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The evolution of adiabatic waves with autoresonant trapped particles is described within the

Lagrangian model developed in Paper I, under the assumption that the action distribution of these

particles is conserved, and, in particular, that their number within each wavelength is a fixed

independent parameter of the problem. One-dimensional nonlinear Langmuir waves with deeply

trapped electrons are addressed as a paradigmatic example. For a stationary wave, tunneling into

overcritical plasma is explained from the standpoint of the action conservation theorem. For a non-

stationary wave, qualitatively different regimes are realized depending on the initial parameter S,

which is the ratio of the energy flux carried by trapped particles to that carried by passing particles.

At S< 1/2, a wave is stable and exhibits group velocity splitting. At S> 1/2, the trapped-particle

modulational instability (TPMI) develops, in contrast with the existing theories of the TPMI yet in

agreement with the general sideband instability theory. Remarkably, these effects are not captured

by the nonlinear Schrödinger equation, which is traditionally considered as a universal model

of wave self-action but misses the trapped-particle oscillation-center inertia. VC 2012 American
Institute of Physics. [doi:10.1063/1.3673065]

I. INTRODUCTION

Within the geometrical-optics (GO) approximation, adi-

abatic nonlinear waves in collisionless plasma are described

conveniently within the average-Lagrangian formalism origi-

nally proposed by Whitham.1,2 In our Refs. 3 and 4, further

called Papers I and II, this formalism was restated to also

accommodate effects due to autoresonant particles trapped in

wave troughs. Specifically, the corresponding Whitham’s

Lagrangian density L and the nonlinear dispersion relation

(NDR) were derived in Papers I and II (see also Ref. 5 and

references therein), under the assumption that the action dis-

tribution of these particles is conserved, and, in particular,

that their number within each wavelength is a fixed inde-

pendent parameter of the problem. Here, the evolution of

such waves will be studied.

It is commonly believed that, within the GO approxima-

tion, the wave evolution can be inferred from the NDR alone,

in generalization of the well-known linear solution.6 This

implies, in particular, that L is deducible from the NDR.

Since the latter is equivalent (Paper I) to

La ¼ 0; (1)

where a is the amplitude,7 the assumption hereby is that the

integration constant associated with Eq. (1) is insignificant,

so one can take L ¼
Ð a

0
La da. However, this does not apply

to waves with autoresonant trapped particles. First of all, at

small enough a the Whitham’s Lagrangian ceases to exist,

because particles start to escape the wave potential.8 (Only

d-shaped distributions of trapped particles are allowed at

a ! 0.) Second, as flows from Paper I, L can contain terms

which are independent of a [so they cannot be inferred from

Eq. (1)] and yet depend on the frequency x and the wave-

number k, thus affecting the wave dynamics. This is also

understood from the fact that trapped particles carry fractions

of the wave momentum density q ¼ kLx and the energy flux

density P ¼ �xLk,2 a part of which is determined by the

phase velocity rather than a. Therefore, examining just the

NDR is insufficient to predict the evolution of these waves.

Instead, the complete Lagrangian must be used.9

Here, we show how effects captured by L but not by the

NDR render the wave self-action due to autoresonant trapped

particles unique among other self-action mechanisms. Spe-

cifically, we analyze the evolution of one-dimensional (1D)

nonlinear Langmuir waves with deeply trapped autoresonant

electrons as a paradigmatic example, illustrating the qualita-

tive physics that is also expected for other distributions

(except when dynamic trapping and detrapping become

essential). For a stationary wave, tunneling into overcritical

plasma10–12 is explained from the standpoint of the action

conservation theorem (ACT). For a nonstationary wave,

qualitatively different regimes are realized depending on the

initial parameter S, which is the ratio of the energy flux car-

ried by trapped particles to that carried by passing particles.

At S< 1/2, a wave is stable and exhibits group velocity split-

ting. At S> 1/2, the trapped-particle modulational instability

(TPMI) develops, in agreement with the general sideband

instability (SI) theory13 but in contrast with the existing theo-

ries of the TPMI.14–17 The discrepancy is due to the fact that

the wave dynamics is described in the latter papers via the

nonlinear Schrödinger equation (NLSE). Although tradition-

ally considered as a universal model of wave self-action,6,18

the NLSE neglects the contribution of the a-independent

term in L and, because of that, is generally inapplicable to

waves with trapped particles, as we will show below.

The work is organized as follows: In Sec. II, we formu-

late our analytical model in general. In Sec. III, we present

the wave Lagrangian in a simple form and derive the GO

equations flowing from it. In Sec. IV, we study waves in

plasmas with parameters varying in space and time; in partic-

ular, wave tunneling into overcritical plasma is discussed.

In Sec. V, we consider pulse propagation in homogeneous
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stationary plasma; specifically, the group velocity splitting is

derived for S< 1/2, and the TPMI rate is calculated for

S> 1/2. In Sec. VI, we explain our results in the context of a

more general stability criterion and compare them with other

existing theories. In Sec. VII, we summarize our main con-

clusions. Also, electrostatic potential, nonlinear group veloc-

ities and wave stability, and TPMI as the adiabatic limit of

SI are given in the Appendixes.

