are infinitesimal, so Eq. (30) yields

|of? |of?
=5 1 wp =TT AN (32)
(Q-0)ps " (0-Qp

Since pgV, one has 80J < dwl, whereas

p

__ o
(w-Q)p

is nonvanishing. Then, from Eq. (31), one gets

dwl E? (33)

V=0J+ D, Oy=-talEP, (34)

where @, is the so-called ponderomotive potential (for the
general expression, see the Appendix), an insignificant con-
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FIG. 1. (a) Resonant ponderomotive potential @y [Eq. (35)] in
units @, = k2| E|*/ 0 vs @~ in units . (b) Solid: squared normal-
ized  frequency  shift  h=dwl/®;, vs  (=BDy/(yp)*
{(J=0) = (w—Q)73; dashed: approximations %=1 and h>=|Z|"". (c)
W(Q) [Eq. (42)]; consists of branches W; >0 and W, <0. (d) Effec-
tive potential ® in units Q,Epzwf/ B= §¢>(O) vs w—{) in units
w.= B"3|cE|*?/p, assuming J=0 and B>0. Solid: Eq. (42) (con-
sists of branches ®; >0 and ®,<0); dashed: Eqgs. (43) and (44).

stant o/ is removed, and a=4|d|*[(Q-w)p]~'. Since

o I
0" w-Q’

(35)

where «2=|a]?/p>0, the effective potential becomes infi-
nite at the linear resonance [Fig. 1(a)]. However, nonlinear
effects remove this singularity, as we show below.

B. Nonlinear oscillator

Consider the effective potential near a nonlinear reso-
nance, with a Duffing oscillator as a model system. Then

Lin = OYE* + o*PE+ 5 By, (36)
where B=const, yielding
Dy=c*E+ By, DE=oip. (37)

Separate the driven motion from free oscillations,

l/l=X€_i(w+5w)t+ Ye—i(Q+6Q)t’ S0
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- bw pgE = 0X, (38)
(Q - w)pX = *E + 28|Y’X + B|X|?X, (39)
- 60 pY = BIY]*Y + 28/ X|Y. (40)

From Eq. (40), it follows that 8QJ~ B|XY|?, which we as-
sume, for simplicity, small compared to ®,~ dwl; hence ¥
~OJ+®, where =] (I)&u dl is the modified ponderomotive
potential. The field frequency shift dw is found from Egs.
(38) and (39), which yield a cubic equation for h=dwl/D,:

(1+Hh=1, 41)

where {=B®,/ (yp)?, ®y=|0E[*/ (yp), y=w—Q+s is the de-
tuning frequency, s=28J/p’ is the nonlinear shift of the
resonance frequency, and the above condition of negligible
SQOJ reads s/(w—Q)<<1. Thus

ve
B

where /() has either one or three branches [Fig. 1(b)]. In the
latter case, realized at —24—7 < (<0, one of those is unstable
[31]; hence two actual branches of ®.

The asymptotic form of the ponderomotive potential is
found as follows. At |{|<1, Eq. (41) yields h= 1, for either
sign of {, and additional roots specific for {<0 read
h= = |{~"2. Among the latter two, 2>0 is the one that is
unstable, so we keep only the remaining solutions. After re-
numbering them accordingly, one gets from Eq. (42) that
Wi=¢ Wy={, and W= 24|¢], where = denotes ¢— 0=+
[Flg 1(c)]. Hence approximate expressmns follow for a large

C="—"—W(Q), W)= Jh(é“)dé (42)

detuning y=|Z|7"? sgn¢:
2172
_ Kol E|
OF = &5 = By = , (43)
Y
. vl?fﬁl
(Dl = 2KapP |E| B (44)

and Eq. (35) is recovered from Eq. (43) at small { and s=0.
On the other hand, at large ¢, W, does not exist, whereas
h({— + ) =|{7"3 sgn{ yields W, z%|§|2/3 at {— * o, or
vy—0=; thus W, is continuous near the resonance. Hence

one gets from Eq. (42) that ®,(y— 0)=3|cE|[*?|8*?/(28),
i.e., the singularity vanishes [Fig. 1(d)].

V. BEAT RESONANCE

Suppose that Zim also contains a term cubic in #, say,

SLin = €y U, + €545 i, (45)

where e=const. That would normally yield a potential small
compared to @, yet maybe except when

V= U+ V3. (46)

Below we study the beat resonance (46) neglecting the qua-
dratic Eim, so the envelopes ;ﬂj:zﬁje”’j’ satisfy
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—ip1ih = € pifne™, (47)
— ipythy = g e™, (48)
—ipsihs = ey e, (49)

where A= v;+1v,—v, is the detuning frequency.

