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Alpha channeling can, in principle, be implemented in mirror machines via exciting weakly damped
modes in the ion cyclotron frequency range with perpendicular wavelengths smaller than the
alpha-particle gyroradius. Assuming quasilongitudinal or quasitransverse wave propagation, we
search systematically for suitable modes in mirror plasmas. Considering two device designs, a
proof-of-principle facility and a fusion rector prototype, we in fact identify candidate modes suitable
for alpha channeling. © 2009 American Institute of Physics. �doi:10.1063/1.3265711�

I. INTRODUCTION

Waves in the ion cyclotron range of frequencies can be
employed in magnetic mirror plasmas for plasma production
and heating,1–9 stabilization of plasma instabilities,10,11 par-
ticle injection,12,13 and plasma diagnostics.14–17 Alpha chan-
neling is a recently proposed technique18 for redirecting en-
ergy from � particles to fusion ions by using waves to
control the particle dynamics. Originally, the technique was
proposed to avoid � particle damping on waves used in rf
current drive techniques,19 but the waves could also be used
to extract energy from the � particles. In particular, coupling
certain rf waves in a tokamak or a mirror machine was
predicted18,20–26 to induce � particle flows in the phase space
leading to quick � ejection accompanied by � particle cool-
ing. As a result, the energy with which � particles are born
can be transferred to the waves and then used to sustain
fusion reaction in the device. The channeling of the � power
in one simple mirror configuration27 at ignition has been
estimated24 to increase, potentially, the effective fusion reac-
tivity by a factor of 2.8.

In the absence of external electromagnetic fields, the free
energy associated with energetic � particles can feed numer-
ous plasma instabilities, which can, in turn, transport energy
to background plasma species.28–32 The energy conversion
rate in such processes was estimated29 to be approximately
25%. This suggests that �-channeling can potentially be a
more effective energy transfer mechanism, also capable of
fusion ash removal and fuel ion injection.24,33

The �-channeling effect in a mirror machine was
shown24–26 to be possible, in principle, via arranging ion cy-
clotron wave regions along the device axis �Fig. 1� and ad-
justing their parameters. In our earlier work,33 the possibility
of the �-channeling effect in such systems was confirmed
numerically by simulating � particle motion in a magnetic
mirror trap. In particular, we offered a preliminary optimiza-
tion of the device parameters and proposed a prototype con-
figuration capable of extracting 60% of the trapped � particle
energy. However, the restrictions introduced on the wave dis-
persion by the plasma have not been addressed.

In this work, we analyze the dispersion relation of waves
in mirror plasmas and search for the device parameters close
to those of the optimum scheme.33 We consider two different
designs of a mirror machine, a proof-of-principle device and
a fusion reactor prototype, and identify waves suitable for
�-channeling in both of them. We also show that such waves
can be excited at different axial positions if the magnetic
field profile has multiple local minima.

The paper is organized as follows. In Sec. II, we use
two-dimensional ray-tracing equations to study wave propa-
gation in the central cell of a mirror machine. Assuming that
the wave propagates nearly parallel to the magnetic field
lines, or in a transverse direction, we simplify equations de-
scribing the ray trajectory and propose a method of searching
for waves suitable for �-channeling. In Sec. III, following
the approach outlined in Sec. II, we analyze the dispersion
relation of plasmas trapped in a mirror machine and search
for modes with suitable parameters. After such modes are
identified, we simulate ray trajectories numerically to show
that the wave packet dynamics is consistent with the analyti-
cal predictions and that the identified modes are indeed suit-
able for �-channeling. Section IV summarizes our conclu-
sions. In the Appendix, we derive limitations on the wave
parameters necessary for efficient �-channeling.

II. QUASILONGITUDINAL AND QUASITRANSVERSE
WAVE PROPAGATION

As we show in the Appendix, the �-channeling tech-
nique can be implemented in a mirror machine by exciting
electromagnetic waves in the ion-cyclotron frequency range
with k� �k� and k����1, such that: �a� they are weakly
damped, and �b� the damping on electrons is much weaker
compared with the damping on ions. In tokamaks, a leading
candidate wave having this property was the mode converted
ion Bernstein wave.34 We now propose a method which can
be used to identify waves satisfying these conditions in a
mirror device.