II. BASIC MODEL

The assumption that the number of trapped particles is

fixed implies that (i) those are trapped in autoresonance

deeply, such that they do not become untrapped when the

wave parameters evolve; (ii) also, it is implied that there are

no passing particles close to the resonance, so that no addi-

tional trapping can result from the wave evolution. (As mod-

els, corresponding distributions already proved useful for

understanding paradigmatic effects driven by trapped

particles;13,19–22 yet, they can also form naturally as waves

evolve.23) Then, assuming also that the wave envelope is

smooth and evolves slowly enough, an adiabatic Lagrangian

density L in the GO approximation can be inferred from the

general formalism reported in Paper I. For simplicity, we will

focus on 1D nondissipative electrostatic waves in nonmagne-

tized plasma here. In this case, L reads as (Paper I)

L ¼ ð@x �uÞ2

8p
þ a2

16p
�
X

s

nshHsifs ; (2)

which describes both the quasistatic potential �u (if any) and

also the wave, to be characterized by the amplitude a, the

frequency x, and the wave number k. The summation in

Eq. (2) is taken over different species; ns are the correspond-

ing densities averaged locally over the wave oscillations; Hs

are the oscillation-center (OC) energies, and the angular

brackets denote averaging over the particle distributions fs.
We assume that x is large enough, such that no ions are

trapped and that the ion quiver motion is insignificant. Then,

nihHiifi ¼ niHi ¼ Hi þ eni �u; (3)

where Hi is the ion thermal energy density, e> 0 is minus

the electron charge, and ni is the ion density, which is equal

to the electron unperturbed density n0. (For clarity, we take

the ion charge to be e.) Suppose also that the number of

trapped electrons is small enough so that the wave can be

considered monochromatic; for specific conditions see Refs.

13, 24, and 25. Then, provided that all passing electrons are

nonresonant, thus undergoing linear oscillations, one can

write (Paper I)

nðpÞe hHðpÞe ifp ¼ He � ð�� 1Þ a2

16p
� enðpÞe �u; (4)

where He is the electron thermal energy density and �ðx; kÞ is

the linear dielectric function. Finally, trapped electrons have

(Paper I)

HðtÞe ¼ EðtÞe � meu2=2; (5)

where EðtÞe is the particle energy in the frame where the wave is

stationary, u¼x/k is the phase velocity, and me is the electron

mass. Here, we will assume, for simplicity, that these particles

initially reside at (and, due autoresonance, stick to) the very

bottom of the wave potential troughs, so EðtÞe ¼ �ea=k � e �u.

Hence,

nðtÞe hHðtÞe ift ¼ �enðtÞe a=k � enðtÞe �u� menðtÞe u2=2: (6)

Combining the above equations yields

L ¼ �a2

16p
þ eraþ mrx2

2k

þ ð@x �uÞ2

8p
� e½n0 � nðpÞ��uþ erk �u: (7)

Here, we omitted the insignificant thermal energies, dropped

the index e, and introduced r¼ n(t)/k, which is proportional

to the number of trapped electrons within the local wave-

length. In this paper, we will assume r(x,t)¼ const for sim-

plicity; otherwise, see Paper I.

In what follows, we will also assume that the wave is

close to stationary at each x. Then, to prevent the quasistatic

field build-up, the total electron current must remain approx-

imately zero (assuming that the ion current is zero). Hence,

the flow velocity of passing electrons, V0, is estimated as11,12

V0 � unðtÞ=nðpÞ: (8)

We will assume that such V0 does not affect the plasma dis-

persion, the condition being that the right-hand side of

Eq. (8) remain small compared to other characteristic veloc-

ities in the system. In particular, we will require that it be

small compared to the linear group velocity vg0. (Remember

that vg0 � vT � u, where vT is the passing-electron thermal

velocity; see also Sec. V.) Thus,

N � nðtÞ

j2nðpÞ
� 1 (9)

will be assumed, where

j � kkD � 1; (10)

and kD¼ vT/xp is the Debye length. Since the bulk plasma is

supposed to be cold, one can then take26

� ¼ 1�
x2

p

x2 � 3k2v2
T

; (11)

where xp¼ [4pn(p)e2/m]1/2 is the plasma frequency.

III. WAVE EQUATIONS

Varying L with respect to the wave variables yields

wave equations in the geometrical-optics approximation as

discussed in Paper I (see also Appendix A). In particular,

daL ¼ 0 yields Eq. (1), or

�ðx; kÞ þ 8pre=a ¼ 0; (12)

which defines the wave NDR, x¼x(k,a). Using Eq. (11),

one obtains then (cf. Paper I)
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x2 ¼
x2

p

1þ 2x2
t =x

2
E

þ 3k2v2
T ; (13)

where xt¼ [4pn(t)e2/m]1/2, and xE¼ (eak/m)1/2 is the charac-

teristic frequency of the trapped-particle bounce oscillations

in the wave troughs. Notice that the sinusoidal-wave approx-

imation requires13

# � x2
t =x

2
E � 1: (14)

Thus, even with the nonlinear corrections, within our model

one still has the approximate equality x2 � x2
p; i.e., studied

here are weakly nonlinear Langmuir waves.

Further, notice that k¼ @xn and x¼� @tn, where n is

the wave phase. Then, dnL ¼ 0 gives the ACT,

@tI þ @xJ ¼ 0; (15)

where I � Lx is the action density,

I ¼ �xa2

16p
þ mru; (16)

and J � �Lk is the action flux density,

J ¼ � �ka2

16p
þ r

mu2

2
� e �u

� �
: (17)

As argued in the Appendix A, the contribution of e �u in

Eq. (17) can be neglected in the paradigmatic regimes that

we consider here. [For effects of prescribed nonzero �u,

which also flow from Eq. (15), see Ref. 27.] This eliminates

�u from the wave equations altogether, so the wave Lagran-

gian can henceforth be used in a reduced form,

Lða;x; kÞ ¼ �ðx; kÞ a2

16p
þ eraþ mrx2

2k
; (18)

yielding, in particular, that

I � a2

8px
þ mru; J � 3kv2

Ta2

8px2
þ mru2

2
: (19)

Remarkably, the contribution of autoresonant trapped par-

ticles to L is of lower order in a than the leading (first) term.

