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An oscillation-center model is proposed that analytically describes transformation of an arbitrary
homogeneous linear wave at gradual ionization and recombination in homogeneous plasma. For the
case when either of the processes dominates, general adiabatic invariants are found, from which the
wave energy is derived as a function of the frequency. © 2010 American Institute of Physics.
�doi:10.1063/1.3514166�

I. INTRODUCTION

The problem of wave transformation driven by gradual
ionization and recombination �I-n-R� has been attracting at-
tention for decades; see, e.g., Refs. 1–16 and, in particular,
Refs. 4–7 for broader reviews. Unlike for plasma compres-
sion within the geometrical optics approximation, in which
case the wave action conservation is anticipated from basic
principles8,17–21 and was also confirmed through independent
calculations,22–31 no scalings were reported for I-n-R that
would describe the evolution of the wave amplitude in gen-
eral �cf. Ref. 7�. However, from ad hoc results reported in
Refs. 1–6, one may expect that fundamental relations exist
between the energy density E of a homogeneous wave and its
frequency � �also evolving through I-n-R �Refs. 4 and 32��,
when ionization dominates over recombination and vice
versa.

To find these fundamental relations is the purpose of this
paper. In particular, we focus on the low-frequency limit of
above-threshold photoionization,33–35 so there are no external
sources of energy and the dynamics of free charges can be
described classically within the so-called simple-man model
�SMM�.36–39 �Recombination is addressed similarly.� Instead
of solving the Maxwell’s equations directly, as in Refs. 1–6,
it is then possible to employ a more abstract oscillation-
center �OC� formalism developed in our Ref. 40, assuming
that collisional damping is negligible. Specifically, we con-
nect the reduction of the wave energy via I-n-R with the
increase of the OC energy of free plasma particles �Eqs. �5�
and �14��, which are then expressed through �yet not neces-
sarily equals� the corresponding ponderomotive potentials
�Eqs. �10� and �15��, and the latter are linked to the shift of �
�Eq. �11�� as explained in Ref. 40.

As a result, we find, without referring to the wave dis-
persion relation or a specific dielectric tensor, the general
adiabatic invariants yielding E��� for I-n-R when either ion-
ization or recombination dominates. In particular, we show
that, at given I-n-R rates, the corresponding relations are de-
termined entirely by the linear polarizabilities of plasma par-
ticles �̂s �Ref. 40� projected on the wave polarization e. This
explains why any waves in nonmagnetized cold homoge-
neous plasma, where �̂s are isotropic, exhibit the same
E���,1–5 whereas in magnetized plasma, where �̂s are essen-

tially anisotropic, the scalings are e-dependent.6 Overall, our
model unfolds, in simple terms yet quantitatively, the general
physics behind the ad hoc calculations that were reported in
Refs. 1–6 and reproduces their results as particular cases
�Table I�.

The paper is organized as follows. In Sec. II, we formu-
late our general approach to the problem. In Sec. III, we
derive the adiabatic invariants and E��� for I-n-R when ion-
ization dominates over recombination or vice versa. In Sec.
IV, we consider the combined effect of I-n-R on linear waves
in plasmas. In Sec. V, we summarize our main results and
discuss the possibility of further extension of the results re-
ported here.

II. GENERAL APPROACH

Suppose a plasma with a traveling linear wave inside
and consider an electron-ion pair produced through above-
threshold ionization at some time t= t� and location x=x�.
Assume that the ionization potential �IP� is much smaller
than the energies to be gained by the particles in the wave
field. Then the electron-ion interaction is negligible.41 How-
ever, according to SMM, it does determine the initial condi-
tions for the free motion of the particles at t� t�, specifically
as follows. Suppose the pair is produced, say, from a neutral
atom which had some velocity vn. Then, the electron and ion
velocities vs satisfy vs�t��=vn,36,42–44 s being the species in-
dex �s=e , i�. Yet, vs can be decomposed into the OC velocity
Vs and the quiver velocity