A. Ray-tracing equations

In this subsection, we write ray-tracing equations in the
system of coordinates adjusted to the magnetic field lines.
Considering wave propagation outside of the regions of
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strong damping, we assume that the device is large enough to
fit many wavelengths so that the geometrical optics approxi-
mation is valid. Introducing a characteristic device length L,
and a characteristic device diameter d�L, this condition can
be rewritten as k�L�1 and k�d�1. Fixing the azimuthal
wave number m, the two-dimensional ray trajectory r�t�, k�t�
can be obtained as a solution of the system35

dr

d�
=

�D
�k

,
dk

d�
= −

�D
�r

, �1�

where D=0 is a wave dispersion relation, r= �r ,z� and
k= �kr ,kz� are the two-dimensional wave packet position and
wave vectors correspondingly, and � is the new independent
variable, or “time” defined through

dt

d�
=

�D
��

. �2�

Consider D as a function of k� =k · b̂ and kn=k · n̂, where b̂ is
a two-dimensional unit vector directed along the magnetic
field and n̂ is a two-dimensional unit vector perpendicular to

b̂ such that nr�0; then one can rewrite the ray-tracing equa-
tions as

ṙ =
�D
�k�

b̂r +
�D
�kn

b̂z, �3�

ż =
�D
�k�

b̂z −
�D
�kn

b̂r �4�

k̇� = − b̂r� �D
�r
�

k�,kn

− b̂z� �D
�z
�

k�,kn

+
�D
�kn

� k�

��

+
kn

��

� , �5�

k̇n = − b̂z� �D
�r
�

k�,kn

+ b̂r� �D
�z
�

k�,kn

−
�D
�k�

� k�

��

+
kn

��

� , �6�

where ��
−1= n̂ · ��b̂��b̂� is the magnetic field curvature, and

��
−1= n̂ · ��n̂��b̂� is the curvature of lines in �r ,z� plane trans-

verse to the magnetic field lines. For convenience, we will
further work in the system of coordinates adjusted to the
magnetic field lines. In particular, instead of defining the

wave packet position �r ,z� in cylindrical coordinates, we
will characterize its position by a tuple �R ,	�, where
R	r
B�	� /B0 is a midplane distance from the system axis
to the field line on which the wave packet resides,
B0=B�0� is a midplane magnetic field and 	 is a coordinate
along the field line such that 	=0 on the midplane and

d	= b̂zdz+ b̂rdr.

B. Quasilongitudinal propagation

Assume that the group velocity of the wave packet is
directed primarily along the magnetic field and that the radial
gradients can be neglected. This makes negligible the term

−�D /�n�−b̂z�D /�r+ b̂r�D /�z in Eq. �6�. In this case, the
ray trajectory describes wave packets quickly moving along
the magnetic field lines, while drifting slowly in R. Since
R�L, the term proportional to ��

−1 can be neglected com-
pared with ��

−1. Substituting ��
−1	−�2B�−1dB /d	 in Eq. �6�,

one then obtains kn=

B, where 
 is a constant. As a result,
the longitudinal wave packet motion can be described by the
Hamiltonian

H�k�,	;
,R� = D�k�,kn = 

B�	�,	,R� = 0,

where k� is a canonical momentum, 	 is a canonical coordi-
nate, and 
, R are slowly changing parameters. To find how
the k��	� dependence evolves with time, note that since mo-
tion in �k� ,	� space is fast compared with the transverse
motion, the adiabatic invariant I� =�k�d	 must be approxi-
mately conserved. This property and the knowledge of the
slowly changing 
 and R defines k��	�. The evolution of 

and R can be calculated either using the following averaged
equations:


̇ = − 1

B

�D
�n �, Ṙ =
B

�D
�kn
� ,

where the averaging is performed over the fast longitudinal
oscillations, or using the conservation of I� which restricts
motion in �	 ,R� to a one-dimensional curve. A more strict
derivation of these equations will be discussed in our future
work.

If, for a wave of interest, k� �kn and 	�L, one can
decompose

D 	 D0�kn,R� + ��kn,R�k�
2/2 + ��kn,R�	2g/2g , �7�

where g is some integer number. Therefore, neglecting first
order corrections with respect to k� and 	, averaged motion
in kn and R satisfies D0�kn ,R�	0. Substituting this solution
in the expressions for ��kn ,R� and ��kn ,R�, we can describe
the shape of the longitudinal ray trajectory in �k� ,	� space as
the wave packet slowly drifts radially in the device.

The �-channeling technique is practical if the energy
extracted from � particles exceeds the energy necessary to
excite the channeling wave �see Appendix, Sec. 3�. Under
the realistic assumption that the � particle birth rate is not so
large that the catalytic wave energy can be significantly am-
plified in a single longitudinal pass through the central cell, it
follows that the catalytic wave should be a weakly damped
mode trapped in the device core. Such modes can be identi-