Compared to common nonlinear waves, this is unusual.

Moreover, the third term in L, which is due to the trapped-

particle OC inertia, is completely independent of a. Hence,

this term is not reflected in the NDR [cf. Eq. (1)] and yet

affects the wave dynamics, as it depends on x and k. Since

the NDR itself is, of course, invariant with respect to the

underlying theoretical formulation, the general wave dynam-

ics is thus not inferable from the NDR in principle.28 For

example, notice that Eq. (12) is independent of the trapped-

particle mass, m(t). [It is only accidentally that, in the specific

problem discussed here, m(t) is the same as the electron mass

entering �ðx; kÞ.] Thus, the same NDR can hold at different

dynamics depending on m(t).

Below, we show how certain paradigmatic effects result

from the trapped-particle OC inertia that yields the a-inde-

pendent term in L. Notice that, at least qualitatively, those

effects are not limited to the model of deeply trapped

particles that we adopt. [This is because the a-independent

term in L originates from the second term in Eq. (5), which

is independent of EðtÞe and thus yields a contribution invariant

to the trapped-particle distribution.] Therefore, as we will

further argue in Sec. VI, some existing theories must be re-

vised that describe the dynamics of waves with even smooth

trapped-particle distributions.

IV. WAVE TRANSFORMATIONS IN PLASMA WITH
VARYING PARAMETERS

Now that L is known explicitly, one can apply the ACT

to infer the wave evolution in plasma with parameters varying

in space and time. In particular, integrating Eq. (15) over the

volume predicts the conservation of the wave total “number

of quanta,”
Ð
I dx ¼ const. Combined with the NDR, for a

homogeneous wave this yields, for instance, a¼ a(x(t)) in

the same manner as for linear waves discussed in Refs. 26,

29, and 30. Below, we consider another example, namely, sta-

tionary wave propagation in inhomogeneous plasma. Unlike

in Refs. 10–12, where an ad hoc solution of the Vlasov equa-

tion was employed to address a similar problem, we will

show that our ACT yields the same results straightforwardly.

For a stationary wave Eq. (15) gives J ¼ const. Since

one also has @xx¼ 0 in that case [Eq. (B2)], this is under-

stood as conservation of the wave energy flux P ¼ xJ (cf.

Appendix B), or

PðpÞ þPðtÞ ¼ const; (20)

where we introduced the densities of energy fluxes carried

by passing particles and trapped particles, respectively

PðpÞ ¼ 3kv2
Ta2

8px
; PðtÞ ¼ 1

2
nðtÞmu3 (21)

(cf. also Refs. 11 and 31). If the ratio

S � PðtÞ=PðpÞ (22)

is small, one can anticipate that the wave is in the linear re-

gime and is not affected significantly by trapped particles.

However, S can become large as the plasma density varies

along the ray trajectory. Then, the wave dynamics becomes

essentially nonlinear, which is seen as follows:

Let us introduce Xp(x)¼xp(x)/x and , ¼ kkT � j,

where kT¼ vT/x� kD; also, � ¼ r=ðnckTÞ � N , with nc

being the critical density, and /¼ ea/(mxvT). Then, Eq. (20)

rewrites as

3,/2 þ �=,2 ¼ 3H; (23)

where H is some constant determined by boundary condi-

tions. Also, we can substitute , from Eq. (13), namely,

3,2 � ð1� X2
pÞ þ 2�=/: (24)

Then, the equation for / reads as

/2ffiffiffi
3
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� X2

p þ 2�=/
q

þ �

1� X2
p þ 2�=/

¼ H: (25)
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Hence, the effect of trapped particles is determined by two

parameters: S, defined [in agreement with Eq. (22)] as the ra-

tio of the terms on the left-hand side here, and also 1, which

is a measure of how , is affected by the nonlinearity [cf. Eq.

(24)]; namely,

S � �=,
2

,u2
; 1 � �=u

,2
: (26)

Suppose that a wave is launched from a subcritical region

(Xp< 1) and initially is close to linear ðS� 1; 1� 1Þ, the

boundary condition thus being H � ,0/
2
0. Then, at first,

/ � /0 ð,0=,Þ1=2
, so 1 remains constant. Yet, S grows as

,�2, and eventually one gets S� 1, at some x¼ x*.32 Beyond

that point, the second term in Eq. (23) dominates, resulting in

constant ,2 � �=ð3HÞ. Hence, Eq. (24) yields X2
p � 1þ �=H

¼ 2�=/, or

/ ¼ 2�

X2
p � 1þ �=H

: (27)

As Xp grows further, u starts to decrease then (Fig. 1).

Finally, the wave reaches x¼ xc, where X2
p ¼ 1 [and thus

1 (xc)� 1]. At that location, u equals about 2H and then con-

tinues analytically into the overcritical region.

Hence, in contrast with a linear wave (for which a GO

solution with nonzero P would be impossible there), a non-

linear wave loaded with trapped particles can, in principle,

penetrate overcritical plasma, in agreement with Refs.

10–12. In particular, since the inhomogeneity scale does not

enter the above equations explicitly, it can always be chosen

large enough, so as to ensure the validity of the GO profile

we derived. However, notice that such a wave will propagate

adiabatically for limited time only. This is because

Sðx& xcÞ& �Hð Þ�1=2� 1, in which case the wave is unsta-

ble, as we will now discuss.

V. PULSE PROPAGATION

Let us consider the envelope dynamics, assuming, for

simplicity, that the plasma is homogeneous and stationary.

