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A hydrodynamic equation describing the linear evolution of a nondissipative Langmuir wave in
inhomogeneous nonstationary anisotropic plasma without magnetic field is derived in the
geometrical optics approximation. The continuity equation for the wave action density, anticipated
from general principles, is then confirmed ab initio, and the conditions for the action conservation

are formulated. Given those, the wave field E universally scales with the electron density N as

ExN¥*in homogeneous plasma, whereas the wavevector evolution varies depending on the wave
geometry. © 2009 American Institute of Physics. [doi:10.1063/1.3250983]

I. INTRODUCTION

The energy of a wave propagating in nonstationary me-
dium can be manipulated by controlling how the parameters
of the medium evolve;'” for example, the energy can be
pumped up, transported, focused, and (or) deposited where
necessary. In the case of Langmuir, or plasma waves,” there
may be important high energy density applications connected
with compressing plasma targets, because these targets may
advertently or inadvertently contain wave packets that would
be amplified along with the densification. Hence, understand-
ing of the Langmuir wave evolution in nonstationary plasma
is needed. To develop such understanding is the purpose of
this paper.

Specifically, we assume the geometrical optics (GO)
limit,””" when the plasma parameters vary sufficiently
slowly in time and space. We also assume that a wave is
linear,I4 and no collisions, ionization, or recombination take
place.]5 In this case, the plasma dynamics should allow a
Lagrangian formulation;'®'” thus, it is anticipated to comply
with the general theorem of GO which states that the wave
action is conserved in inhomogeneous nonstationary
medium."*%* Previously, the theorem was independently re-
derived ab initio for a variety of oscillations,18’19’25728 con-
firming the general treatment; particularly, space-charge
waves in cold electron beams were considered, similar to
Langmuir waves in cold plasmas.zg_31 However, for thermal
plasmas there has been less agreement, and some of the mod-
els proposed in literature do not comply with the action
conservation.

The Langmuir wave action, or “plasmon” conservation
theorem (PCT) was reported in Refs. 32-35, accounting for
nonlinear effects; however, the inhomogeneity of the back-
ground plasma was neglected there (see also Ref. 36). The
density inhomogeneity was included in a linear treatment in
Ref. 37, yet within a model assuming constant temperature.
More precise models of Langmuir waves in inhomogeneous
plasma (see, e.g., Ref. 38 and references therein) did not
specifically address PCT and assumed stationary medium;
also, the wave equation derived in Ref. 39 is not entirely
correct (see, e.g., Refs. 40 and 41 and Sec. IV A) and hence
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is at variance with the theorem. Similarly, the kinetic models
offered in Refs. 42 and 43 are erroneous, as explained in
Refs. 44 and 45, and so is the corresponding part of Ref. 46,
as argued in Appendix B. Thus, the accuracy of PCT with
respect to the temperature corrections was not fully assessed.

An accurate kinetic treatment of the thermal effects was
eventually proposed in Refs. 44 and 45. Particularly, it was
shown that the Langmuir wave action in isotropic nonsta-
tionary collisionless plasma is conserved in the GO limit,
assuming that Landau damping is insignificant. However, the
solution in Refs. 44 and 45 is incomplete, because collision-
less plasma may not remain isotropic in the presence of in-
homogeneous average flow.*’ Thus, it yet remains to derive
an explicit equation for a Langmuir wave in nonstationary
inhomogeneous anisotropic plasma and show how the wave
parameters evolve.

The present paper offers such a calculation, completing
the results of Refs. 29, 37, 44, and 45 and reconciling the
Langmuir wave ab initio theory with the action conservation
theorem anticipated from general principles of Lagrangian
dynamics. Specifically, we derive the wave equation in the
GO limit and confirm that it yields a continuity equation for
the wave action density; hence, it is demonstrated that, under
certain conditions, also found explicitly, the wave action is
conserved. As a corollary, it is then shown that, in homoge-
neous plasma carrying Langmuir oscillations, the wave field
amplitude universally scales with the electron density N as

ExN3* whereas the wavevector evolution varies depending
on the wave geometry.

