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A general nonlinear dispersion relation is derived in a nondifferential form for an adiabatic

sinusoidal Langmuir wave in collisionless plasma, allowing for an arbitrary distribution of trapped

electrons. The linear dielectric function is generalized, and the nonlinear kinetic frequency shift

xNL is found analytically as a function of the wave amplitude a. Smooth distributions yield

xNL /
ffiffiffi
a
p

, as usual. However, beam-like distributions of trapped electrons result in different

power laws, or even a logarithmic nonlinearity, which are derived as asymptotic limits of the same

dispersion relation. Such beams are formed whenever the phase velocity changes, because the

trapped distribution is in autoresonance and thus evolves differently from the passing distribution.

Hence, even adiabatic xNL(a) is generally nonlocal. VC 2012 American Institute of Physics.

[doi:10.1063/1.3662115]

I. INTRODUCTION

Within the geometrical-optics approximation, adiabatic

waves in collisionless plasma are described conveniently

within the average-Lagrangian formalism originally proposed

by Whitham.1,2 In Ref. 3, further called Paper I, this formal-

ism was restated to also accommodate the effects of particles

trapped in wave troughs. Specifically, the wave Lagrangian

density L was derived explicitly under the assumption that the

number of trapped particles within each wavelength is a fixed

independent parameter of the problem. Hence, the wave non-

linear dispersion relation (NDR) can be expressed in a nondif-

ferential form which is more easily tractable than solutions

obtained straightforwardly from integrating the Vlasov-

Maxwell system (see, e.g., Refs. 4–9) or those inferred from

the “multiwater bag” formulation.10 Namely, the general

NDR for an adiabatic wave reads as (Paper I)

@aL ¼ 0; (1)

with a being the wave amplitude; thus, analyzing the func-

tion @aL would be sufficient to infer the wave dispersion.

Here, we perform a systematic study of kinetic nonli-

nearities that Eq. (1) yields for one-dimensional sinusoidal

electrostatic waves with trapped particles, extending our

brief letter11 and providing important technical details miss-

ing in that work. Specifically, a general NDR is derived in a

nondifferential form for an adiabatic sinusoidal Langmuir

wave in collisionless plasma, allowing for an arbitrary distri-

bution of trapped electrons [Eq. (11)]. The linear dielectric

function is generalized, and the nonlinear kinetic frequency

shift xNL is found analytically as a function of the wave am-

plitude a. Smooth distributions yield xNL /
ffiffiffi
a
p

, as usual.

However, beam-like distributions of trapped electrons result

in different power laws, or even a logarithmic nonlinearity,

which are derived as asymptotic limits of the same disper-

sion relation. Such beams are formed whenever the phase ve-

locity changes, because the trapped distribution is in

autoresonance and thus evolves differently from the passing

distribution; hence, even adiabatic xNL(a) is generally non-

local. These results are also used in Paper III,12 where evolu-

tion of waves with trapped particles is studied.

The work is organized as follows. In Sec. II, the general

NDR is derived, connecting the wave frequency x with the

wave number k for a given a and particle distribution; also the

properties of the NDR kernel are explored. In Sec. III, the gen-

eral NDR is given an asymptotic representation for distribu-

tions smooth near the resonance; in particular, the linear

dielectric function is generalized. In Sec. IV, the effect of par-

ticle beams on NDR is studied. In Sec. V, implications of these

results are discussed; specifically, xNL(a) is predicted to be a

nonlocal function, and the friction drag on trapped particles is

predicted to affect the wave frequency sweeping in collisional

plasmas. In Sec. VI, we summarize our main results. Some

auxiliary formulas are also presented in the Appendix.