Since the ACT [Eq. (15)], serving as the envelope equation,

contains only first-order derivatives of a, the diffraction is

hereby neglected. Within this approximation, a linear pulse

would conserve its shape, traveling at the linear group veloc-

ity vg0. A nonlinear wave, in contrast, will undergo distor-

tion, particularly because it can have two group velocities vg.

A. Group velocity splitting

Specifically, following Refs. 1 and 2, we define vg here

as the velocities of information (rather than that of the

energy, such as in Refs. 33–36), which propagates along

characteristics of the wave equation (Appendix B). Hence, vg

are found explicitly from Eqs. (B21)-(B24), via substituting

Eq. (18) for L. Using Eqs. (10) and (14), after a tedious yet

straightforward calculation, one gets then

vg ¼ vg0

1þ S#6 g

1þ 3S#j2
; (28)

where vg0� 3jvT, and

g ¼ XE

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S 1=2� Sð Þ

p
; (29)

with XE:xE/xp; in particular, S ¼ #=ð3X2
Ej2Þ. We assume

that the nonlinear corrections to vg0 are small, i.e.,

S#� 1; g� 1; (30)

where the former inequality ensures that the denominator in

Eq. (28) is also close to unity. (For a summary of our

assumptions, see Fig. 2.) Hence,37

vg � vg0½1 6 XE

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S 1=2� Sð Þ

p
�; (31)

with a characteristic shape of vg(j) shown in Fig. 3.

Although small, the second term in Eq. (31) is retained,

because it is responsible for essentially nonlinear effects. In

particular, consider the case when S< 1/2. Then, g is real,

causing the group velocity splitting by Dvg¼ 2vg0g. This

means, for example, that a general modulation imposed on

the wave profile eventually splits into two signals propagat-

ing with different velocities [Fig. 4(a)]. Each signal may

then evolve further, if having a finite spread of a and thus of

FIG. 1. 1D stationary wave with trapped particles in inhomogeneous

plasma. Shown is the normalized amplitude of the wave potential, ///c, vs.

the plasma normalized density n=nc ¼ X2
p for different �. Here /c¼ 2H,

with H¼ 0.1 taken as an example; nc is the critical density. Dashed is the

linear solution (�¼ 0) and the location of the linear cutoff (n¼ nc).

FIG. 2. (Color online) Schematic of the parameter domain assumed for

Sec. V: (a) in space (j, #, XE) and (b) in space (j, #, S). Combined here are

the following assumptions: the plasma is cold [Eq. (10)], the wave is sinusoi-

dal [Eq. (14)] and weak enough [Eq. (A7)], the quasistatic field due to

trapped particles is negligible [Eq. (A11)]; also, the bulk motion and the

nonlinear effects are weak, i.e., V0 � Dvg � vg0 [Eq. (30); see also Eqs. (8)

and (28)]. The inequalities Eqs. (9) and (A12) reduce to V0 � vg0 and thus

are satisfied automatically.
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vg too; however, such a signal will be comprised of charac-

teristics that all correspond to the same sign in Eq. (31), so

further splitting per se will not occur. As we remind in the

Appendix B, the pulse splitting is an inherent feature of all

nonlinear waves, as well known in classical hydrodynam-

ics2,38 and also observed in plasma physics experiments.15,47

B. TPMI

In contrast, at S> 1/2, Eq. (31) yields no real solutions

for vg. Then, the wave is TPMI-unstable, as illustrated in

Fig. 4(b). One can also assess the wave stability using

another approach, which yields the TPMI rate explicitly.

Instead of searching for characteristics, take

a ¼ a0 þ Da; x ¼ x0 þ Dx; k ¼ k0 þ Dk (32)

and assume that the perturbations, denoted by D, are small

compared to the corresponding homogeneous parameters,

denoted by 0. Then, one can linearize the GO equations

[Eqs. (B1)-(B3)] and find the dispersion relation Dx(Dk),

which is linear in the sense that it is independent of Da
(albeit not of a0). Specifically, under the same assumptions

as for Eq. (31), one can show that

Dx ¼ Dk vg0ð16gÞ: (33)

At S< 1/2, one has real Dx, and the signal velocity vg that

we introduced earlier is recovered as the effective linear
group velocity

dðDxÞ
dðDkÞ ¼ vg0ð16gÞ: (34)

At S> 1/2, one has two x complex conjugate to each other.

Then, the wave is unstable, as predicted earlier; yet now we

get a formula for the TPMI rate too,

c � Dk vg0XE

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S S� 1=2ð Þ

p
: (35)

VI. DISCUSSION

A. Stability criterion

The TPMI threshold also can be inferred from the gener-

alized Lighthill’s criterion (GLC), which states that a wave

is stable when xI ðk; IÞJ kðk; IÞ > 0 (Appendix B). To see

this, let us first rewrite I as

I � a2

8pxp
þ mrxp

k
; (36)

from where one gets a ¼ aðk; IÞ, with aI > 0. Since

xa(k,a)> 0, the latter yields xI ðk; IÞ > 0, so the GLC takes

the form J kðk; IÞ > 0. Further, using that

J � 3kv2
Ta2

8px2
p

þ
mrx2

p

2k2
; (37)

we obtain

J k �
3v2

Ta2

4px2
p

1

2
� Sþ kak

a

� �
: (38)

Since kak=a � 3Sj2 � S [from Eq. (36)], the GLC hereby

rewrites as S< 1/2, in agreement with the criterion that we

found earlier from Eq. (31).

Notice that waves with other distributions of trapped

electrons also can be studied similarly. (Of course, r still

must be conserved, which is not the case, e.g., for distribu-

tions nonzero near the trapping boundary; cf. Paper II.) For

example, if xa(k,a)< 0, the GLC would read as S> 1/2,

assuming that Eqs. (36) and (37) still hold approximately.

