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Abstract. Through particle-in-cell simulations, the evolution of the bump-on-tail
instability (BoTI) is studied for plasma subject to one-dimensional mechanical
compression. It is shown that the final state of BoTI differs from that described by
quasilinear theory for stationary bulk plasma and can depend on the compression
history. The transformation of thermal energy into wave energy increases the plasma
compressibility, thereby decreasing the amount of mechanical work required to
compress the plasma to a specified size. Also, the energy spectrum of the excited
modes can be tailored by choosing a particular compression scenario, offering a new
technique for manipulating plasmas mechanically.

1. Introduction
Compressing and expanding plasmas can be found throughout nature and the
laboratory. In particular, experimental techniques for compressing plasmas for the
purpose of inertial confinement fusion and high-energy density physics employ a
number of different approaches, including laser implosion [1], magnetized liner
implosion [2], and Z-pinches [3]. The physics of waves embedded in the targets
is generally not considered. However, it has been recently suggested that seeding
waves in such targets could yield new ways of manipulating plasmas. In particular,
waves might be amplified adiabatically through compression [4] and then damp
resonantly on a particular species in a switch-like manner [5], shaping selectively
the tail distribution as prescribed.

This paper studies a particular aspect of such manipulations, namely, how the
well-known bump-on-tail instability (BoTI) develops and saturates in compressing
plasma. The quasilinear theory predicts a unique final state for a stationary (non-
compressing) plasma exhibiting the instability, assuming the wave is sufficiently weak
[6]. However, it is shown here that in compressing plasma with embedded waves the
internal energy is no longer a state variable (that is, a function of volume only), but
rather depends on the compression history. This effect is demonstrated numerically
through particle-in-cell (PIC) simulations.

Specifically, the paper is organized as follows. In Sec. 2, the basic theory of BoTI
in plasma under mechanical compression is discussed. Section 3 presents the results
of the PIC simulations, illustrating the time history of BoTI in compressing plasma,
including the evolution of the electron distribution function and the energy content
and phase velocities of the excited modes. Section 4 describes how waves reduce
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the amount of work required to compress a plasma and arrives at the fundamental
result that energy is not necessarily a state variable for plasmas containing waves.
Section 5 compares BoTI in one-dimensional (1D) compressing plasma with other
variations of BoTI. Finally, Sec. 6 summarizes the main results of this paper.

2. Basic theory
In the presence of a small bump on the tail of the electron velocity distribution,
the waves that are destabilized are small-amplitude, linear plasma oscillations, or
Langmuir waves [6, 7], whose dispersion relation is given by

ω = ωp

(
1 +

3

2
κ2

)
, (2.1)

where ωp is the electron plasma frequency, κ = kλD, k is the wavenumber, λD =

vT /ωp is the Debye length, vT =
√

T/me is the electron thermal velocity, T is
the electron temperature unperturbed by the waves, and me is the electron mass.
Equation (2.1) is asymptotically precise in the fluid limit at small but non-zero κ

[4, 8] and thus as well for a non-Maxwellian bulk distribution, with T formally
defined as (me/n)

∫
v2f̂(v) dv. Here n =

∫
f̂(v) dv is the density unperturbed by the

waves, and f̂ is the zeroth-order (in the field amplitude) distribution function,
which for linear waves equals the average of the true distribution f(x, v, t); e.g.,
f̂(v) = L−1

∫
f(x, v, t) dx, where L is the plasma length.

For slow compression, the bulk plasma remains approximately homogeneous, with
the density scaling like n ∝ V−1, where V is the plasma volume. Since ωp ∝ n1/2,
one thereby gets ωp ∝ ε−1/2 for 1D compression assumed below, where ε ≡ L/L0,
L is the plasma length, and the subscript 0 is henceforth used to indicate an initial
condition. From (2.1), the wave phase velocity vp = ω/k is given by

vp = vp0h(ε)ε
1/2, (2.2)

where h(ε) is a factor close to one and is found as follows. Since the compression is
slow, the adiabatic invariant

vL = inv (2.3)

is conserved for each electron. Thus, the bulk electron distribution evolves self-
similarly, and the thermal velocity obeys the scaling vT ∝ ε−1. Since k ∝ ε−1 as well,
one obtains κ = κ0ε