The paper is organized as follows. In Sec. II, we intro-
duce our basic equations. In Sec. III, we find the Langmuir
wave dispersion relation in homogeneous anisotropic
plasma. In Sec. IV, we derive the equations for GO rays and
the amplitude of Langmuir oscillations in inhomogeneous
nonstationary plasma. In Sec. V, we use those to obtain a
continuity equation for the wave action density; we also de-
rive the scalings for the oscillation field amplitude and wave-
number. In Sec. VI, we summarize our main results. Supple-
mentary calculations are given in appendices.

© 2009 American Institute of Physics
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Il. BASIC EQUATIONS

Consider a Langmuir wave in unmagnetized nonrelativ-
istic plasma with given flow velocity V(r,7). Neglect ion
oscillations and assume collisions and Landau damping to be
insignificant on time scales of interest. For electrons, adopt
the low-temperature approximation requiring kAp << 1, where
k is the wavenumber, and \p is the Debye length [cf. Eq.
(11) in Ref. 48]. Hence, an asymptotic closure of the hydro-
dynamic model is possible, via omitting the heat flux, and
one obtains, by taking the first three velocity moments of the

electron Vlasov equation,48_50
N, +V-(NV,) =0, (1)
V.P
OV, +(V, V)V, = “E- Vo ~——¢, 2)
m, e Nm,

I, +(V,- V)P, +P,(V-V,)
+[BV)V ]+[(PV)V,] =0. 3)

Here N, is the electron density, V, is the electron flow ve-

locity, e <0 and m, are the electron charge and mass, ﬁe is
the electron pressure tensor (which is symmetric by defini-
tion), E is the average electric field (if any), ¢ is the wave
electrostatic potential,51 and the index T denotes transposi-
tion. Separate the slow and the quiver variables, correspond-
ingly, as

N,=N+N, V,=V+V, ﬁe=ﬁ+1§, (4)
and assume that the oscillations are weak, i.e.,
n=N/N<1, (5)

and similarly for the pressure. (On the other hand, the abso-
lute value of V is unimportant.) Then the following linear
equations are obtained:

dn+h-V+V.V=0, (6)
AV +(V-V)V =TI+ (elm,) Vo=0, (7)

IP+(V-V)P+P(TrW) + (WP) + (WP)T

+P(V-V)+[(PY)V]+[(PV)V]' =0, (8)
M=nV-P-V.P)(m,N), 9)
Vip=-— (me/e)w}z,n. (10)

Here we introduced the partial time derivative in the frame of
reference K’ (further denoted by prime) moving with veloc-
ity V with respect to the laboratory frame K:

9 =d,+(V-V). (11)

In addition, we introduced h=VIn N, W=VV (which is a
tensor with elements W;,=dV;/dx,), the electron plasma
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JE—
frequency w,= \4me*N/m,, and Tr for the tensor trace. The
complex notation is also henceforth assumed for the quiver
variables.

lll. HOMOGENEOUS STATIONARY PLASMA

In the case of homogeneous plasma with V=const, the
exact eigenmodes of Egs. (6)—(10) are found as follows.
Assume

n,V,l§~ exp(ik-r—iwt). (12)
Then one gets

—io'n+ik-V=0, (13)
—iw'V+ik(e/m,)o-TI=0, (14)
—iw'P+iP(k- V) +{(PK)V]+(PK)VIT=0,  (15)
Il = — ikP/(m,N), (16)

—ko=— (me/e)w[z,n, (17)

with @' =w-k-V being the wave frequency in the frame
where the plasma average flow rests. Hence,

HYV = 02V, (18)
i.e., V must be an eigenvector of the tensor H given by

-~ kk 1 A A s
H=— o+ —[2(TKk + (k- Tk)1], (19)
k7 m,
where kk is a dyad, 1 is a unit tensor, and T=P/N is the
electron unperturbed temperature tensor.
For a longitudinal wave, one has from Eq. (13) that

V =no'k/K>. (20)
Substituting this into Eq. (18) yields

~oom| L, 5 (k-Tk)