II. GENERAL DISPERSION RELATION

A. Wave Lagrangian

From Paper I, it follows that the Lagrangian density for

a one-dimensional adiabatic nonlinear electrostatic electron

mode in collisionless plasma reads as

L ¼ �Lem þ
h ~E2i
8p
� nðpÞhHðpÞifp � nðtÞhHðtÞift ; (2)

assuming that the ion contribution is negligible. Here, �Lem

describes quasistatic fields (if any), the second term is the time-

averaged energy density of the wave electric field ~E, n(p) and

n(t) are the densities of passing and trapped electrons, respec-

tively, and HðpÞ and HðtÞ are the electron oscillation-center

(OC) energies averaged over the corresponding distributions fp
and ft of the particle canonical momenta. Specifically,

HðpÞ ¼ E þ Pu� mu2=2; (3)

HðtÞ ¼ E � mu2=2; (4)

where m is the electron mass and EðJ; aÞ is the electron

energy in the frame K̂ moving with respect to the laboratory
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frame K at the wave phase velocity u¼x=k. Also, J is the

trapped-particle canonical momentum, or the canonical

action in K̂, and

P ¼ mu 6 kJ (5)

is the passing-particle canonical momentum, where the plus

sign is chosen for particles traveling with velocities larger

than u and the minus sign is chosen otherwise.

Combining Eqs. (2)–(4), one gets

L ¼ �Lem þ
nmu2

2
� nðpÞp hPifp uþ h

~E2i
8p
� nhEif ;

where we introduced the electron total density n¼ n(p)þ n(t),

and the energy E is now being averaged over all particles.

By definition (Paper I), the particle densities x and k are the

arguments of L that are independent of a. [It is only through

solutions of Eq. (1) that they will become interconnected.]

Hence, Eq. (1) yields the general NDR in the form

@ah ~E2i=ð8pÞ � n @ahEif ¼ 0; (6)

where @a is taken at constant (x, k) and also at fixed canoni-

cal momenta of individual particles. Specifically, fixed at dif-

ferentiation can be J, not only for trapped particles but also

for passing ones, due to Eq. (5).

B. Sinusoidal-wave approximation

Equation (6) describes the dispersion of one-

dimensional electron Langmuir waves completely,

accounting simultaneously for linear and nonlinear disper-

sive effects, both fluid and kinetic. In principle, each of

those effects can then be assessed from the general NDR by

substituting the appropriate EðJ; aÞ.13 Yet, we will address

only one specific regime here, as an illustration of how our

Lagrangian formalism can be useful for finding NDRs ex-

plicitly; namely, we will assume that the wave can be con-

sidered monochromatic. The conditions under which this

assumption is justified as a precise asymptotic limit at

small amplitudes are discussed in detail in Refs. 14 and 15

(see also Refs. 16 and 17) and will not be repeated here.

Instead, our purpose will be to show that, once the

sinusoidal-wave approximation has been adopted (like in

traditional calculations), our Lagrangian formalism pre-

dicts new effects and also yields simultaneously various

types of kinetic nonlinearities that were previously known

from different contexts.

In a sinusoidal wave, the oscillations of both passing

and trapped electrons in K̂ satisfy

p2=ð2mÞ þ e ~u0 cosðkxÞ ¼ E; (7)

where x and p are the particle coordinate and momentum and

e is the electron charge. (For clarity, we will assume e ~u0 > 0

and k> 0. Also, the large-scale electrostatic potential �u is

omitted here because it does not affect the wave local prop-

erties, albeit it may affect the dynamics of the wave (Paper

III) and of the particle distribution.18) The canonical action J
is hence introduced as follows. For passing particles, we will

use the definition J ¼ 2pð Þ�1Þ pdx, and thus, J¼ jpj=k for

large p. For trapped particles, however, we will use

J ¼ 4pð Þ�1Þ pdx, so that J is continuous across the separatrix

(Fig. 1). From Eq. (7), one can write then

J ¼
ffiffiffi
a
p

Ĵj: (8)

Here, we introduced the wave amplitude as

a ¼ e ~u0k2=ðmx2Þ > 0; also Ĵ ¼ mx=k2, and the dimension-

less action j is a continuous function of the normalized

energy r ¼ ðE þ e ~u0Þ=ð2e ~u0Þ,

j ¼ jðrÞ: (9)

Specifically, j¼ 0 for a particle resting at the bottom of the

wave trough (r¼ 0), with the corresponding value at the sep-

aratrix (r¼ 1) being j*¼ 4=p (Appendix).