FIG. 1. Arrangement of rf regions �gray bars� in a mirror machine. These
regions contain radially and axially localized azimuthally propagating waves
in the ion cyclotron frequency range.
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fied as closed loops on the graph k��	 ;
 ,R�, which also
avoid regions of strong electron and ion Landau damping
�� /k� �we/i� and regions of strong ion cyclotron damping
���−n�i� /k� �wi�, where ws is a thermal velocity of the
species s. We will denote such loops as candidate loops. The
value of k� solving H�k� ,	 ;
 ,R�=0 depends on 	 through
the longitudinal plasma parameter profiles. Neglecting ef-
fects associated with the longitudinal plasma temperature
variation, and assuming that the line plasma density is nearly
constant along a field line and hence n�	�	n0B�	� /B0,
one can express the longitudinal wave number as
k��B�	� ;� ,m ,
 ,R
B0 ,n0 /B0 ,Te/i�. One can then plot k��B�
for fixed parameter values, and search for value for B0 and
the mirror ratio RB such that there is a loop on the k��	�
graph. Plotted as a function of B, such a loop can be located
either in the middle of the segment �B0 ,RBB0� or be
“wrapped” around one of its ends, in which case the k��B�
graph, restricted to B0BRBB0, shows just a half loop
�see Fig. 2�. In conclusion, in order to find a system which
allows for a slowly damped longitudinally propagating wave
trapped in it, one needs to study k��B� dependencies plotted
for different values of �, m, 
, n /B, r
B, and T. The features
indicating the existence of the mode include either the pres-
ence of the candidate loop, or a half loop, located at B=B0,
or at B=RBB0 for some B0 and RB.

C. Quasitransverse propagation

Assume now that the wave of interest is instead propa-
gating nearly perpendicular to the magnetic field lines. Since
we suppose that the motion in �kn ,R� variables is fast, while
the quiver motion in �k� ,	� is negligible, the wave packet
averaged motion along the magnetic field line can be de-
scribed by

	̇ 	 �D

�k�
� , �8�

k̇� 	 −  �D0

�	
� + kn

�D0

�kn
� 1

��

, �9�

where the averaging is performed over oscillations in �kn ,R�
space. The quiver motion in �kn ,R� variables can be found
independently using an approximate local dispersion relation

D�kn ,R ;k� ,	�=0 and Ṙ=�D /�kn. Note that the slow motion
in �k� ,	� can also be found from the conservation of the
adiabatic invariant I��k� ,	�=�kn�R ;k� ,	�dR associated with
the fast oscillations.

To simplify Eqs. �8� and �9�, assume further that k� �kn,
and that the transversely propagating wave is localized near
the midplane at 	�L. Decomposing again D	D0�kn ,R�
+��kn ,R�k�

2 /2+��kn ,R�	2g /2g, one approximates

	̇ 	 ���k� , �10�

k̇� 	 − ���	2g−1 + g �D0

�kn
kn�	2g−1

L2g = − �	2g−1. �11�

If �����0, Eqs. �10� and �11� describe the particle motion in
the attractive potential U�	�= ����	2g. Hence, the corre-
sponding ray trajectories will be bounded in �k� ,	�, and un-
der a proper choice of initial parameters they will be weakly
damped on electrons due to k� �� /we. To identify such
waves, one needs to study k��B� dependencies and look for
waves with k� 	0. If �����0, and the transverse motion of
the found wave is quick compared with the longitudinal mo-
tion, then the ray trajectory evolution in �k� ,	� space satisfies
Eqs. �10� and �11�, and such a wave can be suitable for
�-channeling.

III. NUMERICAL SIMULATIONS

To illustrate the methods discussed in Sec. II and to
show that weakly damped modes can exist in practical fusion
devices, we consider two mirror machine designs: a proof-
of-principle facility and a fusion reactor prototype with pa-

FIG. 2. A conceptual plot of k��B� and k��	� dependencies plotted for different values of the midplane magnetic field B0: �a� the original k��B� dependence
showing two closed loops and a half of a loop located in the vicinity of B=B1 �gray bars indicate areas of strong wave damping�, �b� k��	� dependence plotted
for the mirror machine with B0=B1, �c� k��	� dependence plotted for B0=B2. The choice of B0=B1 results in a weakly damped mode trapped in the device
core, while in B0=B2 case, the corresponding wave is strongly damped.
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rameters similar to those used in Refs. 36 and 37. We assume
that the magnetic field B in both devices is given by B�=0,
Br=−r�dBz /dz� /2, and

Bz = Bmin + 1
2 �Bmax − Bmin��1 − cos���2	z/L�g�� ,

where g is an integer, 	�1 is a constant, Bmin and Bmax

are the minimum and the maximum values of Bz correspond-
ingly. We also assume that �i� the linear density of the
plasma does not depend on the axial position, and hence
n�z� �R=0	n0B�z� /B0 on the axis, and �ii� that radial plasma
temperature and density profiles are given by n�r ,z�
=n�z� �R=0 exp�−R2 /a2� and T�r�=T0��+ �1−��exp�−R2 /a2��,
where �1 is a constant, and a is a characteristic plasma
radius. The dispersion relation D=0 is modeled by the

plasma kinetic dispersion relation reading D= �ε̂−n21̂+nn�,
where ε̂= 1̂+�s�̂s, �̂s=�ps