Tk—2k2|:w -, = . k. (21)

Since the coefficient on the right-hand side is a scalar, k must
be an eigenvector of T:

Tk = m,v2 Kk, (22)

where the eigenvalues satisfy v%,>0, because T is positive
defined; thus, vy, can be understood as the electron thermal
speed along k. Then,

w=0Kk)+k-V, (23)

where the function (k) (numerically equal to ') is given
by 0*=w) +3k%7, (cf., e.g., Ref. 52, Chap. 8 or Refs. 53-55
for isotropic plasma), or

=0’ +k-Ck, C=3T/m,. (24)

Therefore, similarly to elastic media,SH’0 a longitudinal

wave in plasma must have k along a principal axis of the
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temperature tensor.”’ Since T is symmetric, there always ex-
ist at least three such directions. On the other hand, in
isotropic plasma, any axis can be considered a principle axis

of T; then, Langmuir waves can propagate in arbitrary
direction.

IV. GEOMETRICAL OPTICS EQUATIONS
A. Approximate wave equation

Consider now a more general case of inhomogeneous
nonstationary plasma. Assume, however, that the wave am-
plitude, the frequency, and the local wavevector vary on
large temporal and spatial scales 7 and L in the plasma av-
erage flow rest frame K'. Specifically, we assume

e=l/min{fw' T,K'L} < 1, (25)

with k" =k in the nonrelativistic limit used here. In this case,
henceforth referred as the GO limit,”' an approximate scalar
equation for a Langmuir wave can be obtained which will
capture effects to the leading order in the parameter e.

To derive this equation, first, apply d; to Eq. (6) to get

9’ n+3d,(h-V)+d/(V-V)=0. (26)

The third term on the left-hand side here is found by taking
the divergence of Eq. (7):

J(V-V)=wn+V-I-(V-V)(V-V)-{V,V},
where we substituted Eq. (10) and introduced
(V,V}=V.[(V-V)V+(V-V)V]
—(V-V)(V-V)=(V-V)(V-V), (27)

accounting for the fact that J; and V may not commute.
Therefore Eq. (26) takes the form

at’zn+w12,n+V~H+R=0, (28)
with R given by
R=—(V-V)(V-V)+3/(h-V)-{V,V}. (29)

The first term in Eq. (29) is of the order of € and can be
neglected. The second term is evaluated as

dMh-V) _InQ k
—=2—— Vo, >, (30)
ot ot w, k

(0'/dr=3,), where we used that, to the zeroth order in €, one
can employ Eq. (20) and

g ~-iQ, V~ik. (31)
The third term in Eq. (29) can be put as (Appendix A)
{V.V}=2(VV) - (VV)=2(V X V) - (VX V), (32)

where we assume summation over repeated indices.
Both curls are of the order of e here; thus, {V,V}
’~V2(V\7j)'(VVj). Equations (20) and (31) further yield
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(V.V} = - 2(9/n)kW - k/k>. (33)
Hence, Eq. (29) rewrites as
Inl Q A\ Kk
R=2—n<—pr+kW>-—2. (34)
Jt \w, k

An approximate expression for V-II is obtained simi-
larly (Appendix B). Substituting that and Eq. (34) into Eq.
(28) one gets for isotropic plasma

2
w, k

—6Vn-Vv%e=0, (35)

I, P Inf Q .\ k
—5 ton-3vVn+2—| — Vo, +kW /. 5
ot ot

and in the general case of anisotropic plasma, which we
study below,

"’n &#n nl Qd k
ot P ax; 9 xg at \ w, dx; k
kik,\dCyp dn
—((Sjﬁ—%)—‘f—:o, (36)
k* ) odx; dxg

. . . 62
assuming Cartesian coordinates.