Hence, one can express E as

EðJ; aÞ ¼ ½2arðjÞ � a�Ĵx; (10)

with j(J, a) taken from Eq. (8). Then Eq. (6) reads as

x2 ¼ x2
p

2

a

ð1
0

GFðJÞ dJ; (11)

where x2
p ¼ 4pne2=m is the electron plasma frequency

squared, F(J) is the action distribution normalized such thatÐ1
0

FðJÞ dJ ¼ 1, and

G ¼ @aEðJ; aÞ
mu2

: (12)

Equation (11) is a master equation, which accounts for all

dispersive effects simultaneously, both linear and nonlinear

(to the extent that the sinusoidal-wave approximation

applies19). In particular, it shows that the contribution to x2

of particles with given J is determined solely by the kernel

G, thus acting as the weight function. We study the proper-

ties of this function below.

C. Weight function G

From Eq. (12), one gets

G ¼ ½@að2ar � aÞ�J ¼ 2r � 1þ 2a ð@arÞJ; (13)

where the partial derivative is taken at fixed J (as denoted by

the subindex). The latter term is found from

FIG. 1. (Color online) Schematic of single-particle trajectories in phase

space (x, p), illustrating the definition of 2pJ (shaded area): (a) for a passing

particle and (b) for a trapped particle. For J to be continuous at the separatrix

(dashed line), with the passing-particle action defined as 2pJ ¼
Þ

pdx, for

trapped particles, one must use the definition 2pJ ¼ 1=2ð Þ
Þ

pdx. This area is

encircled by a particle within half of the bounce period; thus, the corre-

sponding canonical frequency X equals twice the bounce frequency.
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ð@arÞJ ¼ �
ð@aJÞr
ð@rJÞa

¼ � j

2aj0
; (14)

where we substituted Eq. (8). Thus, G¼ 2r – 1 – j=j0, where

the right-hand side here is a function of r only or a function

of j only [due to Eq. (9)]. We will introduce these two repre-

sentations separately, with

gðrÞ ¼ 2r � 1� jðrÞ=j0ðrÞ (15)

(Appendix), serving as an auxiliary function for

GðjÞ ¼ gðrðjÞÞ: (16)

Hence, the properties of G(j) are understood as follows.

First, let us consider asymptotics of G(j), starting with

j� 1. As seen from Eq. (15), G(0)¼�1, which also flows

from the fact that E � �e ~u0 for particles close to the

bottom of the wave trough. The next-order term can be

inferred from E � �e ~u0 þ JX, which is due to oscillations

of deeply trapped particles being approximately linear. In

particular, one can take X � 2xE (Fig. 1), where

xE ¼ ðek2 ~u0=mÞ1=2 ¼ x
ffiffiffi
a
p

is the linear bounce frequency.20

Hence, Eq. (12) yields G � �1þ j.
The asymptotic behavior of G(j) at j� 1 is understood

by taking E � p2=ð2mÞ þ U, where U ¼ e2m ~u2
0=ð4p2Þ is the

ponderomotive energy in the dipole approximation (Paper I)

for a zero-frequency wave [Eq. (7)]. Remember that jpj � Jk
in this case, so ð@aEÞJ ¼ 2U=a. Thus,

Gðj� 1Þ � 1=ð2j2Þ; (17)

and higher-order corrections can be found similarly.