2 /� ·�ne−�Ŷn
s���, and tensor Ŷn

s���
is given by the following expression:35

Ŷn
s =�

n2In

�s
An − in�InAn

k�

�s

nIn

�s
Bn

in�InAn QAn
ik�

�s
�InBn

k�

�s

nIn

�s
Bn −

ik�

�s
�InBn

2�� − n�s�
k�ws�

2 InBn
� .

Here �ps
2 is the plasma frequency for species s, Q

= �n2In�s
−1+2�s�In�, �In= In��s�− In���s�, An= �k�ws��−1Z0��n

s�,
Bn=k�

−1�1+�n
sZ0��n

s��, �n
s = ��−n�s��k�ws��−1, �s=k�

2 �s
2 /2, Z0

is the real part of the plasma dispersion function, ws� and ws�

are parallel and perpendicular thermal particle velocities cor-
respondingly, �s=ws� /�s, and �s is the gyrofrequency.

A. The function k¸„B… for the proof-of-principle
facility

For a proof-of-principle facility36,37 consider an open
system with characteristic diameter d=6a=1.2 m, central
cell length L=12 m, ion and electron temperatures on the
axis Te

0=Ti
0=4 keV, �=0.15, B�1 T, and electron and ion

densities on axis at the midplane ne
0=nD

0 +nT
0 being of order

of 1013 cm−3 with nD
0 and nT

0 being the deuterium and tritium
densities correspondingly.

Consider first the case k����1, which implies
k��i�1. Calculating the dependence k��B� numerically for
r
B=18.3 cm�T1/2, nD

0 /nT
0 =1, n /B=6.67�1012 cm−3 T−1,

m=1, 
=0.045 cm−1 T−1/2, and �	5.8�107 s−1 approxi-
mately equal to the deuterium gyrofrequency in the magnetic
field B�=1.2 T, several loop candidates were identified �Fig.
3�. Both parts of the plot indicated by circles lie outside of
the areas susceptible to strong Landau and ion cyclotron
damping and have reflection points at the higher values of
the magnetic field. Hence, both of these curve segments de-
scribed by an approximate dispersion relation

a = n�
2 +

d2

b − n2 , �12�

where

a 	 1 − �
i

�pi
2

�
�

n

e−�i
n2In��i�

�i�� − n�i�
,

b 	 1 − �
i

�pi
2

�
�

n

e−�i

� − n�i
�n2In��i�

�i
+ 2�i�In − In��� ,

d 	 �
i

�pi
2

�
�

n

ne−�i�In − In��
� − n�i

+
�pe

2

��e
,

might correspond to weakly damped modes trapped near
the midplane. This dispersion relation was derived from

�ε̂−n21̂+nn�=0 neglecting n�
2 compared with �zz, neglect-

ing �xz, �zx, �xy, �yx, and assuming that �e��. The
dispersion relation �12� is the finite-k�� version of the
fast wave dispersion relation for cold plasmas obeying
�S−n�

2��S−n2�=D2, where

S = 1 + �
s

�ps
2

�s
2 − �2 ,

D = �
s

�ps
2 �i

���s
2 − �2�

.

However, while Eq. �12� describes both of the predicted
waves with k� 	0 shown in Fig. 3, the cold plasma disper-
sion relation holds only at �	�D.

Notice that for both loop candidates shown in Fig. 3,
k� �kn. Note also that these candidates exist in the local
minimum of the magnetic field only. Numerical calculations
of k��B� for other wave and plasma parameters �different
from those used in Fig. 3 by no more than one order of
magnitude� did not reveal any candidate waves which either

FIG. 3. �Color online� Dependence of k� on B /B� for �	5.8�107 s−1,
r
B=18.3 cm�T1/2, nD

0 /nT
0 =1, n /B=6.67�1012 cm−3 T−1, m=1, and


=0.045 cm−1 T−1/2. Parts of the dispersion curve lying inside the gray
areas correspond to waves strongly damped through electron Landau reso-
nance, or ion cyclotron resonance. Circles indicate the parts of the disper-
sion curve in the regions �B1\2 /B� ,B1\2� /B�� corresponding to the weakly
damped mode candidates. The inset shows zoomed in band �B2 /B� ,B2� /B��
in better resolution.
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had k� �kn, or were represented by closed loops in k��B� plot.
Hence, for k��i�1, the observed candidate waves can be
studied assuming quasilongitudinal, or quasitransverse
propagation and using Eq. �7�. Furthermore, numerically cal-
culating k��B� for k��i�1 for plasma and wave parameters
similar to those used in the k��i�1 case, we also did not
observe candidate waves with k� �kn, or closed loops in the
k��B� plot. This suggests that the candidate waves with
k��i�1 can be studied using the same approach used for the
waves with k��i�1.