B. Eikonal equation

Equation (36) can be solved using the GO approach,”®
specifically as follows. Take

n=Ne', (37)

where A is the slowly varying envelope. Substitute Eq. (37)
into Eq. (36) and first consider the terms of order €”; hence
the eikonal equation

[-(3,0-V0-V)>+ 0>+ V- CVIIN=0. (38)
Since, by definition,
d0=-w, VO=k. (39)

Equation (38) is equivalent to Eq. (23), except now the
plasma parameters may slowly depend on r and #:

w=0k;r,1)+k-V(r,). (40)

Differentiate Eq. (40) with respect to ¢ and with respect to r
and use Vo=-dk, as flows from Egs. (39). Then,

dw=d,wk,r,1), dk=-Volk,r,im), (41)
where the partial derivatives are taken at fixed k; also,

d, =0, + (Vg V), (42)
and v,= dyw(k,r,1) is the group velocity:

v,=U+V, U=40(Kr,1). (43)

Since v, equals the velocity at which the envelope propa-
gates (Ref. 52, Chap. 4), one can complement these with

dtl‘ = o7kw. (44)
Together, Eqs. (41) and (44) are known as GO ray equations

(Ref. 52, Chap. 4) and can be considered as canonical equa-
tions [with the Hamiltonian Aw(k,r,7); Eq. (40)] which
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determine the dynamics of plasmons, i.e., quasiparticles with
velocity v,, momentum ik, and energy 7iw; see also Refs. 32
and 33.

C. Amplitude equation

The equation obtained from Eq. (36) in the first order in
€ reads as

IN  9Q IN N ok
-2iQ0— —i—N - icje<k€— + kj—) - icjej\/—€
at ot dx; dxg Ix;
aC kk,
-2iQTN - ikgj\/& X€(5js+‘k%) =0, (45)
_x.

J

where Kk is a function of r and ¢ [unlike in Egs. (41), where k
is a variable], and

09 k
r= (——wﬂ+kjwje>—§. (46)
wp &x€ k

The same expression can be written also as follows. Use Eq.
(41) for dk to get

dt Q (9.X€ 2Q (9X( o

Hence, Eq. (46) is put in the form

kel (9 )by doy ik 0C,

w, Q K ox, 20k* dx,

=— 48
K* dt (48)

We now use the expression for Q [Eq. (24)], Vw,/w),
=VN/(2N), and

k-dkik=dk. (49)
Hence, Eq. (46) can be represented as
dink  kjkek ( Jc;

I'=- + 3 i - S) . 50

dt 2082\ gy, (50)

Since the wave is assumed propagating along a local princi-
pal axis of the temperature tensor, one also has
Cigkikg/k2=3v%e and 3v7,k,=Cyke; thus, Eq. (50) can be
further put as
_ dlnk + U!']’l[ _ k‘k(gks aCi(
dt 2 20k ox,
where we used U;=C;¢k¢/€) [Eq. (43)]. Then Eq. (45) re-
writes as
A(QUM?) + V- (QUM?U) + QN (U -h -d, In k¥*) = 0.
(52)

(51)

We now use

I (QN?) + V- (QUM?U) = d(QNP) + QM V - U,

(53)
U-h=d,InN+V .V,
the latter being due to
IN=-NV-V, (54)

which flows from Eq. (1). Hence, Eq. (53) reads as

Phys. Plasmas 16, 112101 (2009)

d, In(QM?) +d,InN-d, Ink*+V - v,=0. (55)

In principle, this allows one to calculate the envelope ampli-
tude | V] along the GO rays, as discussed in Sec. V A.

V. DISCUSSION
A. Wave action. Equation of state

Introduce the wave average energy density,

. |E’|2 e, ")

) 56
167 Jdw’ (56)

in the frame K’ traveling with velocity V. Here E’ ZE, and
the longitudinal permittivity in K’ equals that in the labora-
tory frame K: g, =81.65 Neglecting the corrections due to fi-
nite € and using Egs. (6)—(16), g, is derived like for isotropic
plasma (Ref. 52, Chap. 3):

=1-—"t—. 57
SURNEIE PENE Y 57
(Here k parallel to the principal axis of T is assumed, as
before.**) Thus, Eq. (56) rewrites as

_ Qe

gl
w,z, 8

(58)
[where we used &,(Q+k-V;Kk)=0], so this energy density is
always positive, unlike that in K