While negative at small j, G(j) is positive at large j.
(This means that deeply trapped particles reduce x2, whereas

those near the separatrix and untrapped ones increase x2; cf.,

Refs. 21 and 22.) Now let us consider its behavior near the

separatrix, which is where the canonical frequency X
approaches zero. Since E equals the OC energy in K̂ (Paper

I), one has

X ¼ @JE ¼ x @jð2ar � aÞ ¼ 2ax=j0: (18)

Therefore, j0(r¼ 1) is infinite, and Eq. (15) yields that G be

continuous (albeit nonanalytic), with G(j*)¼ 1. Hence, we

summarize our results as follows:

GðjÞ ¼
�1þ jþ…; j� 1;
1; j ¼ 1;
1

2j2 þ 5
16j6
þ…; j� 1:

8<
: (19)

These are matched (Fig. 2) by direct calculations in which an

explicit expression for j(r) is substituted into Eq. (15). Also,

manipulating that and related formulas given in the Appen-

dix shows that the NDR arising from the waterbag formula-

tion (Ref. 10, with zero driving field) can, in principle,23 be

reduced to Eq. (11).

D. Small-amplitude cold-plasma limit

It is instructive to consider, as an example, the cold-

plasma case in the limit of small amplitudes. Then, all par-

ticles are passing, and J¼ jpj=k, so (Paper I)

v6 ¼ u 6 kJ=m; (20)

where the sign index denotes sgn (v – u). Yet vþ are not pres-

ent then, and v� � u, in which case Eq. (20) gives J � Ĵ. [In

other words, one may assume FðJÞ � dðJ � ĴÞ.] From Eq.

(17), one thereby obtains G¼ a=2, and thus, Eq. (11) predicts

x2 ¼ x2
p, as expected.

Below we will calculate x2 also for other representative

cases, by formally constructing various asymptotic expan-

sions of the integral in Eq. (11). Remarkably, Eq. (19) will

be sufficient for that, i.e., knowing the exact form of G(j) is

not needed, except for evaluating insignificant numerical

coefficients (Appendix).

III. SMOOTH DISTRIBUTIONS

First, let us consider the case when the distribution func-

tion F(J) is smooth, e.g., thermal. Of course, the wave dy-
namics could not be described then within the present

approach, on the score of particle unavoidable trapping and

detrapping that would be associated with variations of a, ren-

dering the wave nonadiabatic. Yet, assuming that the wave is

quasihomogeneous and quasistationary (which are our neces-

sary requirements in any case), its local dispersion must be

approximately the same as that of a truly homogeneous and

stationary wave.24 Since the latter has n(t) fixed and is clearly

adiabatic, our formalism is hence applicable for deriving the

local NDR and can be built on as follows.

Suppose that F(J) remains finite at small J or, at least,

diverges less rapidly than J�1. Then, one can take the inte-

gral in Eq. (11) by parts and obtain

1�
2x2

p

ax2

ð1
0

!ðJ; aÞF0ðJÞ dJ ¼ 0; (21)

where !ðJ; aÞ ¼ WðjÞĴ
ffiffiffi
a
p

, with the dimensionless function

W(j) [Fig. 3(a)] introduced as

FIG. 2. Weight function G(j). Dashed lines are approximate solutions given

by Eq. (19), the asymptote, and j¼ j*.
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WðjÞ ¼ �
ðj

0

Gð|Þ d|: (22)

At a� 1, ! changes rapidly with J compared to F(J).

Then, without using the explicit form of ! J; að Þ but rather

drawing on the leading terms in

!ðJ; aÞ ¼
J � J2

2Ĵa1=2
þ…; J � Ĵa1=2;

aĴ2

2J þ a3 Ĵ6

16J5 þ…; J � Ĵa1=2

(
(23)

[obtained from Eq. (19)], one can put Eq. (21) in an asymp-

totic form. Specifically, this is done as follows.

A. Asymptotic representation

To approximate the integral

U � 2

a

ð1
0

!ðJ; aÞF0ðJÞ dJ; (24)

let us replace !F0 with

!F0 � ð!F0Þ1 þ ð!F0Þ2 � ð!F0Þ3: (25)

Here, the individual terms on the right-hand side correspond

to asymptotics of !F0 at small, large, and intermediate J,

correspondingly, so that !F0 is approximated accurately at

all J. Specifically, we take

ð!F0Þi ¼
!ðJÞ F0ð0Þ þ F00ð0ÞJ½ �; i ¼ 1;
aĴ2=ð2JÞ
� �

FðJÞ; i ¼ 2;

aĴ2=ð2JÞ
� ��

F0ð0Þ þ F00ð0ÞJ
�
; i ¼ 3:

8<
:

[Due to !� aĴ2=ð2JÞ ¼ OðJ�5Þ at large J, higher-order cor-

rections are insignificant compared to those discussed

below.] Hence, U¼U1F00(0)þU2, where

U1 ¼
2

a

ð1
0

!ðJ; aÞ J � aĴ2

2

� �
dJ;

U2 ¼
2

a

ð1
0

!ðJ; aÞF0ð0Þ � aĴ2

2J
F0ðJÞ � F0ð0Þ½ �

� �
dJ:

It is convenient to rewrite U1 in terms of the function

QðjÞ ¼ 1� 2jWðjÞ (26)

[Fig. 3(b)], which we will also use below. Namely,

U1 ¼ �, Ĵ3
ffiffiffi
a
p

; , ¼
ð1

0

QðzÞ dz: (27)

The value of the numerical constant , can be readily esti-

mated from Fig. 3(b) as , � 0:5; for a precise calculation,

see the Appendix.

To simplify the expression for U2, notice that

@U2

@a
¼ 2F0ð0Þ

ð1
0

@

@a

!ðJ; aÞ
a

� �
dJ; (28)

which can be checked directly. On the other hand,

@

@a

!ðJ; aÞ
a

� �
¼ Ĵ2

J

dðWjÞ
dj

@jðJ; aÞ
@a

¼ � Ĵ2

2a

dðWjÞ
dj

@jðJ; aÞ
@J

¼ � @

@J

!ðJ; aÞJ
2a2

� �
; (29)

and also

ð1
0

@

@J

!ðJ; aÞJ
2a2

� �
dJ ¼ !ðJ; aÞJ

2a2

				
1

0

¼ Ĵ2

4a
: (30)

This yields

@aU2 ¼ �Ĵ2F0ð0Þ=ð2aÞ: (31)

Integrating the latter with respect to a gives

U2 ¼ �½Ĵ2F0ð0Þ=2� ln aþ Uc: (32)

The integration constant Uc, independent of a, equals

U2(a¼ 1), so it can be written as

Uc ¼
ð1

0

2!ðJ; 1ÞF0ð0Þ þ Ĵ2

J
F0ðJÞ � F0ð0Þ½ �

� �
dJ:

Using that !ðJ; 1Þ ¼ ĴWðJ=ĴÞ, one gets

Uc ¼ Ĵ2

ð1
0

F0ðJÞ � F0ð0ÞQ J

Ĵ


 �� �
dJ

J
: (33)

[Notice that, although determined by essentially nonlinear

dynamics in the narrow vicinity of the resonance, QðJ=ĴÞ
nevertheless can affect the integrand on the thermal scale.]

Finally, Eq. (24) is summarized as

U ¼ � Ĵ2F0ð0Þ=2
� �

ln a� ,
ffiffiffi
a
p

Ĵ3F00ð0Þ þ Uc: (34)

B. Nonlinear frequency shift

Using Eqs. (33) and (34), we can rewrite Eq. (21) as

�ðx; kÞ þ
x2

p

2k2
C1 ln aþ

xx2
p

k3
, C2

ffiffiffi
a
p
¼ 0: (35)

FIG. 3. (a) Function W(j), Eq. (22). (b) Function Q(j), Eq. (26). The dashed

lines show j¼ j* and also the asymptote of Q(j). For details, see the

Appendix.
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Here, we introduced

� ¼ 1�
m2x2

p

k6

ð1
0

F0ðJÞ � F0ð0ÞQ J

Ĵ


 �� �
dJ

J
(36)

and also

C1 ¼ ðm=kÞ2F0ð0Þ; C2 ¼ ðm=kÞ3F00ð0Þ: (37)

In particular, when F0(0)¼ 0, the nonlinear part of Eq. (35)

is small, yielding that the nonlinear frequency shift xNL is

also small; hence,

xNL ¼ �
@�

@x


 ��1,x2
p

k2

ffiffiffiffiffiffiffiffi
e ~u0

m

r
C2: (38)

Yet, at nonzero F0(0), the nonlinear part of Eq. (35) diverges

logarithmically at small a; i.e., wave interaction with reso-

nant particles has a strong effect on x.