ṽs = ��/qs�Im��̂s · Ẽ� , �1�

where qs is the charge, and �̂s can be understood as the
polarizability tensor45–48 determining the particle displace-
ment from its average �OC� location in response to the wave

electric field Ẽ=E�x , t�e−i�t+ik·x, with E being the envelope.
Therefore

Vs = vn − ṽs�x�,t�� �2�

�Fig. 1�a��. It is seen then that the induced OC current and
temperature perturbations inherit the wave spatial and tem-
poral periodicity. As a result, the wave itself is affected,
thereby developing harmonics in both space and time. We
will require, though, that the ionization be gradual, i.e., have
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rate smaller than the least frequency gap that separates the
wave from other modes. �In particular, this means that the
initial density must be nonzero, unlike in Refs. 11–15.�
Hence, other modes are not excited, and the harmonics are
weak,49 so the field exhibits well-defined frequency � and
wavevector k, assuming that the envelope E is smooth in
both space and time �cf. Ref. 4�.

Suppose further that the plasma is cold,50 namely

kvTs

�
� 1,

k�vTs

� − ��s
� 1,

k�vTs

�s
� 1, �3�

where vTs is the thermal velocity of each species s, and the
two latter inequalities apply at nonzero quasistatic magnetic
field B0; in that case, �s are the corresponding gyrofrequen-
cies, � are integers, and k� and k� are the components of k
parallel and perpendicular to B0, respectively. The conditions
�3� provide that the time it takes for particles to traverse a
field inhomogeneity is larger than any characteristic period
of the particle oscillations.51 Hence, the motion of all free
species is adiabatic. This means that, both at t� t� and
t� t�, the plasma can be described by the OC Hamiltonian40

H = E + H + U , �4�

where E is the wave energy,52
H is the energy of quasistatic

fields, and U is the sum over the OC kinetic energies K of all
plasma particles, to which neutrals can also be added. On the
other hand, since the IP is negligible, H equals the system
total energy, which is conserved also at t= t�. �Since vs�t� are
continuous, v̇s do not exceed those for free oscillations;
hence, Larmor radiation is neglected.� In this case, the con-
servation of H yields that �E caused by ionization is given
by �E=−�H−�U.

Suppose further that the bulk plasma is homogeneous
and so is B0, if present. In the latter case, assume also the

presence of conducting walls conserving the magnetic flux.
Hence, the magnetic field energy remains fixed, and there is
no electric field, so �H=0. Then

�E = − �U , �5�

which is a generalized formulation of the fact that, at negli-
gible IP, wave damping at ionization is caused by heating of
newly born plasma particles.4,44,53–58 �Notice that this damp-
ing mechanism is missing in the equations of pulse propaga-
tion derived in Refs. 59 and 60.� Remarkably, the quiver
motion energy that these particles gain does not contribute to
�E because the former, by definition, is a part of E itself.

To find �U that enters Eq. �5�, suppose that the wave
envelope is homogeneous in the whole volume V, so the OC
canonical momenta are conserved for all free particles.40 For
plasmas that we consider, this means that the corresponding
Vs are unaffected too, and, since Ks= 1

2msVs
2 in our case �yet

not in general40�, the same applies to Ks. �For magnetized
particles, the energy of Larmor rotation is also assumed in-
cluded in Ks.� Hence, �U caused by ionization is entirely due
to participating particles, so it can be derived from Eq. �2�
explicitly. In what follows, we offer such a calculation for
plasmas where each ion species is allowed to have only one
charge state, sacrificing generality for the sake of clarity.
Notice, however, that a general calculation is also straight-
forward within the framework outlined here.

III. ADIABATIC INVARIANTS

A. Ionization damping

From Eq. �2�, the OC energy gained by the electron at
t= t� equals Ke= 1

2me�vn− ṽe�2; also, the ion gains
Ki=

1
2mi�vn− ṽi�2, and the neutral that disappears loses

Kn= 1
2 �me+mi�Vn

2, where Vn=vn.61 Then, within time �t, the
variation of U can be put as �U=�s�Us, where summation is
taken over all charged species, and

�Us =� d3x��
t

t+�t

dt�	
1

2
msṽs

2 − msvn · ṽs�ws�
n
,

where ws is the probability of producing species s through
ionization per unit time per unit volume, and  . . . �n denotes
averaging over vn. Under the conditions �3�, �̂s does not
depend on vn,45 and thus neither does ṽs. For above-threshold
ionization, one can expect ws to be independent of vn too,
particularly when vn� ṽs. Hence, the second term in the
above equation averages to zero. �Of course, at small vn, the
latter can as well be neglected compared to the first term.�
Then

�Us =
1

2
	smsṽs

2�V�ns, 	s �
wsṽs

2�
ws�ṽs

2�
. �6�

Here  . . . � denotes averaging over both x and t, �ns is the
average perturbation to the density ns due to ionization dur-
ing �t, and 	s reflects the dependence of ws on the field
phase; without such a dependence one has 	s=1.