Further, define the wave action density J, or the number
of quanta (plasmons) per unit volume, as J=E&'/w','*®

where we take w’ >0, by analogy with discrete systems (see,
e.g., Sec. IIT of Ref. 68). Then,

J o< QINPPNIK?, (59)

where we used E ~—ik¢ and Eq. (17) for ¢. From Eq. (55),
it follows that d, In J+V-vg=0, or

dJ+JV -v,=0. (60)
The latter is also equivalent to a continuity equation:
3J+V - (v J)=0. (61)

Hence, the wave total action is conserved:
f Jd°r =inv, (62)

and the dynamics is thereby called adiabatic.

Equations (60)—(62) agree with the previous results for
space-charge waves in cold plasmas and electron beams,” ™!
as well as phenomenological hydrodynamical treatment of
the corrections due to the electron homogeneous
temperature37 and kinetic treatment for inhomogeneous non-
stationary but isotropic plasmas.‘m’45 By construction,** "
the hydrodynamic calculation offered here is asymptotically
precise at small temperatures and, apart from missing
Landau damping (Sec. IV B), just as accurate as the pertur-
bative kinetic calculation in Refs. 44 and 45. On the other
hand, it also accounts for the temperature anisotropy, which
is expected at collisionless compression or rarefaction”’ yet
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missed in Refs. 44 and 45. Therefore, our results complete
those of Refs. 44 and 45 and finally reconcile the Langmuir
wave ab initio theory with the action conservation theorem
anticipated from general principles of Lagrangian
dynamics. 0,18-20,27,67

Besides, the above results show explicitly how the
Langmuir wave parameters evolve. Consider, for instance,
homogeneous plasma, assuming that the envelope shape re-
mains fixed. Then Eq. (62) rewrites as

JIN =inv, (63)

where we used that the total number of electrons is con-
served. In the absence of Landau damping (Sec. IV B) one
has kv, <), and therefore

J = |E|2/(87Twp). (64)
Together with Eq. (63), this yields (similarly to Ref. 29)
E = Eo(NINp)*, (65)

where the index O denotes the initial values. Thus, the wave
field increases when the plasma is compressed and decreases
when the plasma is rarefied.

Finally, Eq. (65) also results in an effective adiabatic
index vy for the ponderomotive pressure pg. To see this, con-

sider the known expression for pE,69 using that the field E

oscillates at the frequency w=w,,:

pe=|E(16m). (66)

[In fact, Eq. (66) itself is also derivable from Eq. (63), as
shown in Appendix C.] Hence, from Eq. (65), one obtains

|EO|2( N>3/2
=——\— . 67
PE 167 \ N, (67)

Therefore, for the ponderomotive pressure one has y=3/2,
which is different, say, from y=(D+2)/D for the kinetic
pressure of D-dimensional thermal electron gas without a

wave.70

B. Wavevector. Adiabaticity conditions

The scalings (63)—(67) hold for any wave geometry,
whereas the dependence of the frequency and the wavevector
on plasma parameters may vary, as governed by Eq. (41).
Particularly, w is conserved only in stationary medium, and
the dynamics of k is discussed below.

1. Homogeneous plasma

To illustrate the evolution of k, first consider plasma
compression such that N remains homogeneous [which is
possible at homogeneous yet not necessarily zero V-V; see
Eq. (54)]. Then the wavevector is conserved if V is trans-
verse to k, an example being radial compression of a cylin-
drical plasma column with k along the axis of symmetry.
However, if k has a component along V, the wavevector will
evolve; specifically,

Phys. Plasmas 16, 112101 (2009)

k=ko exp{Jl V(l')dl,] , (68)

0

with Egs. (47) and (49) yielding v=vy,

vy=—-k-Wk/k* ~ VILy, (69)

where Ly is the spatial scale on which the compression takes
place. For instance, radial compression with V= y(#)r and k
along V in spherical, cylindrical, and linear geometry equally
yield vy=y.