−3/2; then, from (2.1) and (2.2), one finds

h = 1 +
3

2
κ2

0ε
−3. (2.4)

Under the assumption of κ�1, when (2.1), (2.2), and (2.4) are valid, the Langmuir
wave growth rate, γ, is of the same sign as vpf

′(v = vp) [7]. In Maxwellian plasma,
γ < 0, yielding damping. However, in the presence of a bump-on-tail distribution,
an instability develops for waves with vp in the interval where vpf

′(v = vp) > 0. The
quasilinear theory predicts that f be flattened eventually within this interval (i.e.,
f′ becomes zero), which is how the BoTI saturates. At compression, though, vp/vT
decreases as ε3/2. Hence, modes that were initially unstable eventually become stable
and experience damping, as their vp move into the region of negative vpf

′(v = vp).
Notice that the shape of the mode spectrum also evolves through compression
[5]. First of all, modes with larger k have smaller vp ≈ ωp/k and thus interact
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with a larger number of resonant electrons and damp sooner. In addition, multiple
excited modes whose individual trapping regions [9] formally overlap (in the sense
of Refs. [10, 11]) can exchange energy through the stochastic exchange of resonant
electrons [5]. For a mode with wavenumber k, the characteristic trapping width in
velocity space is defined as

δvk = 2
√

qEk/mek, (2.5)

where q is the electron charge, and Ek is the mode amplitude of the electric field [7].
The stochastic exchange of energy between modes with overlapping trapping regions
results in another damping mechanism for excited waves [5]. Specifically, a mode
that has become resonant with the bulk distribution and has begun damping can act
as an energy sink for other modes stochastically exchanging energy with the damped
mode, even if the other modes do not experience linear damping themselves.

3. Particle-in-cell simulations
In order to support the above predictions numerically, we developed an electrostatic
PIC code that models plasma compression in a 1D box with the right wall at x = L(t),
moving with velocity L̇ = V < 0, and the left wall kept fixed at x = 0. To produce
BoTI, electrons are initialized randomly in a homogeneous Maxwellian distribution,
fM1(v), superposed with a much smaller, homogeneous, and symmetrically shifted
Maxwellian bump, fM2(v). The total initial distribution function f0(v) then can be
written as

f0(v) = n0 {(1 − 2ξ)fM1(v) + ξ [fM2(v + ∆v) + fM2(v − ∆v)]}, (3.1)

where n0 is the bulk number density, ξ�1 is the perturbation density, fMj(v) =

exp (−v2/2v2
Tj)/

√
2πvTj for j = 1, 2; also, vTj are the corresponding thermal velo-

cities. Hard-wall boundary conditions are assumed, and total charge neutrality is
maintained; hence, only standing waves with integer m ≡ kL/(2π) can be excited.
Ions are treated as a uniform charge-neutralizing background, which is a valid model
under the assumption that the compression scenario is chosen appropriately [5]. The
right wall is accelerated from rest to its peak velocity, coasts at constant velocity
until a desired level of compression is reached, and, finally, is decelerated until the
wall is at rest once again. In some simulations, the electrostatic forces were turned
off in order to compare the compression of the BoTI-unstable plasma with that of
a wave-free neutral gas.

The PIC code reproduces the life cycle of BoTI numerically, as illustrated in
Figs. 1 and 2 using a representative set of initial parameters, namely, ξ = 0.01,
vT1 = 1.5×109 cm s−1, vT2 = 0.75 vT1, ∆v = 5.0 vT1, ωp = 1011 s−1, L0 = 2.0 cm, and
the peak wall velocity, V = −0.067 vT1, with the negative sign indicating compression
by the right wall. Initially, the wall is at rest for 50 plasma cycles while the instability
saturates (Fig. 1(c)). The wall then accelerates to its peak velocity during a single
plasma cycle τp0 = 2π/ωp0 and coasts until ε ≈ 0.15. Then the wall slows to a halt
in one more plasma cycle τp0, and the plasma is simulated for an additional 50
cycles at full compression. Figure 1(b) reveals that modes with 3 � m � 7 are most
strongly excited by the instability. As predicted, modes with larger m damp earlier
due to their smaller phase velocities and earlier transition to resonance with bulk
electrons during compression. Note that the excited wave amplitudes in this case are
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Figure 1. (Color online) Life cycle of bump-on-tail instability. (a) Total electrostatic energy
WE normalized to total initial plasma energy W0 (kinetic + electrostatic); (b) energy
spectrum across lowest Fourier modes, with mode number defined as m = kmL/2π and
same normalization as in (a); (c) wall velocity normalized to initial electron thermal velocity
vT0, with negative velocity indicative of compression.