It is convenient to express �Us in terms of the pondero-
motive potential 
s, which is given by40,47

TABLE I. Adiabatic invariants conserved at ionization �invi� and recombi-
nation �invr� for different types of waves in cold plasma. Here E is the wave
energy density, � is the wave frequency, and �s is the gyrofrequency of
resonant species s. The I-n-R rates are assumed independent of the field
phase.

Wave types invi invr

Langmuir E� E�−1

Electromagnetic, nonmagnetized E� E�−1

R and L, parallel propagation E����s� E����s�−1

Alfvén, shear and compressional E�−1 E�

�a�

�b�

FIG. 1. �Color online� Schematic of the particle velocities vs�t� at �a� ion-
ization, �b� recombination. Dotted are the OC velocities Vs.
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s = −
1

4
�E� · �̂s · E� . �7�

After multiplying and dividing Eq. �6� by 
s, one obtains,
using Eq. �1�, that

�Us =
	s��̂s · E�2

as�E� · �̂s · E�

sV�ns, �8�

where as�−qs
2 / �ms�

2� can be understood as the polarizabil-
ity of a free cold particle with mass ms and charge qs. Intro-
ducing the unit polarization vector e, one can then rewrite
Eq. �8� as �Us=�s
sV�ns, where

�s =
	s��̂s · e�2

as�e� · �̂s · e�
. �9�

Therefore, Eq. �5� yields for E�E /V that

�E = − �ne�
s

�s
ss, �10�

where s=�ns /�ne is the number of particles of type s pro-
duced through ionization per one electron. �When particles
eventually leave the field, there is also an additional change
of the wave energy; e.g., for stationary adiabatic E, E is
further reduced by 
s per particle.40�

If recombination is negligible, �ne can be unambigu-
ously expressed through the wave frequency shift, ��
=�ne�s��� /�ns�s. On the other hand, �� /�ns can, in turn,
be expressed through 
s, due to40


s = �E/�����/�ns� . �11�

This yields ��= �� /E��ne�s
ss. Dividing Eq. �10� by the
latter, one obtains then

dE
d�

= − �
E
�

, � =
�s�e� · �̂s · e��ss

�s��e
� · �̂s� · e�s�

. �12�

Therefore, at given ionization rates, E��� is determined en-
tirely by the plasma particle linear polarizabilities �̂s pro-
jected on the wave polarization e.

Since the above result relies on the conservation of the
OC energy of free charges, which are adiabatic invariants,62

the constant of integration of Eq. �12� also can be called an
adiabatic invariant of the ionization process, henceforth de-
noted invi. In particular, when � is independent of the wave
amplitude, invi can be put as

E exp��
�0

�

d�������/��� = invi, �13�

where �0 is the initial frequency. This generalizes the results
of Refs. 1–6 pertaining to the evolution of the homogeneous
wave energy at gradual ionization �for the case when colli-
sional damping is negligible63�.

B. Recombination damping

Consider also wave damping through recombination.
Accounting for the energy loss �W due to bremsstrahlung,
Eq. �5� now rewrites as

�E = − �U − �W , �14�

where we assume that the plasma is optically thin for the
corresponding radiation. Assuming further that this radiation
is emitted at frequencies much larger than �, recombination
can be treated as an instantaneous event; hence, �U and �W
can be calculated classically as follows.