C. Comparison with existing theories

Equations (35)–(38) generalize the existing NDR for

quasimonochromatic eigenwaves in plasmas with smooth

distributions of particles,16,18,21,25–30 namely, as follows. First

of all, notice that �, serving as a generalized linear dielectric
function, is a functional of the action distribution. Unlike the

commonly used distribution of “unperturbed” velocities f0(v),

which depends on how the wave was excited,21 F(J) is

defined unambiguously; thus, the above equations hold for

any excitation scenario. (Notice that finding F(J) itself is

hence found to be a separate problem, which is also where

the effect of the quasistatic field18 comes in.) Second, even if

put in terms of f0(v), Eqs. (35)–(38) cover a wider class of

particle distributions. The latter is seen as follows.

For example, consider a homogeneous wave developed

with fixed u slowly from zero amplitude, so each J is con-

served,31 even through trapping and untrapping.18,32–34 Then

F(J)¼F0(J), with index 0, henceforth, denoting the initial

state. Yet, since there was no wave in that state, Eq. (20)

applies, so each ‘th derivative of F0(J) reads as

F
ð‘Þ
0 ðJÞ ¼ ðk=mÞ‘ f

ð‘Þ
0 ðvþÞ þ ð�1Þ‘f ð‘Þ0 ðv�Þ
h i

: (39)

Let us use bars to denote limits f
‘ð Þ

0 v! u6ð Þ and introduce

�f
ð‘Þ
0 ðvÞ ¼

�f
ð‘Þ
0 ðu�Þ; v < u;
�f
ð‘Þ
0 ðuþÞ; v > u;

(
(40)

which is a piecewise-constant function equal to the left and

right limits for v< u and v> u correspondingly; in particular,

C1 ¼ �f 00ðuþÞ � �f 00ðu�Þ; (41)

C2 ¼ �f 000 ðuþÞ þ �f 000 ðu�Þ: (42)

Hence, � rewrites as follows:

� ¼ 1�
x2

p

k2

ð1
�1

f 00ðvÞ � Q�f 00ðvÞ
v� u

dv; (43)

where Q : Q(jv=u – 1j). (Remarkably, contributing to � are

both passing and trapped particles.)

First, compare Eq. (43) with the usual expression,35

�L ¼ 1�
x2

p

k2
P

ð1
�1

f 00ðvÞ
v� u

dv; (44)

where P denoting the principal value.36 For smooth

f0(v), our � can be put in the same form as �L, because

P
Ð1
�1 ðv� uÞ�1Q�f 00ðvÞ dv ¼ 0. However, Eq. (43) is valid

also when f 00 vð Þ is discontinuous across the resonance, a case

in which �L is undefined. This is because the integrand in

Eq. (43) is finite (piecewise-continuous), so the integral con-

verges absolutely rather than existing only as a principal

value (like �L does). Second, for smooth f0(v), when C1¼ 0

and C2 ¼ 2f 000 uð Þ, Eq. (38) for xNL matches that in Ref. 21,

including the coefficient, since , � 0:544 (Appendix). Yet,

unlike the existing theory, our results apply just as well for

arbitrary C1 and C2, in which case f0(v) may not be smooth

while F(J) is.

IV. BEAM-LIKE DISTRIBUTIONS

Suppose now that, in addition to a smooth distribution,

near the resonance, there is a phase-space clump or a hole,

further termed uniformly as a beam with Fb(J)? 0 and some

average spatial density nb(J)? 0. Since particles contribute

additively to the right-hand side in Eq. (11), we immediately

obtain

�ðx; kÞ þ
x2

p

2k2
C1 ln aþ

xx2
p

k3
,C2

ffiffiffi
a
p
þB ¼ 0; (45)

where B is the beam-driven term,

B ¼ � 2x2
b

anbx2

ð1
0

GFbðJÞ dJ; (46)

with x2
b ¼ 4pnbe2=m. [Unlike F(J), the distribution Fb(J) is

normalized to the beam density here.] For example, consider

a beam of deeply trapped particles, so that Fb(J)¼ nbd(J).