However, remember that the GLC, and the underlying Whith-

am’s formalism overall, neglects diffraction and assesses the

stability of only adiabatic perturbations with small enough

Dk. Even when those are stable, at larger Dk a more general

SI (Refs. 19–21 and 39) may develop,13 for which the TPMI,

when present, can be considered as the adiabatic limit. In par-

ticular, notice that it is the general SI rather than the TPMI

that is responsible for the effects reported in Ref. 39.

B. Comparison with the existing theories

The SI is treated systematically in Ref. 13 from where a

rate can be inferred that matches our Eq. (35) under the appro-

priate conditions (Appendix C). Yet, our results are in drastic

variation with the traditional40 models of the TPMI,14–17 for

those predict that a wave is always stable when resonant elec-

trons remain deeply trapped.14 The discrepancy is due to the

fact that Refs. 14–17 rely on the NLSE. Unlike the linear

FIG. 3. (a) Nonlinear group velocities, vþg and v�g [Eq. (31)] vs. j, for

sample XE and #; the dashed line shows the linear group velocity vg0. At

S> 1/2, corresponding to j < jS � X�1
E

ffiffiffiffiffiffiffiffiffiffiffi
2#=3

p
, no real solutions exist for

vg, rendering the wave unstable. (b) Close-up at j�jS.

FIG. 4. (Color online) Evolution of the perturbation Dða2
0Þ ¼ �0:03a2

0

expð�x4=‘4Þ to a homogeneous wave with the initial amplitude a0. The solu-

tion is obtained by numerical integration of Eqs. (B1)-(B3), with L taken

from Eq. (18), for the same parameters as in Fig. 3 and ‘¼ 20kD. Shown is

D(a2) (arbitrary color scaling), vs. t and x in the frame moving with the

linear group velocity vg0; the units are x�1
p and kD, correspondingly.

(a) j¼ 0.2, so S¼ 1/4; the wave is stable, resulting in signal splitting.

(b) j¼ 0.1, so S¼ 1; the wave is TPMI-unstable.
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Schrödinger equation (LSE), the NLSE cannot be obtained via

inverse Fourier transform of the dispersion relation, because

the NDR does not describe individual harmonics of the wave

but rather the local (a, x, k). Hence, an additional assumption

is needed to add a nonlinear term to the LSE. Usually postu-

lated is that the wave energy flux is approximately quadratic

in the amplitude6,18 (i.e., that L / a2 to the lowest order in a)

or that the nonlinear term is a local function of a (Ref. 14)

rather than of x or k. However, for waves with trapped par-

ticles, these assumptions do not hold. Thus, the NLSE, as it is

currently introduced in the literature, is inapplicable.

A more detailed comparison with the existing TPMI the-

ories would require accounting for diffraction (which is out

of the scope of our model), but it is already seen, both from

the above qualitative argument and also from the precise

solution of the model problem presented here, that the

NLSE-based models do not apply at large S. (Interestingly,

disagreement between those models and numerical simula-

tions was also reported before; see, e.g., Refs. 17 and 41.) In

connection to this, notice that at j& 0:2, which is usually

associated with large enough n(t),24 S> 1/2 is achieved eas-

ily, not to mention that SI may develop too. Thus, the effect

of the trapped-particle OC inertia on c that we discuss here is

important for assessing the wave stability under practical

conditions. Also, notice that the actual NDR may be nonlocal

(Paper II), contrary to the tacit assumption used commonly.

Hence, further investigation may be needed to adequately

model the TPMI and related effects.

VII. CONCLUSIONS

In this paper, the evolution of adiabatic waves with

autoresonant trapped particles is analyzed under the assump-

tion that the action distribution of these particles is con-

served, and, in particular, that their number within each

wavelength is a fixed independent parameter of the problem.

Particularly, 1D nonlinear Langmuir waves with deeply

trapped autoresonant electrons are addressed as a paradig-

matic example, illustrating the qualitative physics that is also

expected for other distributions (except when dynamic trap-

ping and detrapping become essential). For a stationary

wave, tunneling into overcritical plasma is explained from

the standpoint of the action conservation theorem. For a non-

stationary wave, qualitatively different regimes are realized

depending on the initial parameter S, which is the ratio of the

energy flux carried by trapped particles to that carried by

passing particles. At S< 1/2, a wave is stable and exhibits

group velocity splitting. At S> 1/2, the trapped-particle

modulational instability develops, in contrast with the exist-

ing theories of the TPMI yet in agreement with the general

SI theory. Remarkably, these effects are not captured by the

nonlinear Schrödinger equation, which is traditionally con-

sidered as a universal model of wave self-action but misses

the trapped-particle OC inertia.
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APPENDIX A: ELECTROSTATIC POTENTIAL

Let us discuss the specific conditions under which the

electrostatic potential �u can be neglected in Eq. (17). First of

all, the equation for �u is obtained from d�uL ¼ 0 [Eq. (7)]

and represents the usual Poisson’s equation,

@2
xx �u ¼ �4pe½n0 � nðpÞ � nðtÞ�; (A1)

where n0 is determined by initial conditions, and n(t) is

“frozen” into the wave, due to r¼ const. To find n(p), con-

sider the momentum equation for passing electrons,

m ð@tV0 þ V0 @xV0Þ ¼ @xðe �u� UÞ � T @x ln nðpÞ; (A2)

where we assumed, for simplicity, that the plasma is iso-

thermal and included the ponderomotive potential, U
� e2a2=ð4mx2

pÞ (in contrast with Ref. 11, where U was left out).