Consider recombination of an electron-ion pair produc-
ing a neutral with some velocity vn at some t= t�. Under our
assumptions, the interaction between the electron and the ion
is negligible at t� t�, and at t= t� their velocities jump from
vs�t�−0��us to vs�t�+0�=vn �Fig. 1�b��. Then, �U
=�s� 1

2msvn
2−Ks� and �W=�s� 1

2msus
2− 1

2msvn
2�, where Ks are

the OC initial kinetic energies of the charged particles par-
ticipating in recombination. Substituting us=Vs+ ṽs, one fur-
ther gets �E=−�s� 1

2msṽs
2+msVs · ṽs�. Hence, averaging over

time, space, and Vs yields �cf. Eq. �10��

�E = − ��ne��
s

�̄s
s̄s, �15�

where �̄s is given by Eq. �9�, like �s, except the correspond-
ing coefficient 	̄s is now a functional of the recombination

probability w̄s rather than ws. Similarly, ̄s replaces s. Also,
�ne is now negative, so one obtains

dE
d�

= �̄
E
�

, �̄ =
�s�e� · �̂s · e��̄s̄s

�s��e
� · �̂s� · e�̄s�

. �16�

Therefore, analogously to Eq. �13�, the adiabatic invariant
conserved at recombination reads as

E exp�− �
�0

�

d���̄����/��� = invr, �17�

assuming �̄ is independent of the wave amplitude. This gen-
eralizes the results of Refs. 1–3, 5, and 6 pertaining to the
evolution of the homogeneous wave energy at gradual re-
combination �for the case when collisional damping is
negligible63�.

C. Examples

Now let us find E��� explicitly for some basic oscilla-
tions. Suppose plasma with single species of ions, qi=−qe;
hence, s=s=1. Although precise I-n-R rates could be
used,10,64 for simplicity adopt a model 	s= 	̄s=1 �so �̄=��;
yet, it is still accurate for circularly polarized waves in
particular.4 First, consider Langmuir and electromagnetic
waves in nonmagnetized plasma.50 In this case, one can ne-
glect the ion contribution, so �=�e=1, where we used that

�̂e � aeÎ , �18�

with Î being the unit tensor. �Correspondingly, one obtains
the well-known ponderomotive potential 
e

=qe�E�2 / �4me�
2�,65 which, in this particular case, also hap-

pens to equal the average energy of the electron quiver mo-
tion, 1

2meṽe
2�.� Thus, Eqs. �13� and �17� yield
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E� = invi, E�−1 = invr, �19�

and, since �� /�ne�0 for either waves, E always decreases,
as expected. Notice that, unlike in Refs. 1–5, where these
scalings are derived ad hoc and thus require modeling
plasma dynamics, in our case Eq. �19� is general and flows
uniformly for any waves in cold nonmagnetized homoge-
neous plasma. This is due to the fact that �̂e is isotropic in
such plasma �Eq. �18��, and thus E��� cannot depend on the
wave polarization, so neither does it depend on the disper-
sion relation, as explained above.

As another example, consider a plasma in a static mag-
netic field B0=z0B0 �we take B0�0�, in which case

�̂s = as�
1

1 − bs
2

ibs

1 − bs
2 0

− ibs

1 − bs
2

1

1 − bs
2 0

0 0 1
� , �20�

where bs��s /�. Suppose k is parallel to B0. Then, the po-
larization vector e must be an eigenvector of �̂s

e = 1
�2

�x0 � iy0�, �s� = as�1 � bs�−1, �21�

where �s� are the associated eigenvalues, and the sign �
corresponds to R- and L-waves, thereby circularly
polarized.50 A straightforward calculation hence yields

� =
�2 + ��i�e�

�� � �i��� � �e�
�22�

�Fig. 2�. Thus, in agreement with Ref. 6, the wave energy
density satisfies

E��� � �i��� � �e��/� = invi, �23a�

E�/��� � �i��� � �e�� = invr. �23b�

This means that, close to the resonance ����s� �here s=e
for R-wave and s= i for L-wave�, one gets66

E�� � �s� = invi, E�� � �s�−1 = invr. �24�

Since ��− ��s�� has the same sign as 
s, and 
s has the same
sign as �� /�ns �Eq. �11��, ionization results in �� being of
the same sign as ��− ��s��. Hence, � moves away from the
resonance in this case, thereby causing E to decrease. Simi-

larly, at recombination � moves toward the resonance, and E
decreases as well �Fig. 3�.

Other asymptotics of Eq. �23� are as follows. At
�� ��e�, Eq. �19� is recovered. At �� ��i�, corresponding to
Alfvén waves, inverse scalings are obtained;

E�−1 = invi, E� = invr. �25�

Formally, Eq. �25� can also be shown to hold at nonzero
angles between k and B0, when the wave polarization is no
longer circular.50 However, in this case I-n-R rates become
essentially phase-dependent, so the calculation must be re-
vised to account for nonunit 	.