2. Inhomogeneous plasma

As the next step, consider inhomogeneous plasma, for
now assuming V=0. In this case k can increase or decrease,
depending on K, as well as the density and temperature gra-
dients, so Eq. (68) holds with v=wy,

vy =-k- VO ~v,/Lg, (70)

with v, = w,/k being the phase speed and Lo =Q/|VQ)| be-
ing the characteristic spatial scale.

First, suppose that k increases. Then, on the time scale of
the order of 7,~Lg/vz,, the wavelength becomes compa-
rable to the Debye length Ap=v7,/ w,, regardless of whether
the plasma inhomogeneity is due to the density or the tem-
perature; hence, the wave decays because of Landau damp-
ing (see also Refs. 42 and 71). In other words, dissipation is
negligible only at

ISLQ/vTe' (71)

Thus, when compression is added, it will proceed adiabati-
cally only if vy7,=1, or
VILy = vg,/Lg. (72)

Assuming that the plasma average flow is entirely con-
trolled by the large ion mass mi>me,72 one can rewrite V in
Eq. (72) as follows. Express E from Eq. (2) and substitute it
into a similar equation for ions; hence,

gV ==V .Py/(mN), (73)

where we neglected the electron inertia and introduced the
total kinetic pressure ﬁz~NT.73 Use d,V~ V?/Ly, yielding

V ~ ¢,\VLy/Lg, (74)

where c¢,~vr,\m,/m; is the ion sound speed. Hence, Eq.
(72) rewrites as

LQ = (mi/mE)Lv. (75)

Therefore, only weakly inhomogeneous plasma can be com-
pressed adiabatically when k grows; otherwise a significant
percentage of the wave energy is transformed into the par-
ticle thermal energy via Landau damping.

Suppose now that k decreases. In this case, the envelope
approximation holds only on time
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= vgl, (76)

after which the wavenumber becomes zero, and, thus, the
wave action is no longer conserved. Therefore, adiabatic
compression must satisfy vy = vy, or

VILy = vy/La. (77)
Assuming Eq. (74), this condition hence reads as

Ly m

Loz —Y—,
° (k)\D)2 m,

(78)
which requires that plasma be even more homogeneous than
in the case when k increases [cf. Eq. (75)].

VI. CONCLUSIONS

In this paper, we show how a nondissipative Langmuir
wave evolves adiabatically in warm unmagnetized inhomo-
geneous nonstationary plasma. The hydrodynamic calcula-
tion offered here is asymptotically precise at small tempera-
tures (kA\p<<1) and, apart from missing Landau damping,
just as accurate as the perturbative kinetic calculation in
Refs. 44 and 45. On the other hand, it also accounts for the
temperature anisotropy, which is expected at collisionless
compression or rarefaction yet missed in Refs. 44 and 45.
Therefore, our results complete those of Refs. 44 and 45 and
finally reconcile the Langmuir wave ab initio theory with the
action conservation theorem anticipated from general prin-
ciples of Lagrangian dynamics.

Specifically, we derive the wave equation in the GO
limit [Eq. (36)] and confirm that it yields a continuity equa-
tion [Eq. (61)] for the wave action density; hence, it is dem-
onstrated that, under certain conditions, also found explicitly,
the wave action is conserved. As a corollary, it is then shown
that, in homogeneous plasma carrying Langmuir oscillations,
the wave field amplitude universally scales with the electron
density as ExN** In addition, we find how the wavevector
evolution varies depending on the wave geometry. Particu-
larly, during compression k is conserved when aligned with
the average velocity V(r,r) at homogeneous density and
temperature, but otherwise changes, with its absolute value
following Egs. (68)—(70). Also, the wave frequency w is con-
served only when the plasma is stationary, but otherwise
evolves according to Eq. (41).
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APPENDIX A: AUXILIARY VECTOR IDENTITY
In this appendix we derive an alternative form of
{A,B}=V-[(A-V)B+(B-V)A]
-(A-V)(V-B)-(B-V)(V-A) (A1)

for two arbitrary fields A and B. First, the expression in the
square brackets above rewrites as (Ref. 74, Sec. 5.5-2)