Since U=mV2
0 � #�2 � 1, we can neglect the convec-

tive term on the left-hand side immediately. The other term

can be estimated from

m @tV0 � mvg0 @x
~V0; (A3)

with tilde henceforth denoting perturbations to stationary

values. From the continuity equation,

@tn
ðpÞ þ @x½nðpÞV0� ¼ 0; (A4)

one gets that DV0 � vg0~nðpÞ=nðpÞ; hence,

m @tV0 � mv2
g0 @x ~nðpÞ=nðpÞ � T @x ~nðpÞ=nðpÞ: (A5)

This allows one to neglect the inertia term compared to the

pressure term in Eq. (A2), thus yielding

@x½�e �uþ Uþ T ln nðpÞ� ¼ 0: (A6)

For weak enough waves, with U� T, or

XE � j; (A7)

one can thereby estimate the maximum �u as

e �u. T � mu2: (A8)

For the purpose of Sec. IV, Eq. (A8) is already enough to

neglect e �u in Eq. (17). For the other regimes that we discuss,

one may assume e �u� T, yet what matters in Eq. (17) now

are only variations of mu2, which may not be smaller than

e �u; thus, Eq. (A8) becomes insufficient. In this case, let us

revert to Eq. (A1) and substitute

nðpÞ ¼ n
ðpÞ
0 eðe �u�UÞ=T � n

ðpÞ
0 ½1þ ðe �u� UÞ=T� (A9)

from Eq. (A6); hence,

k2
D @

2
xxðe �uÞ ¼ e �u� Uþ T ~nðtÞ=n

ðpÞ
0 ; (A10)

where n
ðpÞ
0 is the unperturbed density of passing electrons.

The latter term in Eq. (A10) is negligible, due to

T

U
~nðtÞ

n
ðpÞ
0

. Sj4 � 1; (A11)
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provided that S is moderate. (Remember that we are mostly

interested in regimes with S� 1.) At k2
D@

2
xx � 1, one gets

then e �u � U. On the other hand,

rU
�ka2=16p

� N � 1 (A12)

[Eq. (9)]. Thus, again, e �u is negligible in Eq. (17).

APPENDIX B: NONLINEAR GROUP VELOCITIES AND
WAVE STABILITY

In this Appendix, we concisely restate, to avoid ambigu-

ity, the concept of the group velocity for linear and nonlinear

waves, as introduced originally by Whitham1,2 (see also

Refs. 33 and 42–45), and discuss how it is connected with

the wave stability.

1. Conservation laws and flow velocities

For simplicity, we will assume a 1D system, the general-

ization to the case of multiple dimensions being straightfor-

ward. In the GO approximation, the wave is completely

described by its amplitude a, frequency x, and the wave

number k, so the Lagrangian density can be taken in the form

Lða;x; k; t; xÞ. Then, just like in Sec. III, the wave equations

read as

La ¼ 0; (B1)

@tk þ @xx ¼ 0; (B2)

@tLx � @xLk ¼ 0: (B3)

Equation (B1) defines the NDR, x¼x(k,a). Equation (B2)

is the consistency condition, satisfied due to

x ¼ �@tn; k ¼ @xn; (B4)

where n is the field phase. [Notice, in particular, that Eq.

(B2) can be understood as the continuity equation for wave

crests, with k being the crest density, and x¼ ku being the

crest flux density.] Finally, Eq. (B3) is the ACT, also known

in the form Eq. (15), or

@tI þ @xðvIIÞ ¼ 0; (B5)

with vI ¼ �Lk=Lx serving as the action flow velocity.

Suppose now that the medium is stationary, i.e., L does

not depend on t explicitly. Then, @tL ¼ Lx @txþ Lk @tk,

where we used Eq. (B1). Thus,

@tðxLx � LÞ ¼ x @tLx þ Lx @tx� Lx @tx� Lk @tk

¼ x @tLx � Lk @tk

¼ x @xLk � Lk @tk

¼ x @xLk þ Lk @xx

¼ @xðxLkÞ; (B6)

where Eqs. (B2) and (B3) were employed. Similarly, if L

does not depend on x explicitly, one gets

@xðkLk � LÞ ¼ @tðkLxÞ: (B7)

Equations (B6) and (B7) represent the conservation laws for

the wave energy and momentum and can be written as

@teþ @xðveeÞ ¼ 0; @tqþ @xðvqqÞ ¼ 0; (B8)

where we introduced

e ¼ xLx � L; q ¼ kLx (B9)

for the energy density and the momentum density and

ve ¼ �
xLk

xLx � L
; vq ¼ �

kLk � L

kLx
(B10)

for the corresponding flow velocities. In particular, notice

that the energy flux density P: vee and the momentum flux

density P � vqq are then given by

P ¼ �xLk; P ¼ L� kLk: (B11)

In general, vI , ve, and vq are all different from each other.

The exception is the linear regime, which is defined as the re-

gime when x(k), inferred from Eq. (B1), is independent of a.

The latter is possible if La has the form La ¼ Dðx; kÞAa,

where A is some function such that Aa is nonzero; hence

L ¼ Dðx; kÞA. Since Eq. (B1) thereby reads as Dðx; kÞ ¼ 0,

one has L ¼ 0, so

ve ¼ vq ¼ vI ¼ �Lk=Lx: (B12)

From differentiating Lða;xðkÞ; kÞ ¼ 0 with respect to k, one

gets �Lk=Lx ¼ xk � vg0, with the latter known as the linear

group velocity. Therefore, in the linear regime,

ve ¼ vq ¼ vI ¼ vg0: (B13)

Notice also that a pulse is usually linear at its front and tail

(except in the presence of trapped particles), since the field is

weak there. Hence, it is only within the pulse that Eq. (B13)

can be violated due to nonlinear effects.

