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Through particle-in-cell simulations, it is demonstrated that a part of the mechanical energy of

compressing plasma can be controllably transferred to hot electrons by preseeding the plasma with a

Langmuir wave that is compressed together with the medium. Initially, a wave is undamped, so it is

amplified under compression due to plasmon conservation. Later, as the phase velocity also changes under

compression, Landau damping can be induced at a predetermined instant of time. Then the wave energy is

transferred to hot electrons, shaping the particle distribution over a controllable velocity interval, which is

wider than that in stationary plasma. For multiple excited modes, the transition between the adiabatic

amplification and the damping occurs at different moments; thus, individual modes can deposit their

energy independently, each at its own prescribed time.
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Introduction.—Compressing and expanding plasmas are
found both in nature and in the laboratory. In particular,
target compression in facilities for inertial confinement
fusion has been pursued recently through a variety of
approaches using laser implosion, magnetized liner implo-
sion, and Z pinches [1]. What is not generally addressed,
though, is what happens to waves embedded in such plas-
mas. To the extent that the oscillations are undamped, it
may be expected that they will persist and even grow as the
medium is compressed. Then, very interesting phenomena
become available that allow using wave compression as a
means for plasma manipulation.

The purpose of this Letter is to suggest and demonstrate
numerically one of the possible techniques. Specifically, it
is shown here that waves can concentrate energy and
deposit it inside plasma at a predetermined time much
like a switch; the wave is first amplified adiabatically, and
then its energy is suddenly redirected to heat a selected
species of the plasma. Among modes that could exercise
such heating, we choose the Langmuir wave as a prototype,
for it can be described within the simplest, one-dimensional
(1D) electrostatic approximation. Within a hydrodynamic
model, Langmuir wave compression was addressed in
Ref. [2], and references therein. The focus of the present
Letter, though, is on kinetic effects such as the energy
transfer to particles. Those are studied here through
particle-in-cell (PIC) simulations.

Specifically, the following results are obtained. For the
first time, it is shown explicitly in PIC simulations that the
wave action (i.e., the number of the wave quanta, or
plasmons) is conserved and the wave is amplified adiabati-
cally during slow compression of bulk plasma as long as
� � k�D � 1, with k being the wave number, and �D

being the electron Debye length. It is also demonstrated
that, as � increases under 1D longitudinal compression,
Landau damping is induced at a specific stage that can be
prescribed. Hence, the wave energy is transferred to hot

electrons, shaping the particle distribution over a control-
lable velocity interval, which can be wider than that in
stationary plasma. For multiple excited modes, the transi-
tion between the adiabatic amplification and the damping
occurs at different moments; thus, individual modes can
deposit their energy independently, each at a predeter-
mined moment.
Adiabatic amplification.—Suppose that plasma is colli-

sionless, and �0 � 1, the index 0 henceforth standing
for initial conditions. In this case, a Langmuir wave will
not (at first) experience dissipation, so the wave action I is
conserved, assuming that compression is slow enough [2].
Suppose also, for simplicity, that the bulk plasma is
homogeneous; then, I ¼ W=!, where W is the wave total
energy, ! is the instantaneous frequency, ! ¼ !pð1þ
3�2=2Þ, and!p / V�1=2 is the electron plasma frequency,

V being the plasma volume [2]. For 1D compression, one
has V ¼ �� const, where � � L=L0 is the normalized
length of the plasma. Hence, the action conservation yields

W ¼ W0g
�1��1=2; (1)

where g � !p=! is a factor close to 1 that is found as

follows. First, notice that the velocity v of each individual
electron changes adiabatically as

vL ¼ inv: (2)

Hence, the electron bulk distribution evolves self-similarly,
thereby remaining Maxwellian with the thermal velocity

vT / ��1. Therefore, �D ¼ vT=!p / ��1=2 and, since k /
��1, one obtains � ¼ �0�

�3=2, so

gð�Þ ¼
�
1þ 3

2
�2
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�
=

�
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�2
0�

�3

�
: (3)

To demonstrate these scalings ab initio, an electrostatic
PIC code was developed to describe plasma compression
in a 1D box with a constant velocity of the right wall,
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_L ¼ �V < 0, and the left wall kept fixed. Hard-wall
boundary conditions are assumed and total charge neutral-
ity is maintained. Only standing waves with integer
m � kL=ð2�Þ can be excited; in the following those are
termed the mth modes. In our simulations, electrons were
initialized randomly as Maxwellian, and, to produce the
figures below, ions were modeled as a charge-neutralizing
homogeneous background. (For the specific parameters,
see Table I.) As a check, PIC simulations of the ion motion
were also performed for some cases (see Discussion).