Phys. Plasmas 16, 112101 (2009)

(A-V)B+(B-V)A=V(A-B)
~AX(VXB)-B X (VXA);

(A2)
thus, its divergence equals
V-[(A-V)B+(B-V)A]
=V*A-B)-V-[A X (VXB)]
-V [BX(VXA)] (A3)

The chain rule for the second term on the right-hand side
yields

V-[A X (VXB)]

=V -[AX(VXB)]+V-[A X (VXB)], (A4)

where underlined are the vectors to which the differentiation
by the external V applies. Because of the symmetry proper-
ties of the scalar triple product (Ref. 74, Sec. 5.2-8) (here of
the vectors V, A, and V X B), this also rewrites as

V-[A X (VXB)]
=(VXA)-(VXB)-A -V X (VXB). (A5)
Further use that VX (VXB)=V(V-B)-V?B (Ref. 74, Sec.
5.5-2); thus, Eq. (A5) and a symmetric expression for the

third term on the right-hand side of Eq. (A3) can be put in
the form

V.[A X (VXB)]=(VXA)-(VXB)

-(A-V)(V-B)+A-V’B, (A6)
V- [BX(VXA)]=(VXB)-(VXA)
-B-V)(V-A)+B-V?’A. (A7)

Substitution of these into Eq. (A3) and then Eq. (A3) into
Eq. (A1) yields

{A.B}=V?>(A-B)-A-V’B-B-V?A

-2(VXA)-(VXB). (A8)

In Cartesian coordinates, Eq. (A8) finally rewrites as (Ref.

74, Sec. 5.5-5)
{AB}=2(VA) - (VB)-2(V X A)-(VXB),  (A9)

where summation over repeated indices is assumed.

APPENDIX B: PRESSURE TERMS IN THE DENSITY
EQUATION

1. General case

In this appendix we find V-II as a function of n to the
first order in e. Start off from Eq. (9) to get

1 JP; 2
V-l = —(inkj—l—e +ihkoP— —i) (B1)
m,N dxy TOx;dxg

The first term here is already of the sought form, and, since h
is of the order of €, the second term is expressed using
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_ kk kik,
P»(zn(P<€+P<b—€+P€S—u), (B2)

J J Js k2 k2

as obtained from the homogeneous stationary plasma ap-
proximation [Egs. (15) and (20)]. However, for calculating
the third term Eq. (B2) is not sufficiently accurate,” so
PP}yl dx;dx, is found as follows.

First, take 0"2/07)(?]-07X5 of Eq. (8), neglecting the terms of
order higher than e. This yields

a( #Py, AV -V) OP;  kok,OP;,
;(—L>+3Pj( =kenQ) 3—L+—25—L
1\ dx; dxe dx; d xg ox; k* ox;
3kjky IP ;g ~ ~ ~
+ k2 I )+kjke(ijwss+2stW€S+2stPs€)'
¢

(B3)

The second term on the left-hand side allows an alternative
representation via

_ kik P [
(V- V) = nQh e, ~E — —(—”)

5 (B4)
dx;dxg k dx;dxg\ It

[see Eq. (6)], and the latter term in Eq. (B4) also equals

& dn\ [ &n
= - n(kjkav€ + k(’kszj) .
dx;dxe\ It I\ dx; dxg

(BS)
Hence, Eq. (B3) can be put in the form
d' &P, #n
—(—‘L—3Pﬂ ):\1’, (B6)
dt\ dx; dxg dx;dxg
Py kek,IP; kik,JT;
V= kenQ<3—L€ 4L —%—L> + 8V,
ox; k= ox; k* dx,
(B7)
and 8V is given by
+kko(P oWy + 2P Wi+ 2W; Pyy). (BS)
Using the slow component of Eq. (3) in the form
at, ij == ijWVS - PjsW(x - Px(’st’ (Bg)
and also Eq. (B2), rewrite S¥ as
SV =-4 k- (WGPk), G=1-Kkk/k>. (B10)