B. Quasilongitudinal and quasitransverse waves
in the proof-of-principle facility

We now study wave candidates similar to those shown in
Fig. 3. We assume that the corresponding waves propagate
either quasilongitudinally or quasitransversely and that for
such waves k� �kn and 	�L. Using Eq. �7�, one obtains
approximate expression for the wave packet trajectory in
�kn ,R� space

D0�kn,R� 	 0.

The numerical solution of this equation for �	5.8
�107 s−1, Te

0=Ti
0=4 keV, ne

0	7.4�1012 cm−3, nD
0 /nT

0 =1,
�=0.15, m=1, and B	1.5 T is shown on Fig. 4. According
to this figure, there are two distinct trajectories in �kn ,R�
space, for one of which, marked with “s,” the characteristic
period of motion Ts is of order of 10Tl, while for another,
marked with “f,” the period of motion Tf is of order
of 0.02Tl. Here Tl is a characteristic period of the longi-
tudinal motion calculated for the ray trajectory with
k� �0.004 cm−1. Since Tf �Tl�Ts, the trajectory marked
with s corresponds to the longitudinal wave propagation,
while the trajectory marked with f corresponds to the trans-
verse case. An example of a ray trajectory plotted for the
longitudinal case is shown on Fig. 5. According to this fig-
ure, which captures one period of slow motion in �kn ,R�, the
parallel adiabatic invariant I� is nearly conserved. Due to I�

conservation, the maximum value of k� is reached near the
point of the curve D0�kn ,R�=0, where � /� reaches maxi-
mum. For the parameters used to plot Fig. 5, the minimum of
vph /we=� / �k�we� is approximately equal to 3 and, therefore,
the corresponding wave is weakly damped on electrons.

For the transversely propagating wave, there exist two
possible regimes. In one of them, shown in Fig. 6 with a
dashed line, the characteristic reflection time, on which k�

changes sign, is of order of Tf. In this regime, the description

FIG. 4. Solution of equation D0�kn ,R�=0 for �	5.8�107 s−1,
Te

0=Ti
0=4 keV, ne

0	7.4�1012 cm−3, �=0.15, nD
0 /nT

0 =1, m=1, and
B	1.5 T. The slow trajectory, period of motion along which is much larger
than the characteristic period of the longitudinal oscillations, is marked with
letter s. The fast trajectory is marked with letter f. The period of oscillations
along this trajectory is much smaller than the characteristic period of the
longitudinal motion.

FIG. 5. Ray trajectory plotted for the longitudinally propagating wave: �a� ray trajectory in �k� ,	� space, �b� ray trajectory in �r ,z� coordinates. The system
parameters are �	5.8�107 s−1, Te

0=Ti
0=4 keV, ne

0	7.4�1012 cm−3, nD
0 /nT

0 =1, �=0.15, m=1, Bmin	1.5 T, and Bmax=5Bmin. The ray is launched from the
point with k�

0=0.004 cm−1 and 	=1 m.
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of the longitudinal motion by particle motion in the potential
U�	�= ����	2g is inaccurate. Instead, there will be a random
walk in k� as a result of which a wave packet can approach
k� �� /we and become strongly damped on electrons. In an-
other regime shown in Fig. 6 with a solid line, the character-
istic reflection time is much larger than Tf. In this case, the
ray trajectory can be described by the equations of motion in
the potential U�	�= ����	2g and as a result, such wave can
remain weakly damped after many longitudinal oscillations.

To provide examples of the modes weakly damped on
electrons, but interacting with deeply trapped � particles,
we considered several system designs. The best result for
the k��i�1 case was achieved for the system with
�	5.8�107 s−1, Te

0=Ti
0=4 keV, ne

0	4.2�1012 cm−3,
nD

0 /nT
0 =1, m=1, and B	0.6 T. In this configuration,

�	2�D and the interaction with � particles occurs through
the second cyclotron resonance. The quasitransverse wave
launched near the midplane at R=20 cm and having initial
k� �0.005 cm−1 was shown to be weakly damped on elec-
trons since min vph /we	3.5 and strongly interacting with �
particles because min vres /w�	0.34, where vres is a reso-
nance parallel velocity calculated for n=2. The mode was
also shown to be bounded radially and longitudinally in a
region with �R�30 cm and �	�4 m.