Figure 1 shows that the wave action is indeed conserved
in the PIC simulations, confirming the general theory.
(Notice that the initial stage corresponds to the right of
the figure, where � ¼ 1, and the final stage corresponds to
the left, where � < 1.) The same figure also shows that the
electrostatic energy E ¼ 1

8�

R
~E2dV , where ~E is the elec-

tric field, agrees with the scaling

E ¼ E0g�
�1=2: (4)

Since E ¼ g2W=2 [2], this supports Eq. (1), as expected.
Induced Landau damping.—What is remarkable is that

after these modes are adiabatically amplified, they can be
used to heat the electrons at a predetermined moment; this
occurs because vph decreases under 1D compression,

whereas vT increases. To see this in detail, let us consider
how the wave collisionless dissipation evolves throughout
compression, again assuming that it is negligible initially.
Since the plasma remains Maxwellian, the local Landau
damping rate is given by [3]

� � !p

�3

ffiffiffiffi
�

8

r
exp

�
� 1

2�2
� 3

2

�
; (5)

so � increases with compression as � grows. Hence, strong
Landau damping is induced, and all the wave energy
eventually dissipates.

Specifically, the damping causes exponential decay of
the wave action, I ¼ I0 expð�2�Þ, where � ¼ R

t
0 �ðt0Þdt0.

Then, Eq. (4) is generalized as

E ¼ E0g�
�1=2 expð�2�Þ: (6)

For constant V ¼ V0 (henceforth assumed), one gets

� ¼ 1

3

ffiffiffiffiffiffiffiffi
�

2e3

r �
!p

��

�
0
½�2e��3=ð2�2

0
Þ � e�1=ð2�2

0
Þ�; (7)

where we used an asymptotic expansion at small � and
introduced the compression rate � � V=L. This prediction
is supported by numerical results, as seen in Fig. 2, which
illustrates how adiabatic amplification is replaced by sud-
den decay when � becomes small enough. The difference
between the numerical and the analytical curves is due to
the fact that the wave that we model is actually in the
trapping regime [4]. Specifically, during the sudden decay,

we have � � � � �b, where �b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qEk=me

p
is the

characteristic bounce frequency of resonant electrons
trapped in the wave, q=me is the electron charge-to-mass

TABLE I. The initial parameters used in our PIC simulations.

Here � ¼ k�D, �v ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qE=ðmekÞ

p
, � ¼ V=L; the index 0 de-

notes the initial conditions. The parameters were chosen arbi-
trarily to facilitate our proof-of-principle analysis and speed up
simulations rather than model a specific experiment. The large
value of �v=vT is reduced as �9=8 during adiabatic compression
and much faster at dissipation.

Figure �0 ð�v=vTÞ0 ð�=!pÞ0 m

Figure 1 0.012 3.04 2� 10�4 1

Figure 2 0.12 0.96 3� 10�4 1

Figure 3 0.18 2.48 5� 10�5 3

Figure 4 0.06 1.92 1� 10�4 1

0.18 1.11 1� 10�4 3

0.30 0.86 1� 10�4 5

FIG. 1 (color online). The normalized total action, I=I0, and
the normalized electrostatic energy E=E0 (see Table I). Solid:
numerical, smoothed over oscillations; dashed: analytical, i.e.,
I ¼ I0 for the action and Eq. (4) for the energy.

FIG. 2 (color online). Same as in Fig. 1, but showing smaller �
and for different parameters (Table I). The figure shows how
adiabatic amplification is replaced with decay at small �. The
analytical plot corresponds to Eq. (6).
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ratio, and E is the electric field amplitude. In this case, � is
smaller than that predicted by Eq. (5), which explains why
the damping is delayed during compression as compared to
the linear theory. In the example of Fig. 2, note how
sudden, or switchlike damping sets in once the plasma
extent reaches a critical value.

Hot electron distribution.—The induced collisionless
dissipation is due to the phase velocity vph decreasing

down to several vT , after which resonant suprathermal
electrons start to absorb the wave energy efficiently. Still,
the ratio vph=vT continues to decrease gradually after the

onset of damping. Thus, within the resonant interval �v
that increases with V, particles are, on average, propelled
to higher energies. Unlike in stationary plasma, where a
wave would affect only electrons within the interval about
�v ¼ �b=k around fixed vph [5], the original distribution

is now essentially shifted by �v over the wider range �v.
For waves in this trapping regime, the distribution also
tends to flatten [4,5], and this effect is further augmented
when multiple modes are present (see below). After the
wave has dissipated, the hot tail undergoes further heating
self-similarly through adiabatic compression [Eq. (2)]. The
suprathermal tail therefore has a distinct signature that
persists as a recognizable feature of a distribution which
has once experienced switchlike heating.