2. Nonlinear group velocity

By analogy with the linear case [Eq. (B13)], the nonlin-

ear group velocity vg is often defined as ve too,33–36 or as xk

with the derivative taken at fixed L=x, since

ðxkÞL=x ¼ �
@kðL=xÞ
@xðL=xÞ

¼ � Lk

Lx � L=x
¼ ve: (B14)

However, this generalization is arbitrary, and other defini-

tions, such as vg¼ vq or vg ¼ vI , would be equally justified.

[In fact, the latter would be even more fundamental, because

the ACT holds also in nonstationary medium, unlike the

energy conservation law.] More consistently, vg is defined as

the velocity of information, i.e., the velocity on characteris-

tics.1,2 Below, we restate how it is calculated in the general

nonlinear problem.

To find characteristics of Eqs. (B1)-(B3), let us consider

traveling-wave solutions, with the propagation velocity vg

yet to be found. In other words, let us search for solutions in

the form where all the wave variables are expressed through
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a single variable f(x,t): x�X(t), such that dtX¼ vg; then,

@x¼ df and @t¼� vgdf. In particular, one thereby gets from

Eq. (B2) that

vg ¼ x0=k0 � dkx; (B15)

where primes denote df, and dk is taken in the sense that

x¼x(k,a(k)). [Notice that the latter local relation holds on a

characteristic only, and generally there are two branches of

x(k,a(k)) corresponding to the two different types of charac-

teristics that we will find.] Hence, understanding the nonlin-

ear group velocity as the characteristic velocity represents a

natural generalization of vg0.

To actually find vg, we proceed as follows. Using that

@tLx ¼ Lxa @taþ Lxx @txþ Lxk @tk; (B16)

@xLk ¼ Lka @xaþ Lkk @xk þ Lkx @xx; (B17)

one can rewrite the ACT as

vgðLxaa0 þ Lxxx0 þ Lxkk0Þ
þ Lkaa0 þ Lkkk0 þ Lkxx0 ¼ 0: (B18)

Here, a0 can be derived from Eq. (B1), after differentiating

the latter with respect to f

0 ¼ dfLa ¼ Laa a0 þ Laxx0 þ Lakk0: (B19)

Specifically, one gets

da

dk
¼ �Laxvg þ Lak

Laa
; (B20)

so Eq. (B18) rewrites as follows:

pv2
g þ 2rvg þ q ¼ 0; (B21)

where we introduced

p ¼ LaaLxx � L2
xa; (B22)

r ¼ LaaLxk � LxaLka; (B23)

q ¼ LkkLaa � L2
ka: (B24)

Since Eq. (B21) is a quadratic equation for vg, there are gen-

erally two group velocities different from each other (regard-

less of the type of nonlinearity), causing signal splitting. The

exception is the linear regime. In that case, it is convenient

to use A instead of a (Appendix B1); then the same equations

hold, if @a is replaced with @A. On the other hand, LAA ¼ 0,

so one obtains

v2
gL

2
xA þ 2vgLxALkA þ L2

kA ¼ 0 (B25)

(cf. also Ref. 38), yielding that the two roots coincide

vg ¼ �LkA=LxA ¼ �Lk=Lx ¼ vg0: (B26)

Thus, we again see that the nonlinear vg, defined as the char-

acteristic velocity, equals vg0 in the linear limit.

3. Stability criterion

If r2< pq, there are no real solutions for vg, so no stable

envelope is possible in this regime. This means that ampli-

tude modulations will grow with time, i.e., the wave is mod-

ulationally unstable, unless r2	 pq. Below, we will put this

criterion in a yet different form,2 which we will need in the

main text.

Let us choose the action density I � Lx to serve as an

independent variable instead of a. Also, using the NDR,

exclude x from the list of independent variables; hence,

x ¼ xðk; IÞ; a ¼ aðk; IÞ; J ¼ J ðk; IÞ; (B27)

where J � �Lk is the action flux density. In particular,

notice that L takes the following form:

Lðaðk; IÞ;xðk; IÞ; kÞ � Kðk; IÞ; (B28)

so Kk ¼ Ixk � J and KI ¼ IxI , due to Eq. (B1). Now

Eqs. (B2) and (B3) on characteristics read as

� vgk0 þ xkk0 þ xII 0 ¼ 0; �vgI0 þ J kk0 þ J II 0 ¼ 0:

From KkI ¼ KIk, it follows that xk ¼ J I , so one gets

vg ¼ xk6
ffiffiffiffiffiffiffiffiffiffiffiffi
xIJ k

p
: (B29)

(In a linear wave, xI ¼ 0, so there is only one group veloc-

ity, vg¼ vg0.) Hence, the wave is stable if

xIJ k > 0: (B30)

In particular, when xI is small, one can substitute in

Eq. (B30) the lowest-order approximation for J , yielding

xIJ k ¼ xII @kvg0. Suppose that, approximately, I / a2

(corresponding to the most common choice of a), so

xII ¼ xaa=2. Then, required for stability is the condition

xa@kvg0 > 0. The latter is equivalent to that flowing from, e.g.,

Eq. (4) in Ref. 14 or Eq. (7) in Ref. 46 and also agrees with

the Lighthill’s original criterion for weakly nonlinear waves.44

Hence, in the main text, Eq. (B30) is called the generalized

Lighthill’s criterion.

APPENDIX C: TPMI AS THE ADIABATIC LIMIT OF SI

Let us compare the TPMI rate that we found in Sec. V

with that flowing from Ref. 13 for the more general SI.19–21,39

Specifically, we will consider the limit S� 1, where Eq. (23)

of Ref. 13 applies, reading as

1� A
D �x2

� ðSAT Þ2

½D �xþ D�kð1� T Þ�2
¼ 0: (C1)

Here A¼ X2
E, T ¼ 3j2, D �x¼ ðDx�Dk u0Þ=x0, u0¼x0/k0,

D�k ¼ Dk=k0, and S is defined as in our paper.