A. Linear coupling
Suppose that A is large enough, so Eqgs. (47)—(49) can be
solved by averaging. Then split l,_bj into driven and free mo-

tion: ¢;=X;e"""'+Y e7'%", where Sv;< 7, are the nonlinear
frequency shifts, and

= 67/2 + 51/3 + A, (50)
7]2=5V1—5V3—A, (51)
= 51}1 - 51/2 - A (52)

Thus the corresponding equations read

- mpi X = €Y,Y5, = ovp Y, =€ (Y X5+X,13),

— mpX, = €YY

L —ompY,=e(Y X, +X,Y)),

- M Xz = €V\Y,, = SuipsY3=e(Y X, + X,Y,),

where insignificant oscillating terms are neglected. Since
ov;<A, one has

j2+j3 _j3_j1 _~72—~71
ra - 2T A 0 BT A

51/1 =-

where I'=p,p,p;/|€>>0. Then, from Eqgs. (6), one gets
V=V,+d,

_ j1j2+j1j3—j2j3

(==l ©3)

Particularly, if the third mode corresponds to a macro-
scopic oscillating field tuned close to the beat resonance

(X)%Ql—ﬂz, (54)

then J, , <Ix|E[*. Hence the “hybrid” ponderomotive poten-
tial that is obtained is simultaneously proportional to |E | and
the internal actions J;:

2

K _
D =-5(J,-J)|EP,
A2

where A=w—(Q,-0,), and «

(55)

2=|e?/(pip2)>0.
B. Nonlinear coupling

AtAs 51{]», the internal mode equations

—ipiih = € pEe ™, —ipyiy = ey E¥e™  (56)
do not allow averaging, so the above derivation is modified
as follows. First, consider strictly periodic oscillations, in

026407-4



DRESSED-PARTICLE APPROACH IN THE...

which case = (i), )T rewrites as 1_p=7A”ACA’;lx, where

T,=diag(e™"?,e"?), and Cy=T_, diag(p,p)",
¢p=arg(eE*)+ . Then
. e A e A (57)
X|= =Xy — —X|, iXy==X|+ =X,
Xy 2T 5N X YTy

where e=2«E|. Equations (57) yield two eigenmodes at
frequencies =3 A, A=(e?+A?)"2 so x=UT X, where

U:(COS —sin>, (58)
sin® cos O
X=(x,,x_)" is constant, and © satisfies
cos20 =-A/A, sin20 =¢g/A. (59)
Then
¥=T1,5x, (60)
where S= é:bl ﬁéx 1S a constant matrix, and éx is an arbi-

trary diagonal matrix introduced for uniformity. Hence we
take é‘xzdiag(p+,p_)'/2, where p.=w.,
w.=5(Q+ Q) * A, (61)
Xe=xse = 9. =w., and }zé}'i.
When the oscillation parameters evolve, treat Eq. (60) as
a formal change of variables for Eq. (23). Then £=L,+L_,
the field part being omitted, and
P~ .« Lx 2
Lr=7(XtXI—XiX:)—P:Vr|Xr| . (62)
Hence y- are independent linear modes with frequencies @ .

and conserved actions J.=p.|y=|> (Sec. III), and Eq. (6)
yields

V= %ml + Q)+ + %m - (63)

At A>e, J.=J,, for A<O and J.=J,, for A>0, so Eq.
(55) is recovered by Taylor expansion of Eq. (63).

C. Quantum analogy

The above classical particle is the limit of a quantum sys-
tem with plentiful states coupled to the field simultaneously
and (); being the unperturbed transition frequencies [Fig.
2(a)]. Yet, with p,—#, Egs. (56) are also equivalent to those
describing a two-level system [13,14,32], with the unper-
turbed eigenfrequencies (); and (), and the Rabi frequency
Qg =¢ [Fig. 2(b)]. Hence Eq. (63) yields as well the dipole
potential for a two-level quantum object, e.g., a cold atom
([11], pp. 454-461), [12]:

h h >
V= (@40 E(n+—n_)\'A2+Q§, (64)
where n;=|x,|* are the occupation numbers (J;—#n;), satis-
fying n +n_=1. Similarly, Eq. (55) is equivalent to the di-
pole potential at weak coupling [32,33]:
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(a) (b)
Qe —) hA
_ hQ:
‘ @ \‘ I J th
%Yy _— '\ — ho
Q¢ \
— hQ,

FIG. 2. (a) Schematic of a quasiclassical particle containing two
harmonic oscillators with unperturbed frequencies (), and (),. The
energy spectrum for each individual oscillator at large energies (clo-
seup on the right) is equidistant. The coupling with an oscillating
field E near the beat resonance (54) is described by Egs. (56). (b) A
two-level system, with unperturbed eigenfrequencies (}; and (),,
formally described by the same Egs. (56), assuming the Rabi fre-
quency Qg=¢.

hQ2
o=—
4A

[At n;=0, Eq. (65) is further analogous to Eq. (35), with the

resonance at the transition frequency ;—,.]
This parallelism originates from Eq. (24) yielding

(1-2n,). (65)

Schrodinger-type equations for Zim quadratic in internal
mode amplitudes. Therefore for any classical particle gov-
erned by a hybrid potential, an analog is possible which is
governed by a quantum dipole potential, and vice versa.
Hence the two types of objects permit uniform manipulation
techniques, as also discussed in Sec. VI.