small enough to keep the wave dynamics essentially linear; increasing the strength
of the instability leads to the formation of highly nonlinear trapped particle modes,
of which the governing physics will be the topic of future publications.

A more detailed view of the evolution of the electron distribution is given in
Fig. 2. At t = 0, the weak bump is evident at suprathermal velocities, and no waves
are present above the negligible initial noise level. After 10 cycles, the instability has
begun to develop and modes four, five, and six (i.e., those with m = 4, 5, 6) can be
seen growing. The modes with m = 2, 3, . . . , 15 are plotted according to the mode
phase velocities, which decrease with increasing m, while the phase velocity of the
mode with m = 1 was too large to plot on the same figure. The height of the red
bars corresponding to individual modes represents the electrostatic energy of those
modes averaged over a plasma cycle, while the horizontal bars denote the width
of each mode’s trapping region, cf. Eq. (2.5). Modes 4–6 are found in the center
of the instability domain, and by t = 50 τp0 they have saturated such that their

trapping regions are confined to the velocity range where f̂(v) is flat. In addition,
individual trapping regions overlap (again, in the sense of Refs. [10, 11]), and the
electrostatic energy of each individual mode was observed fluctuating due to the
stochastic exchange of energy between the modes, as discussed above. Compression
begins at t = 50 τp0, and the proceeding images show each mode losing energy as the
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Figure 2. (Color online) Snapshots of the space-averaged distribution function f̂(v) (blue; left
axes) along with the phase velocities and cycle-averaged electrostatic energies 〈WE〉 of excited
resonant modes (vertical lines, red; right axes). The horizontal bars denote the width of each
mode’s trapping region, δvk (2.5). Time t is given in units of τp0 = 2π/ωp0. Compression
begins at t = 50τp0. The bulk distribution remains essentially Maxwellian and thus is not
shown in the figure.

distribution is heated adiabatically, with the slowest modes damping away first. By
t = 179 τp0, the wave energy is almost completely damped. The suprathermal tail is
both flattened and broadened by the damping waves, and at later times than those
shown, the flat-tail distribution continues to grow self-similarly with compression
because of the conservation of the adiabatic invariant (2.3). Like in Ref. [5], the
bulk distribution remains essentially Maxwellian with bulk temperature and pressure
growing adiabatically, and thus it is not shown in the figure.

4. Energy is not a state variable
Consider the plasma total energy W as the sum of the wave energy Ww and the
thermal energy WT , for which there is a unique decomposition W = Ww + WT

[12]. Although BoTI itself cannot change W , it does change the instantaneous ratio
ρ ≡ Ww/W = 1−WT/W , as illustrated in Fig. 3. Remarkably, this affects the plasma
pressure [13], defined as usual through P = −dW/dV for adiabatic compression,
and also the energy gain ∆W through compression. Specifically, for an adiabatic
process, one has Ww ∝ V−1/2 and WT ∝ V−2 [4, 5]. Hence, dWw = −Ww dV/(2V),
dWT = −2WT dV/V, and

P = 2w(1 − 3ρ/4), (4.1)
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Figure 3. (Color online) Thermal energy WT normalized to initial total energy W0 vs.
ε ≡ L/L0 for three different compression scenarios: (1) neutral gas without BoTI; (2) plasma
compression delayed 50τp0 while instability saturates; and (3) plasma compression begins
immediately. The drop in WT in the plasma systems relative to the neutral gas corresponds to
a decrease in plasma pressure P (4.1), meaning less work is required to compress the plasma
compared to the neutral gas (4.2). Parameters same as in Figs 1 and 2, except ξ = 0.025 and
peak wall velocity V = −0.013vT1. Note that the initial stage corresponds to the right of the
figure, where ε = 1, and the final stage is to the left, where ε < 1.