Since WV is a rapidly oscillating function with a slow enve-
lope of order €, Eq. (B6) is integrated as

PP _ I Y (BI11)
&xjo"xg_ Jg(?Xj(?X( Q-

Substitute Eq. (B11) for the third term in Eq. (B1), together
with Eq. (B2) for the second term; then one gets

Phys. Plasmas 16, 112101 (2009)

& aC, kik
V- II=- jt n —l'kgl’l st 6]3+_‘§
dx; dxe dx; \ k

(B12)

Since the wave is assumed propagating along a local princi-
pal axis of the temperature tensor,”* one has GCk=Gk
X scalar. Yet Gk=0, so Eq. (B12) is simplified, and, using
inky= dn/ dx¢, one finally obtains

& kik,\dCy 0
Vol=-Cyp———|8,+5 |22 (B13)
9x; dxg k=) dx; dxq

2. Isotropic temperature
For the isotropic temperature case, Eq. (B13) gives
V-I=-30v2Y1-6Vn-Vv3, (B14)

which as well can be obtained by substituting Eq. (80) in
Sec. IV.3 of Ref. 50 into our Eq. (B1).

Alternatively, Eq. (B14) can be derived using a phenom-
enological adiabatic law (cf., e.g., Ref. 76, Sec. 5.1 of Ref.
77, Sec. 3.5 of Ref. 52)

(ﬁt+Ve'V)(peN;y)=07 (BlS)

with p, being the electron scalar pressure, including the slow
and the quiver parts: p,=p+p. [Here y=3 (corresponding to
one-dimensional adiabatic oscillations’) is an extrapolation
from the homogeneous plasma case, for which the exact so-
lution is known from a more rigorous hydrodynamic treat-
ment, like in our Sec. IIT or Refs. 48—50, or the complete
kinetic treatment (Ref. 52, Chap. 8 and Ref. 53).] To show
this, introduce the plasma element Lagrangian displacement
& such that*"7%7

N+V-(&N)=0, (B16)

P+&-Vp=md®(N+&-VN), (B17)

where a2=31)%e. Then, from Eq. (9) with ﬁ:pi and l§=ﬁi,
one gets

Il =-V(na®) - [nq+V(£-q)]/N. (B18)

Here q=a’VN-Vp/m, is of the order of €, and therefore
one can take d, £~V [cf, e.g., Eq. (4.6) in Ref. 79], so
£=~ink/k?, as follows from Eq. (B16). Hence,

~-V(nda?) - nN_léq, (B19)
yielding
V-1 = - V(na® - inN"'kG - q. (B20)
Using that kG =0, one finally obtains
V-II=-a’V?n-2Vn-Vd?, (B21)

which is equivalent to Eq. (B14).
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APPENDIX C: PONDEROMOTIVE PRESSURE

The conservation of the Langmuir wave action allows
one to calculate the effective stress tensor due to the wave,
which is done as follows (see also Refs. 67, 69, and 80). For
simplicity, suppose homogeneous cold stationary plasma vol-
ume V and assume that it is adiabatically deformed as de-
fined by an infinitesimal displacement field &(r), resulting in
the strain tensor

w=[(V&)+(VH']2. (C1)
Hence the stress tensor & is found:®!
1 9¢
0= (C2)
J V(?W]g

where €=VJw is the wave total energy inside V. Because V.J
is conserved, Eq. (C2) rewrites as

Jo, ON
Uj{ = s (C3)

where we used that w=w,(N). The density perturbation due
to the strain is SN=-NV - & [cf. Eq. (B16)]. Since V-&=w,
and dw,,/ dw ;o= 0j¢, this yields

6=- (pr/Z)i. (C4)

Therefore the stress due to the wave field is isotropic and
appears as an effective pressure pp=Jw,/2. (Thermal correc-
tion would also yield an anisotropic component to the wave
stress tensor.’”%) Using Eq. (64), one then recovers the ex-
pression [Eq. (66)] for the ponderomotive pressure in cold

plasma carrying a field E which oscillates at the frequency
69

w= wp.
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