This mode was found using the geometrical optics ap-
proximation. However, it may exist even when the approxi-
mation fails. Even though the characteristic values of kn�R
and k��	 were approximately equal to 2.5, and hence, the
conditions of applicability of the geometrical optics approxi-
mation were not satisfied, one can still expect that a similar
wave with a frequency close to that given by the Wentzel–
Kramers–Brillouin quantization condition can, in principle,
be excited in a device of similar size. A full wave simulation

would be, of course, necessary to find the corresponding
mode frequency as well as the mode structure. Interestingly,
both kn�R and k��	 can be increased for fixed device scale
sizes and fixed B0 by considering higher-order cyclotron
resonances. Numerical simulations confirmed that after dou-
bling � �so that �	4�D�, not only can the characteristic k�

be doubled while leaving � / �k�we� the same as for �
	2�D, but the maximum kn achieved for the quasitransverse
wave is also nearly doubled. As a result, kn�R increased
nearly three times �due to both kn and �R increase�, while
k��	 increased more than twice.

For the k��i�1 case, we considered quasilongitudinal
modes in the system with �	5.8�107 s−1, Te

0=Ti
0=4 keV,

ne
0	7.6�1012 cm−3, nD

0 /nT
0 =1, m=20, and B	1.15 T.

The wave was launched close to the device periphery at
R=55 cm with initial k� �0.006 cm−1 and was shown to be
weakly damped on electrons �since min vph /we	3.5� and
strongly interacting with � particles �since min vres /w�

	0.42�. The mode was bounded both radially with �R
�60 cm and longitudinally with �	�6 m. Since kn

reaches 15.0 along the ray trajectory, the radial wave number
of the mode is very large and max k���	300. The charac-
teristic value k��	, in turn, was approximately equal to 4 and
hence, such a mode can in principle, be excited in the proof-
of-principle device.

As an intermediate conclusion, two qualitatively differ-
ent weakly damped modes with k��D�1 and k��D�1 with
�i��e, capable of resonant interaction with deeply trapped �
particles, have been identified.

C. Fusion reactor prototype

For a fusion reactor prototype, following Ref. 36, we
consider a mirror machine with the following parameters:
d=6 m, L=15 m, B0=3 T, ne

0=nD
0 +nT

0 	1014 cm−3,
Te=60 keV, and Ti=15 keV. Even though we	0.2c, we ne-
glected relativistic effects and used the same dispersion rela-
tion as in Sec. III A. Similarly to the proof-of-principle fa-
cility, the dependencies of k� on B did not show any
candidate waves which either had k� �kn, or were repre-
sented by closed loops on k��B� plot. Numerical simulations
confirmed that, by analogy with the proof-of-principle facil-
ity, in the prototype device, two weakly damped modes ca-
pable of resonant interaction with deeply trapped � particles,
�i��e, and either k��D�1 �quasitransverse wave�, or
k��D�1 �quasilongitudinal wave� could be identified. How-
ever, since in the fusion reactor prototype, �L /we is 1.3
times smaller compared with the proof-of-principle facility,
we used higher ion cyclotron resonances to satisfy both
k��	�� and kn�R��.

D. Multiple wave regions

The system of rf regions with high �-channeling effi-
ciency, proposed in Refs. 24 and 25, consisted of several
waves located at different axial positions. Unfortunately, the
weakly damped mode described by the dispersion relation
�12� was shown to exist only in a small vicinity of the local
magnetic field minimum and hence could not be employed
anywhere except at the midplane. In order to use the mode

FIG. 6. Ray trajectories in �k� ,	� space for two quasitransverse waves: �i�
chaotic trajectory plotted for the case Tf �Tr �dashed�, where Tr is a
characteristic k� reflection time and �ii� quasiperiodic trajectory for
Tf �Tr �solid�. Both trajectories are simulated for the system with
�	5.8�107 s−1, m=1, �=0.15, ne

0	9.8�1012 cm−3, Bmin	1.5 T, and
Bmax=5Bmin. The random walk occurs in a system with Te

0=Ti
0=4 keV

and nT /nD=1, while the quasiperiodic trajectory is plotted for the case
Te

0=Ti
0=2 keV and nT /nD=1.5.
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described by Eq. �12� for �-channeling at an arbitrary axial
position, a magnetic field profile with several minimum-B
wells can be employed. For example, the k��	� dependencies
for two waves with equal values of k�, but different values
of � with the magnetic field profile illustrated in Fig. 7�a�, is
shown in Fig. 7�b�. Three weakly damped ion-cyclotron
modes, one at the midplane, and others at �z�=zm, exist in
such a configuration and are shown in Fig. 7�b� with arrows.

IV. DISCUSSION

We described the limitations on the wave parameters
necessary to achieve a high �-channeling efficiency. In par-
ticular, ion-cyclotron waves weakly damped on electrons and
having k� �k�, k����1 are considered suitable for
�-channeling. Assuming that such waves propagate either
along the magnetic field lines, or perpendicular to them, we
proposed an algorithm to identify modes with desired prop-
erties in a given mirror machine configuration. In order to
find weakly damped modes, we both �i� looked for waves
with k� 	0 and �ii� analyzed the dependence of k� on B,
looking for closed loops, or half of closed loops, located
away from regions subjected to strong Landau or ion cyclo-
tron damping. This method was applied to two mirror ma-
chine designs: a proof-of-principle facility and a fusion reac-
tor prototype.