VI. ONE-WAY WALLS

As an effective potential, W can have properties distin-
guishing it from true potentials. Particularly, it can yield
asymmetric barriers, or one-way walls [15-24], allowing
current drive [34-36] and translational  cooling
[17,22,24,37,38]. We explain these barriers as follows.

Suppose a ponderomotive potential of the form (35) [or,
similarly, (42)]. Given Q=Q(z), with, say, J.Q <0, the av-
erage force F,=—4d,¥ is everywhere in +z direction, except at
the exact resonance where the effective potential does not
apply [Fig. 3(a)]. Hence particles can be transmitted when
traveling in one direction but reflected otherwise, even as-

suming uniform E(z) [34-36]. In Ref. [15], such dynamics
was confirmed for cyclotron-resonant rf fields, and, in Ref.

[16], a similar scheme employing abrupt E(z) was proposed.

Hybrid potentials (Sec. V) permit yet another type of one-
way walls. Assume uniform (2; and A>0; then W [Egs. (55)
and (63)] is repulsive for cold particles (J;<J,) but attrac-
tive for hot particles (J; >J,). Thus if particles incident, say,
from the left are preheated (via nonadiabatic interaction with
another field), they will be transmitted, whereas those cold as
incident from the right will be repelled [Fig. 3(b)]; hence the
asymmetry.

In agreement with the parallelism shown in Sec. V C,
similar one-way walls for cold atoms have been suggested
[17-21,24,39] and enjoyed experimental verification [22,23].
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(a) (b)
F,>0 v
R —
Jy>Jy / .
F.>0 le \C>
A >0

FIG. 3. Schematic showing two types of one-way walls (arrows
denote particle transmission and reflection). (a) The one-way wall is
due to a ponderomotive potential near a primary resonance [Egs.
(34) and (35)] with uniform 9.Q2<0, so F.=—3,¥>0 for all z,
except at the exact resonance where the effective potential does not
apply. (The inclined asymptote corresponds to W'=QJ+const.) (b)
The one-way wall is due to a hybrid potential [Egs. (55) and (63)]
with uniform €); and A>0: particles incident from the left receive
J1>J,, so they see an attractive WV; those incident from the right
have J; <J,, so they see a repulsive V.

However, the result reported here is that quasiclassical par-
ticles like Rydberg atoms and molecules can, in principle, be
manipulated in the same manner, despite that their involved
eigenspectrum is different (Fig. 2).

VII. CONCLUSIONS

We propose a method to calculate the generalized effec-
tive potential W for a nonrelativistic classical particle under-
going arbitrary oscillations in high-frequency or static fields.
We derive W from the oscillation eigenfrequencies in the
particle-field system [Eq. (6)], such as in the dressed-atom
approach [11-14] but from nonlinear classical equations
[Egs. (24)]. Specifically, we show that the ponderomotive
potential [Egs. (35) and (A6); Fig. 1(a)] extended to a non-
linear oscillator has multiple branches near the primary reso-
nance [Eq. (42); Fig. 1(d)]. We also show that, for a pair of
natural frequencies in a beat resonance, W scales linearly
with the internal actions [Egs. (55) and (63)] and is analo-
gous to the dipole potential [Egs. (64) and (65)] for a two-
level quantum system (Fig. 2). Thus cold quantum particles
and highly excited quasiclassical objects permit uniform ma-
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nipulation tools, particularly, stationary asymmetric barriers,
or one-way walls (Fig. 3).
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APPENDIX: GENERAL EXPRESSION FOR THE
PONDEROMOTIVE POTENTIAL

Consider generalization of the ponderomotive potential
(34) and (35) to multiple internal oscillations and vector field

E=XE, E,=e,,, (A1)
yn

composed of modes w with polarizations e,. From Sec.
IV A, it is known that the internal energy &€-J yields a
negligible contribution to W. Thus

(I)O = E 5(.0#]’“,

"

(A2)

where the infinitesimal frequency shifts dw,, of the field are
found as follows. Use [3]

Lin=75 Re[E*-d], (A3)
where insignificant oscillating terms are removed, and d is
the particle induced dipole moment; then Eq. (24) rewrites as
s =

e -d.
4 u

- Sw (A4)

wPultop =

Multiply Eq. (A4) by E:i and substitute d=@&E, where 4 is
the polarizability tensor; then
Sw,l,=~iE, - GE. (AS)

Hence summation over all field modes yields the known ex-
pression [40,41]
D)=~ ;(E*- GE), (A6)

which holds for any internal modes contributing to & [3].
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