where w ≡ W/V is the average density of the total energy. Since BoTI does not
affect w but increases ρ (at least temporarily), it thereby decreases P. Equivalently,
the BoTI increases the plasma compressibility [14], given by β ≡ −(1/V)dV/dP,
or β = 1/P here. Thus, the total energy gain ∆W =

∫
Ẇ dt is decreased, since

Ẇ = 2W [1 − 3ρ(t)/4] η(t), (4.2)

where the compression rate η ≡ −V̇/V has been introduced. The function ρ(t)
can vary depending on the manner in which BoTI developed during compression.
Therefore, W is not a function of the plasma volume and, in this sense, is not a state
variable, unlike for a neutral gas or a plasma containing only cold and undamped
waves [4, 5].

These predictions are supported by our numerical simulations, as seen in Table 1.
The first set of parameters in Table 1 corresponds to Fig. 3; others show even
wider variation between compression scenarios. In every compression scenario, the
presence of resonant waves leads to a lower final energy than the corresponding
neutral gas. Specifically, a scenario resulting in a larger decrease in WT during
compression, observed in Fig. 3, correctly leads to a smaller final energy once all
of the waves are fully damped (4.2). This confirms our prediction that transforming
kinetic energy into the energy of Langmuir waves reduces the amount of mechanical
work needed to compress a plasma down to a specified size.
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Table 1. Final energies under nine different compression scenarios with identical initial
conditions. The final stage of the compression corresponds to ε = 0.15, by which time all
waves are fully damped. The first column shows the peak wall speed. The second column
shows the delay time (in units τp0) prior to compression (cf. Fig. 1(c)). The third column shows
the total energy of the plasma final state, Wf , normalized to W0. The fourth column shows,
for reference, the same Wf normalized to the final energy of a neutral gas, Wf,g , compressed
similarly but without BoTI.

V/vT1 Delay (τp0) Wf/W0 Wf/Wf,g

0.013 50 46.955 0.9937

0 46.843 0.9914

0.067 50 46.895 0.9860

0 46.760 0.9832

0.333 50 46.953 0.9439

0 46.497 0.9348

5. Discussion
There is an interesting comparison to be made with other variations on BoTI.
The time-dependency of the compression for BoTI in compressing plasma removes
constraints on the available time-asymptotic solution, similar to the case of multiple
bumps-on-tail in the non-compressing plasma. For a non-compressing plasma,
BoTI have a time-asymptotic solution in which the bump flattens into the so-
called quasilinear plateau [6], and the energy converted to electrostatic waves is
insensitive to the details of the instability evolution. The time-asymptotic elec-
tron distribution in the resonant region must be flat; otherwise, the instability
could develop further. Hence, the free energy available in the resonant region
for conversion to electrostatic wave energy is uniquely determined, at least for
the one bump-on-tail distribution function. For multiple bumps on the tail of
the distribution function, no such unique time-aymptotic distribution occurs [15].
In the case of multiple bumps, each bump flattens separately due to quasilinear
relaxation, but the order in which the bumps flatten, which can be sensitive to
the details of the initial wave energy spectrum, determines the final height of each
bump. Thus, the free energy available in the resonant region for conversion to
electrostatic wave energy is not uniquely determined for multiple bumps on the
tail.

One can also compare the free energy available through diffusion of resonant
electrons with the theoretically maximum free energy available by evolution of
the Vlasov equation, namely the free energy available under the so-called Gardner
restacking [16, 17], in which the electron distribution function is constrained only
by phase space conservation in configuration-velocity space, f(x, v). However, in
slowly compressing plasma, the Gardner free energy would remain insensitive to
the details of the compression; clearly, since each phase space element would retain
its ordering under the compressing transformation f(v) → af(av). Thus, restacking
prior to compression or subsequent to compression yields the same final distribution
and frees up the same amount of particle energy. However, the Gardner free energy
is not generally of practical importance, since waves generally act diffusively in
wave–particle interactions in plasma. The free energy available under the diffusive
constraint, namely through the quasilinear relaxation of the distribution function
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in the resonant regions, is of practical interest, for example, in the case of α-
channeling, where the particle free energy is liberated to produce wave energy that
in turn can perform other useful purposes (like ion heating or current generation)
[18].