IV. IONIZATION AND RECOMBINATION COMBINED

Finally, consider I-n-R coexisting with comparable rates,
�e and �̄e, defined through ṅe= ��e− �̄e�ne. In this case, E can-
not be expressed as a function of �, so we search for E�t�
instead. From Eqs. �10� and �15�, one gets

Ė = − �ene�
s

�s
ss − �̄ene�
s

�̄s
s̄s. �26�

After substituting Eq. �11�, this yields Ė=−�E, where

� = �ene�
s

�ss
� ln �

�ns
+ �̄ene�

s

�̄s̄s
� ln �

�ns
, �27�

and, for single species of ions with ne=ni and 	s= 	̄s,

� = ��e + �̄e� �
s=e,i

�s
� ln �

� ln ns
. �28�

From our derivation, it follows that ��0, in particular, even
when the electron density is fixed on average ��e= �̄e�, I-n-R
still cause the wave to decay, unless an additional source of
energy is present. �This is a kinetic effect, which may not be
captured by hydrodynamic models like in Refs. 67–69.� Nev-

1.00.5 5.00.1 10.0 50.0 100.0
�4

�2

0

2

4

Ω��i

Ρ

FIG. 2. �Color online� � �Eq. �22�� vs � /�i for k �B0 in plasma with single
species of ions �mi=10me�. Solid: R-wave, dashed: L-wave, dotted: asymp-
totes ����→0,��→ �1�.

1.00.5 5.00.1 10.0 50.0 100.0
0.0

0.2

0.4

0.6

0.8

1.0

Ω��i

�
��

0

1.00.5 5.00.1 10.0 50.0 100.0
0.0

0.2

0.4

0.6

0.8

1.0

Ω��i

�
��

0

FIG. 3. �Color online� E �Eqs. �23�� vs � /�i for k �B0 in plasma with single
species of ions �mi=10me�, for different initial �. Top: ionization, bottom:
recombination, solid; R-wave, dashed: L-wave. The arrows show in which
direction the wave evolves; E0 is the wave initial energy density.
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ertheless, I-n-R can render a wave unstable through nonlin-
ear effects redistributing its energy in space; see, e.g.,
Refs. 70–73.

V. DISCUSSION

What we propose here is an analytical model which de-
scribes I-n-R damping of arbitrary linear waves in plasmas,
assuming that I-n-R rates are sufficiently small. Specifically,
we connect the reduction of the wave energy via I-n-R with
the increase of the OC energy of free plasma particles �Eqs.
�5� and �14��, which is then expressed through �yet not nec-
essarily equals� the corresponding ponderomotive potentials
�Eqs. �10� and �15��, and the latter are linked to the shift of �
�Eq. �11�� as explained in Ref. 40. As a result, the general
adiabatic invariants or E��� �when either ionization or re-
combination dominates� are derived without referring to the
wave dispersion relation or a specific dielectric tensor. It is
shown that, at given I-n-R rates, wave damping is entirely
determined by the plasma particle linear polarizabilities �̂s

projected on the wave polarization e. This explains why any
waves in nonmagnetized cold plasma, where �̂s are isotropic,
exhibit the same E���,1–5 whereas in magnetized plasma,
where �̂s are essentially anisotropic, the scalings are
e-dependent.6

The previously known expressions for E��� �Refs. 1–6�
are reproduced as particular cases under the assumption that
I-n-R rates are fixed over the wave period �Table I; see also
Eq. �23��. For electromagnetic waves, this assumption is jus-
tified for circular polarization, and otherwise is adopted as a
model. Notice, however, that the approach presented here
permits further generalization to any polarization and arbi-
trary �yet small enough� I-n-R rates, like in Refs. 4, 10, and
64, as well as multiple charge states of ions. Finite-
temperature plasmas can also be described, by introducing
the velocity dependence in �̂s and modifying40 the expres-
sions for the OC kinetic energies Ks correspondingly. Simi-
larly, relativistic effects can be modeled within the OC
approach,74,75 too. �Then the problem becomes somewhat
similar to electron-positron pair production.76� However,
notice that the wave dispersion may be non-negligible in
this case even at low densities,77 contrary to, e.g., Refs. 78
and 79.
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