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The Child–Langmuir law limits the steady-state current density across a one-dimensional planar
diode. While it is known that the peak current density can surpass this limit when the boundary
conditions vary in time, it remains an open question of whether the average current can violate the
Child–Langmuir limit under time-dependent conditions. For the case where the applied voltage is
constant but the electric field at the cathode is allowed to vary in time, one-dimensional
particle-in-cell simulations suggest that such a violation is impossible. Although a formal proof is
not given, an upper bound on the time-averaged current density is offered. © 2010 American
Institute of Physics. �doi:10.1063/1.3503661�

The Child–Langmuir law1 gives the space-charged lim-
ited current in the classical problem of a one-dimensional
�1D� diode
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Many interesting generalizations of this effect have been
considered, particularly with respect to geometry,2–4 nonzero
injection velocities,5 and relativistic6,7 and quantum
effects.8,9 Time-dependent problems have also been studied,
for example short current pulses10,11 and time-varying volt-
age drops to control startup transients.12,13 However, it has
not been shown that the space-charged limited current cannot
be exceeded on average under time-varying boundary condi-
tions. We approach this problem first through numerical in-
vestigations, which suggest that the Child–Langmuir limit
pertains even under these relaxed assumptions. Although we
cannot prove rigorously the Child–Langmuir limit, we do
prove an upper bound for the average current, and we pose as
a conjecture that the rigorous bound is in fact the Child–
Langmuir limit. Consider a 1D diode with a voltage gain V
between the cathode and the anode. Electrons are injected at
rest from the cathode and then accelerated across to the an-
ode where they exit the diode. In the steady-state problem,
the current is maximized when the electric field vanishes at
the cathode due to the accumulated space charge. At that
point, no further current can be extracted from the cathode.
However, consider the case where the current is limited at
the cathode through other effects, prior to the space charge
limit. In this case, it is assumed that the electric field can fall
below zero �push electrons away from the cathode� but can-
not be larger than zero �push electrons back into the cath-
ode�. The question is whether this flexibility can allow more
than the space charge limited current on average. Surpris-
ingly, even though numerical simulations suggest that this
flexibility does not allow more current, a rigorous proof re-
mains elusive. In one dimension, the electric field in the
diode is given by
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where x=0 at the cathode and x=d at the anode. Eb is con-
stant across the diode and is determined by the applied volt-
age drop. Integrating Eq. �1� by parts to solve for Eb results
in
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where Q is the total charge in the diode and
xq��1 /Q�0

dx���x��dx� is the “center of charge.” A simple
upper limit on the average current density is given by the
maximum charge allowed in the diode at any one time di-
vided by the fastest possible transit time of an electron
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In order to find a limit on the total charge in the diode,
consider two physical constraints on the charge density ��x�.
The first constraint is that ��x� must satisfy the condition that
qE�x=0��0
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The second constraint can be found by noting that an ele-
ment of charge that is injected at the cathode will expand due
to its own space charge as it moves toward the anode. If a
thin, uniform element of charge Q and width � is injected
from the cathode at t=0 then its charge density at a subse-
quent times is given by

� =
Q

�� + �qQ/2m�0�t2� . �5�

Equation �5� follows from the difference in acceleration be-
tween an electron at the very front of the charge element, and
one at the very back, af −ab= �e /m��Q /�0�. No fluid elements
cross paths ��d�qE� /dx�=q��0; v�x=0�=0� so Q will re-
main constant in time, and if the charge pulse initially has
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uniform charge density, then the charge density will remain
uniform as it expands, by the continuity equation. The maxi-
mum possible charge density at position x occurs when
�=0 and t is given by the fastest possible transit time,
t= tmin�x�. The time it takes for an electron to get to x�tmin� is
discussed in the next section. This results in a second con-
straint on the maximum charge density

��x� � �max�x� =
2m�0

qtmin
2 �x�

. �6�

It is clear from Eq. �4� that the charge in the diode is maxi-
mized when all the charge is placed as far toward x=d as
possible. Therefore, the maximum charge can be found by
integrating �max�x� from x=d to the point x�, where Eq. �4� is
violated
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Using the transit time information from the following sec-
tion, this gives an upper limit on the total charge in the diode
of 1.44·QCL where QCL= �4 /3���0V /d� is the total charge in
the diode in the steady-state case. An initial limit on tmin�x�,
the transit time to position x, comes from Gauss’s law and
the boundary conditions of the diode. Once this initial limit
is established, it can be used to put limits on the charge
density, �max�x�. Using the limits on the charge density in Eq.
�2�, we can further limit tmin�x� and repeat this in an iterative
process that quickly converges. To start, note that the shortest
transit time to position x is limited by the electric field

m
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and Emax is constrained by Gauss’ law.
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It follows from Eq. �10� that the magnitude of E can only
increase with x. Combined with the constraint that there is a
constant voltage drop across the diode, this sets an upper
limit on the electric field, �Emax�= �V /d−x�. Integrating elec-
tron motion across the diode using Emax will give a lower
limit for tmin that we use to find a preliminary form of
�max�x�. Using this initial �max�x� combined with Eq. �2� can
give a stricter limit on Emax and tmin, which in turn gives a
stricter limit on �max�x�. The process can be repeated itera-

tively, and quickly reaches the asymptotic limit

tmin � 0.62 · Tcl, �11�

where Tcl�QCL /JCL=3d�m /2qV. Combining the results
from the previous sections gives an upper limit on the aver-
age current density

J̄max � 2.45 · Jcl. �12�

This may well be a large overestimate of the achievable av-
erage current. In 1D particle-in-cell �PIC� simulations using
a simple code developed for this purpose, sample input cur-
rents were tested. Several input currents of dissimilar func-
tional forms were able to closely approach the steady-state
limit on current density but even after optimizing some free
parameters associated with the input currents, none was able
to surpass it. This does not prove anything because the pa-
rameter space of input currents that we tested was far from
exhaustive. However, it leads us to conjecture that there is a
hard limit on the average current density in a 1D planar
diode as t→	 that is equal to the Child–Langmuir limit. In
conclusion, although we offer an upper bound to the maxi-
mum average current emitted by a planar diode, it remains to
prove rigorously that the Child–Langmuir law is obeyed on
average as well, as suggested by our numerical simulations.
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