Thus, whether in the case of multiple bumps-on-tail in non-compressing plasma, or
one bump-on-tail in compressing plasma, the free energy available through wave–
particle diffusion is no longer uniquely determined just from the initial particle
distribution, and therefore other arrangements must be made for the maximum
release of this energy. Moreover, although we considered here only compression of
the one bump-on-tail distribution, clearly more flexibilities in the final state would
result in the event of compressing a plasma with multiple bumps-on-tail. In addition
to the energy in the final state varying with the details of the compression history, it
can be imagined that there can now be several abrupt changes in pressure as waves
are damped in different resonant regions.

The mechanical compression by moving hard walls modeled in the PIC code
serves as a simple, albeit idealized, means to produce compression of the bulk
plasma in order to demonstrate the desired effects. However, a practical im-
plementation of the analysis presented here should not be restricted only to
literal realizations of this compression scheme. For instance, compression may be
produced by appropriately chosen bulk plasma drift motion, as with the ballistic
compression of space-charge waves in velocity-chirped beams [19], or by the
presence of a spatiotemporally-varying magnetic field, to name two examples. As
the compression scenario changes, so might the types of waves present in the system
also change. Yet, in any case, the basic small-wave analysis presented here, as a
first approximation of the associated wave phenomenology, should be qualitatively
unchanged.

Note that the considerations here of BoTI are entirely in 1D, where the com-
pression takes place parallel to the wave phase velocity and parallel to the velocity
direction where there is a bump-on-tail. Many of the considerations here, however,
can be expected to pertain, albeit with modification, to the case of compression
perpendicular to the wave phase velocity, where the compression similarly increases
the wave energy and changes the wave phase velocity [4, 5]. In particular, it can be
expected that, for perpendicular compression, the time-asymptotic electron velocity
distribution would also be dependent on the time history of the compression.
However, for perpendicular compression, the phase velocity of the plasma waves
increases rather than decreases with compression, since the wavenumber is left
unchanged by the compression, but the plasma frequency increases with density.
Thus, there is the opportunity to draw out a longer tail in the final electron
distribution function, since the larger velocity plasma waves would damp on the tail
of the distribution function rather than on the bulk of the distribution function as
in the case considered here.

Moreover, in the case of compression in the perpendicular direction, there is the
opportunity for the plasma to carry current in the event that the initial distribution
function is asymmetric in velocity space, namely when the initial bump-on-tail
occurs only for electrons traveling in one direction. Under 1D compression, in
which all particles are reflected at the boundaries, this asymmetry would vanish
quickly. However, in the case of compression perpendicular to the direction of the
wave vector of the excited mode, with periodic boundary conditions in the parallel
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direction (the direction of the asymmetry), this asymmetry in the parallel direction
would persist. This means that not only can the amplified waves drive electric current
and thereby generate magnetic fields, but the current drive in the final state can be
particularly efficient, since high-phase velocity waves tend to exhibit a very efficient
current drive effect [20]. Note that in the example envisioned here, the total electron
current is not enhanced by the compression, since the waves carry no momentum;
however, electron–ion collisions would quickly convert the skewness in the electron
velocity distribution to net current as the bulk electron current dissipates while the
current carried by the relatively collisionless tail persists, like in other current drive
schemes involving fast electrons.

6. Conclusions
Simulations of BoTI for plasmas subject to 1D mechanical compression show
that the exact nature of the final state depends on the compression scenario;
namely, multiple final energy states can be accessed under different scenarios, unlike
for stationary medium. The transformation of thermal energy into wave energy
increases the plasma compressibility, thereby decreasing the amount of mechanical
work required to compress the plasma. Also, the energy spectrum of the excited
modes can be tailored by choosing a particular compression rate as a function of
time, offering a new technique for manipulating plasmas.
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