As a result, we were able to identify mode candidates
suitable for �-channeling in both devices. By simulating a
two-dimensional ray trajectory, we confirmed the validity of
the method and showed that there exist weakly damped fast
waves localized both radially and axially for which k� is al-
ways smaller than any pre-chosen value. These modes were
shown to interact with deeply trapped � particles, while be-
ing weakly damped on electrons and even more weakly
damped on ions. Furthermore, in order to improve prospects
of the weakly damped mode excitation for �-channeling in

mirror machines, a possibility to arrange several rf regions at
different axial positions using magnetic field profile with
several wells was demonstrated.

The fact that modes suitable for �-channeling exist does
not yet mean that a complete scenario has been demon-
strated. It does remain to determine the fraction of affected �
particles and the expected �-channeling efficiency. Further-
more, the methods used here to find waves suitable for
�-channeling do not exhaust all possibilities. Moreover, the
plasma configuration considered is simple; more complicated
configurations of plasma may permit other wave candidates.
Thus, while an extensive search of suitable waves was con-
ducted here, other candidate modes, possibly superior to the
ones identified here, may in fact exist, and remain to be
discovered.
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APPENDIX: RESTRICTIONS ON WAVE PARAMETERS

The �-channeling effect occurs in the phase space �r ,p�,
such that � particles born through fusion reactions then dif-
fuse along one-dimensional paths due to resonant interaction
with electromagnetic waves. If the diffusion induced along
the path is suppressed at high energy, whereas at low-energy
there is an effective particle “sink,” the interaction with the
waves will result in the ejection of the cold � particles from
the system and the simultaneous transfer of their initial en-
ergy to the waves, thereby accomplishing the so-called
�-channeling effect. The � particle ejection leads to fusion
ash removal, while by coupling the amplified wave to ion
species, it is possible to redirect extracted energy to fuel ions,

FIG. 7. �Color online� �a� The magnetic field profile in a system with three magnetic field wells. One well is near the midplane at z=0 and the other two are
at �z�=zm	0.6L. �b� The dependence k��z /L� for two waves with �1	0.8�D

0 �dashed� and �2	2�D
0 �solid�, where �D

0 is a deuterium gyrofrequency at the
midplane. Three weakly damped modes located near z=0 and �z�=zm are indicated with arrows.
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thus increasing the effective fusion reactivity compared with
the typical scenario, in which � particles heat plasma by
slowing down collisionally on electrons.

Considering the wave-� particle interaction and the
wave damping on ions and electrons independently, we will
now derive the limitations on the wave parameters necessary
to maximize the energy transfer from � particles to fuel ions.
In particular, we show that weakly damped electromagnetic
waves in the ion-cyclotron frequency range with k� �k�,
k����1, and with damping on electrons weaker than damp-
ing on ions, are suitable for �-channeling.

1. Diffusion path shape

The diffusion path can be seen from the Hamiltonian of
a particle moving in a homogeneous background magnetic
field and a plane wave, which can be written as

H =
�p − qA0/c − qA�/c�2

2M
+ q��, �A1�

where q and M are the particle charge and mass, correspond-
ingly, �� and A� are scalar and vector potentials of the
electromagnetic wave, and A0 is a vector potential of the
background dc magnetic field B= ẑB with ẑ being a unit vec-
tor directed along the z axis.

First we derive the resonance condition. Assuming that
the wave field is weak, one can find the particle trajectory
using Hamiltonian perturbation theory,38 treating terms pro-
portional to A� and �� as weak perturbations to the unper-
turbed Hamiltonian H0= �p−qA0 /c�2 / �2M�. According to
KAM theorem,38 the invariant tori of the unperturbed prob-
lem located near the resonances �−n�−kzvz=0 are de-
stroyed, where � is a wave frequency, � is a cyclotron fre-
quency, k is a wave vector, v is a particle velocity, and n is
an arbitrary integer number. Fixing �, n and � particle par-
allel resonant velocity vz

0, the resonance condition can be
understood as a relation between the required � and kz.