Since G(0)¼�1, one then has

B ¼ 2x2
b=ðax2Þ: (47)

Hence, when the beam nonlinearity dominates,

�ðx; kÞ þ 2x2
b=x

2
E ¼ 0: (48)

For instance, within the model,37

�ðx; kÞ ¼ 1�
x2

p

x2 � 3k2v2
T

; (49)

where vT is the thermal speed, one thereby gets the following

dispersion relation:

x2 ¼
x2

p

1þ 2x2
b=x

2
E

þ 3k2v2
T ; (50)
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in agreement with Ref. 15. Strictly speaking, the sinusoidal-

wave approximation required for this result to hold applies

only at x2
b=x

2
E � 1,15 so one can further approximate

Eq. (50) as

x2 ¼ x2
pð1� 2x2

b=x
2
EÞ þ 3k2v2

T ; (51)

in agreement with Ref. 38. Since Eq. (49) implies kvT � x,

one has x � xp, so the above result also rewrites as

x2 ¼ x2
L � 2x2

b=a; (52)

where x2
L ¼ x2

p þ 3k2v2
T corresponds to the linear limit. In

particular, notice that xNL ¼ Oða�1Þ, with xNL< 0 for a

clump and xNL> 0 for a hole. (Remember that x2
b / nb may

have either sign.)

Now let nb itself depend on the wave amplitude. For

example, a Van Kampen mode would have x2
b=a independent

of a, yielding that trapped particles result in a linear frequency

shift, in agreement with the original linear theory.39 Also, let

us consider the case when Fb is constant across the trapping

width, i.e., FbðJÞ ¼ �FbHðJÞHðJ	 � JÞ, with H being the

Heaviside step function. Hence, nb ¼ �FbJ	 and

B ¼ 2x2
b

ax2

Wðj	Þ
j	
¼ 8 �FbĴ

3pn
ffiffiffi
a
p

x2
p

x2
; (53)

where we used W( j*)¼ 4=(3p) (Appendix). Hence, the ap-

proximate formula is obtained, like above,

x2 ¼ x2
L �

8x2
pĴFb

3p
ffiffiffi
a
p

n
: (54)

Equation (54) also matches the result found previously, e.g.,

in Ref. 17.

V. DISCUSSION

The above analysis shows that the power index b in

the scaling for the nonlinear frequency shift xNL / ab

depends critically on the properties of F(J) at small J. The

commonly anticipated b¼ 1=2 is realized when F(J) is

smooth, an example being the case when the wave develops

adiabatically from zero amplitude. However, perturbations

to F on the trapping-width scale J* result in additional non-

linearities which yield b< 0. In particular, this affects the

sign of @axNL, which can be decisive for the wave stability

(Paper III). Even more generally, describing such nonlinear

kinetic effects in a fluid-like manner30,40,41 is possible, in

fact, only in special cases (e.g., when a(t) is monotonic and

u is fixed, as in Ref. 42), because xNL is not a local func-

tion of a.

For example, consider a driven nonlinear mode with adi-

abatic chirp imposed.10,43–45 Due to the chirp, the wave

phase velocity changes, carrying trapped particles along

because of the autoresonance; then F(J< J*) remains intact.

Yet F(J> J*) is changing, because passing particles do not

conserve their actions as defined here.31 Hence, even for an

initially smooth F(J), the chirp generally produces disconti-

nuity of the action distribution at J¼ J*, thereby changing

the scaling for xNL(a). Thus, accounting for nonlocality in

xNL(a) would be particularly important for trapped-particle

waves whose phase velocity varies with time, modulated

waves (Paper III) being an example.