To calculate the precise shape of the suprathermal
electron distribution by plasma compression is a matter
of a separate study, but numerically this distinct effect is
evident in our simulations. Figure 3 illustrates the tail
formation and flattening for a standing wave, in which
case both positive and negative vph are present, yielding

a final distribution even in v. This confirms that part of the

mechanical energy of compressing plasma can be control-
lably transferred to suprathermal electrons by preseeding
a Langmuir wave that compresses together with the me-
dium. Notice also that, for a traveling wave, an asymmetric
suprathermal tail could form. (However, a different, e.g.,
toroidal, geometry is required to avoid velocity isotropiza-
tion by the walls.) Hence, a current-drive effect could be
produced at a predetermined time in a switchlike manner,
greater than that in stationary plasma [6], since it utilizes
all the wave energy.
Multiple modes.—Now consider evolution of multiple

linear waves during compression of bulk plasma. In gen-
eral, only the total number of plasmons is conserved in the
absence of dissipation [7], and no invariants exist if any of
the modes involved are damped. However, if a mode is
separated from the rest by a frequency gap �! large
compared to �, it will, in fact, decouple from the rest.
Since higher-k waves have smaller vph � !p=k, they will

interact sooner with resonant particles and thereby damp
more rapidly, as can be seen from Eq. (5). This means that
higher-k waves will dissipate earlier during compression,
while those with lower k may still be well inside the
adiabatic domain. Thus, the energy deposition into hot
particles can be timed through choosing which k0 to
preseed.
These predictions are confirmed in our simulations.

Figure 4 shows how two standing modes with different
spatial numbers m evolve after being seeded in plasma
together. For the two cases that are depicted featuring the
pairs m ¼ 1, 3 and m ¼ 1, 5, higher-m modes decay at
earlier stages (i.e., larger �) than lower-m ones. Thus,
multiple linear modes indeed can affect the electron dis-
tribution additively, shaping it (as in Fig. 3) one after
another. Particularly, a flatter tail is produced then.
Correlated damping.—Although the modes are largely

independent, Figs. 4(a) and 4(b) do reveal a small correla-
tion between the wave damping rates. Notice that the first

FIG. 3 (color online). The electron distribution function
fðx; vÞ compressed together with a wave (Table I; arbitrary
units). Top: ½fðx; vÞ � f̂ðx; vÞ�, where f̂ðx; vÞ is the same distri-
bution compressed without the wave; bottom: space-averaged f
and space-averaged f̂, close to Maxwellian. The figures demon-
strate the production of suprathermal electrons. The upper figure
also shows remnants of the parasitic second mode, not yet
damped unlike the third mode that was most intense initially
(cf. Fig. 4).

FIG. 4 (color online). The normalized total actions, I=I0, of
paired excited modes with different m (Table I). The figures
illustrate independent onsets of collisionless damping. Specif-
ically, modes with larger k dissipate earlier, i.e., at larger �.
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mode decays somewhat faster in the presence of the third
mode than in the presence of the fifth mode. This is due to
nonlinear coupling of the paired waves, which can be
understood as follows. Since the field amplitudes are large
enough, suprathermal electrons are strongly affected by
both modes simultaneously and thereby move stochasti-
cally [8], allowing the waves to exchange plasmons.
Whereas alone the lowest-order mode would have decayed
more slowly, it can now decay faster by transferring action
to a higher-m mode, the latter acting like a plasmon sink
due to its stronger Landau damping. Since the underlying
stochastic effects are more pronounced at smaller differ-
ences between the paired vph [8], the damping of the

first mode is more affected by the third mode than the
fifth mode.

Discussion.—Insofar as 1D compression of Langmuir
waves serves as a realizable model, it remains to check
whether the main effects here persist when ion dynamics is
taken into consideration, introducing the possibility of
nonlinear instabilities and inhomogeneities of the bulk
plasma under compression. Among the former, potentially
deleterious in our case are the modulational and decay
instabilities [9]. However, modulational modes are stabi-
lized at small enough �v=vT , which need only be satisfied

initially, since �v=vT / �9=8 will further decrease during
compression. The decay instability, which sets in when �2

reaches about me=mi (here mi is the ion mass), has the rate

�d / ��1=2. Since � / ��1, this means that having �> �d

at this threshold ensures that the plasma will be com-
pressed faster than the instability develops [10].

Now let us consider the influence of compression-
driven gradients. Assume a low-m linear wave, such that
�! � �, so it is isolated from other modes; then, it can
couple to others only through scattering at plasma inho-
mogeneities. However, the scattering is suppressed with
exponential accuracy with respect to L=‘, where ‘ is the
inhomogeneity spatial scale. This ratio is small at
V=vTi � 1, where vTi is the ion thermal velocity. Hence,
the latter condition is sufficient for k to be conserved
(unlike in the geometrical optics limit [2]), so the inhomo-
geneity will have little effect on the mode dynamics [10].
Also notice that compression-driven gradients can be
avoided completely with ballistic compression [10],
such as that of space-charge waves in velocity-chirped
beams [11].

In summary, it is predicted here that a part of the
mechanical energy of compressing plasma can be control-
lably transferred to selected species in a switchlike manner
by preseeding the plasma with a wave which is compressed
together with the medium. Langmuir oscillations are con-
sidered as a paradigmatic example. Initially, a Langmuir
wave is undamped, so it is amplified under compression
due to plasmon conservation. Later, as the phase velocity
also changes under compression, Landau damping can
be induced at a predetermined instant of time. Then the
wave energy is transferred to hot electrons, shaping the
particle distribution over a controllable velocity interval,
which is wider than that in stationary plasma. Other types
of waves in plasma could also exhibit similar effects, and
different types of oscillations may be better suited for
different applications.
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