The shape of the diffusion path can be derived from Eq.
�A1�. Since �� and A� depend on time through the wave
phase �t−kr, as a result of a canonical transformation to a
new longitudinal coordinate �=z−�t /kz, the new Hamil-
tonian H will be independent of time and will take the form

H =
�P − qA�x,y,��/c�2

2M
+ q��x,y,�� − Pz�/kz,

where A=A0+A�, P is a new canonical momentum, and � is
a new longitudinal canonical coordinate. Introducing the ki-
netic particle momentum p=Mṙ, and using A0z=0, the con-
servation of H leads to

p�
2

2M
+

�pz − M�/kz�2

2M
+ q� −

q�

ckz
A�z = const,

where p�
2 = px

2+ py
2. Therefore, a particle resonantly interact-

ing with the wave diffuses along a one-dimensional path de-
fined by the equation p�

2 + �pz−M� /kz�2=const describing a
circle in �p� , pz� space. To keep the wave in resonance
with the particle while it moves along the path, the particle
parallel velocity should remain nearly constant, which
will be achieved when kzv���. If the further condition

k���=��

kx

2+ky
2�1 is also satisfied, this limitation can be

rewritten as kz�nk�. Note, however, that if kz�nk� and kz

depends on z, then the diffusion of a particle repeatedly in-
teracting with a wave will be accompanied by a change of vz

and thus a change of the position where the resonance con-
dition �−n�−kzvz=0 is satisfied. This effect, accompanied
by a proper choice of the wave longitudinal profile, might be
a useful tool for manipulating particle diffusion along the
path, but is not pursued in this work.

2. Suppression of the diffusion along the path

A limitation on k� value follows from the analysis of the
particle diffusion. The quasilinear diffusion equation written
along the resonant path for a homogeneous magnetic field
can be written as39

�p

�t
=

�

�l
�Dl

�p

�l
� , �A2�

where Dl is a diffusion coefficient, l is a linear coordinate
along the diffusion path in the multi-dimensional action vari-
able space of the unperturbed problem and p�l ; t� is a particle
density on the path. The action variables of the unperturbed
problem are the parallel momentum p�, the magnetic moment
�=mv�

2 /2B, negative particle energy −H, and m�X, where
X is an x component of the particle guiding center.40,41 No-
tice that if at some point l= l0, Dl�l� vanishes, particles can-
not diffuse past such a point.42 This effect is particularly
important for limiting � particle heating and hence reducing
average � particle extraction time. The optimal value of l0

should be greater than l= lb, where � particles are born, but it
cannot be much greater than lb either, because this would
result in heating of particles. If there is only one wave
resonant with a given � particle, the condition l0� lb

limits k����lb�. For example, for an electrostatic wave,
DE�Jn

2�k����, where DE is a characteristic energy-space dif-
fusion coefficient and Jn is the Bessel function of order n.
This suggests that k����lb� should be somewhat less than the
first positive zero of the Bessel function Jn�x�.

If there are several uncorrelated waves with identical kz

and �, but different transverse wave numbers k�i, the diffu-
sion along the path is not suppressed by previously discussed
effects, but it can be avoided by the radial limitation of the
wave. If for every i and j, one has �k�i−k�j��k�i, finite
excursion of the particle energy �E leads to a particle radial
excursion �r�−k��E�m�����−1�−k���

2 /n, where m� is
the � particle mass, and k� is an average of k�i. Thus, by
choosing k����lb��1, which allows radial displacements
much larger than �, and by limiting radial wave profile, �
particle heating is constrained by the maximum possible ra-
dial excursion before the particle leaves the wave.

3. Required wave damping rates

Efficient �-channeling is possible only if the wave am-
plitude is much larger than a certain critical value f0 at which
the characteristic � particle extraction time �extr is of order of
the typical collisional �-electron energy relaxation time ��e.
But even if �extr���e, electrons can gain more energy than
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ions if the wave damping on electrons is stronger than the
wave damping on ions. Therefore, we will further focus our
attention on waves with �e��i, where �s is a characteristic
Landau or ion-cyclotron wave damping time on species s. If
for some wave �i��e, we will assume that there exist an-
other mechanism which can transport wave energy to ions on
the characteristic time scale further denoted by the same �i,
which is much smaller than �e.

Another limitation on �i follows from the fact that the
�-channeling technique is practical only if the energy ex-
tracted from � particles exceeds the energy necessary to ex-
cite the channeling wave. Assuming that the geometrical op-
tics approximation is valid, one can consider two wave
launching schemes: �a� excitation of a weakly damped mode
trapped in the device core, and �b� excitation of a traveling
wave which first extracts energy from � particles and then
dissipates it on ions. The choice of a particular scheme de-
pends on a dimensionless parameter �=�amp /�L, where �L is
the time it takes the wave packet to travel a distance compa-
rable to the device length L and �amp is the characteristic
wave amplification time. If the rate of � particle production
is so large that ��1, then �-channeling can be implemented
by launching a traveling wave. If, in turn, ��1, then the
excitation of a weakly damped mode is necessary. If for such
a weakly damped mode, �i is smaller than the characteristic
wave energy amplification time �amp and �amp−�i��i, the
wave energy will decrease, but slowly enough to extract
much more � particle energy than the energy necessary to
excite the channeling wave. It is the latter case that is con-
sidered in this work.
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