Finally, let us also consider effects that can be driven by

dissipation, in case when plasma is collisional. Since x
changes rapidly with small a in the presence of a phase-

space clump or a hole, slow decay of a will cause frequency

downshifting or upshifting, correspondingly. Yet, since b
depends on how localized Fb(J) is, another effect is antici-

pated, namely, as follows. Notice that a friction drag (say,

proportional to the particle velocity) can cause condensation

of the trapped distribution near the bottom of the wave

potential trough.46 Hence, peaking of F(J) can occur, and b
can decrease gradually down to minus one. This represents a

frequency sweeping mechanism additional to those consid-

ered in Refs. 47–50.

VI. CONCLUSIONS

In this paper, we expand on the results that were previ-

ously reported in our brief letter,11 performing a systematic

study of kinetic nonlinearities in NDR of an adiabatic sinu-

soidal Langmuir wave in collisionless plasma. Specifically, a

general NDR is derived in a nondifferential form, allowing

for an arbitrary distribution of trapped electrons. The linear

dielectric function is generalized, and the nonlinear kinetic

frequency shift xNL is found analytically as a function of the

wave amplitude a. Smooth distributions yield xNL /
ffiffiffi
a
p

, as

usual. However, beam-like distributions of trapped electrons

result in different power laws, or even a logarithmic nonli-

nearity, which are derived as asymptotic limits of the same

dispersion relation. Such beams are formed whenever the

phase velocity changes, because the trapped distribution is in

autoresonance and thus evolves differently from the passing

distribution. Hence, even adiabatic xNL(a) is generally

nonlocal.
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APPENDIX: AUXILIARY FUNCTIONS

Here, we summarize explicit expressions for the special

functions used in this paper.51 The analysis presented in the

main text does not rely on these expressions per se, yet those

are needed to calculate the numerical values of j*, w(j*), and ,.

Specifically, the normalized action j(r) reads as

jðrÞ ¼ 4

p

 ðr � 1ÞKðrÞ þ EðrÞ; r < 1;

r1=2Eðr�1Þ; r > 1

�
(A1)

[Fig. 4(a)], where K and E are the complete elliptic integrals

of the first and second kind,52
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KðfÞ ¼
ðp=2

0

ð1� f sin2 hÞ�1=2 dh; (A2)

EðfÞ ¼
ðp=2

0

ð1� f sin2 hÞ1=2 dh; (A3)

with the following properties:

Kð0Þ ¼ Eð0Þ ¼ p=2; Eð1Þ ¼ 1: (A4)

In particular, one thereby gets j(1)¼ 4=p (which can be

found as well without introducing elliptic integrals), and

j0ðrÞ ¼ 2

p

 KðrÞ; r < 1;

r�1=2Kðr�1Þ; r > 1;

�
(A5)

also yielding the oscillation period, with Eq. (18). From Eq.

(15), one obtains then

gðrÞ ¼ 1� 2EðrÞ=KðrÞ; r < 1;
2r � 1� 2rEðr�1Þ=Kðr�1Þ; r > 1

�
(A6)

[Fig. 4(b)]. Further, the function W(j) is calculated as

W(j)¼w(r(j)), with Eq. (22) yielding

wðrÞ ¼ �
ðr

0

gð�rÞj0ð�rÞ d�r: (A7)

Hence, Eqs. (A5) and (A6) result in

wðrÞ ¼ 4

3p


 ð1� rÞKðrÞ þ ð2r � 1ÞEðrÞ; r < 1;
r1=2½2ð1� rÞKðr�1Þ þ ð2r � 1ÞEðr�1Þ�; r > 1;

�
(A8)

and, in particular, w(1)¼ 4=(3p) [Fig. 5(a)].

Finally, Q(j) is calculated as Q(j)¼ q(r(j)), with

qðrÞ ¼ 1� 2jðrÞwðrÞ (A9)

[Fig. 5(b)]. Hence,

, ¼
ð1

0

1� 2jðrÞwðrÞ½ �j0ðrÞ dr � 0:544: (A10)
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