Equation (C1) describes four eigenmodes, two of which

correspond to oscillations at D �x � 6A1=2 and two others

have yet lower frequencies. We will assume that the former

is of zero amplitudes (remember that our theory applies only

at time scales large compared to x�1
E ; see Paper I), so those
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are the lower-frequency modes that we will consider. Hence,

we take D �x2 � A, in which case the first term in Eq. (C1)

can be neglected, yielding

½D �xþ D�kð1� T Þ�2 ¼ �D �x2

A ðSAT Þ2: (C2)

Treating the right-hand side as a perturbation, one gets

D �x � D�kðT � 1Þ6iD�kST
ffiffiffiffi
A
p

(C3)

(here we also used that T � 1), which is equivalent to

Dx � Dk vg06iðDk=kÞxpST
ffiffiffiffi
A
p

: (C4)

Since T A1=2 ¼ 3XEj2, the instability rate c then equals

c � Dk vg0XES; (C5)

which precisely matches our Eq. (35) taken at S� 1.

1G. B. Whitham, J. Fluid Mech. 22, 273 (1965).
2G. B. Whitham, Linear and Nonlinear Waves (Wiley, New York, 1974),

Chaps. 14 and 15.
3I. Y. Dodin and N. J. Fisch, Phys. Plasmas 19, 012102 (2012).
4I. Y. Dodin and N. J. Fisch, Phys. Plasmas 19, 012103 (2012).
5I. Y. Dodin and N. J. Fisch, Phys. Rev. Lett. 107, 035005 (2011).
6V. I. Karpman, Non-Linear Waves in Dispersive Media (Pergamon, New

York, 1974), Chap. V.
7The indexes a, k, x, A, and I (except in vI ) denote differentiation with

respect to the corresponding variables.
8From the standpoint of time-averaged dynamics, particle detrapping is an

irreversible process, which thus cannot be described by a Lagrangian in

principle. Of course, the plasma true Lagrangian still exists; however, its

wave part cannot be represented in the Whitham’s form, Lða;x; kÞ.
9Of course, an alternative is the kinetic approach, which yet leads to solu-

tions that are not easily tractable and are generally specific to particular

settings. See Ref. 23 and V. L. Krasovskii, Zh. Eksp. Teor. Fiz. 95, 1951

(1989) [Sov. Phys. JETP 68, 1129 (1989)]. Also, see references therein

and more recent Ref. 27 and A. I. Matveev, Fiz. Plazmy 34, 1001 (2008)

[Plasma Phys. Rep. 34, 924 (2008)]; A. I. Matveev, Russ. Phys. J. 52, 885

(2009); A. I. Matveev, Fiz. Plazmy 35, 351 (2009) [Plasma Phys. Rep. 35,

315 (2009)]; A. I. Matveev, Russ. Phys. J. 53, 369 (2010); A. I. Matveev,

Russ. Phys. J. 53, 657 (2010).
10V. L. Krasovsky, Phys. Lett. A 163, 199 (1992).
11V. L. Krasovsky, Fiz. Plazmy 18, 739 (1992) [Sov. J. Plasma Phys. 18,

382 (1992)].
12V. L. Krasovsky, J. Plasma Phys. 47, 235 (1992).
13V. L. Krasovsky, Phys. Scr. 49, 489 (1994).

14R. L. Dewar, W. L. Kruer, and W. M. Manheimer, Phys. Rev. Lett. 28,

215 (1972).
15H. Ikezi, K. Schwarzenegger, and A. L. Simons, Phys. Fluids 21, 239 (1978).
16H. A. Rose, Phys. Plasmas 12, 012318 (2005).
17H. A. Rose and L. Yin, Phys. Plasmas 15, 042311 (2008).
18V. I. Karpman and E. M. Krushkal, Zh. Eksp. Teor. Fiz. 55, 530 (1968)

[Sov. Phys. JETP 28, 277 (1969)].
19W. L. Kruer, J. M. Dawson, and R. N. Sudan, Phys. Rev. Lett. 23, 838 (1969).
20M. V. Goldman, Phys. Fluids 13, 1281 (1970).
21M. V. Goldman and H. L. Berk, Phys. Fluids 14, 801 (1971).
22V. L. Krasovsky, Plasma Phys. Controlled Fusion 51, 115011 (2009).
23V. L. Krasovskii, Zh. Eksp. Teor. Fiz. 107, 741 (1995) [JETP 80, 420

(1995)].
24H. A. Rose and D. A. Russell, Phys. Plasmas 8, 4784 (2001).
25B. J. Winjum, J. Fahlen, and W. B. Mori, Phys. Plasmas 14, 102104

(2007).
26I. Y. Dodin, V. I. Geyko, and N. J. Fisch, Phys. Plasmas 16, 112101

(2009).
27A. I. Matveev, Fiz. Plazmy 34, 114 (2008) [Plasma Phys. Rep. 34, 95

(2008)].
28Notice, in particular, that Eq. (18) can be written as L ¼

Ð a
0

La da
þ nðtÞmu2=2. Yet, this form holds only for a d-shaped trapped-particle dis-

tribution; for other distributions, there is a minimum a below which L is

undefined.
29P. F. Schmit, I. Y. Dodin, and N. J. Fisch, Phys. Rev. Lett. 105, 175003 (2010).
30I. Y. Dodin and N. J. Fisch, Phys. Rev. D 82, 044044 (2010).
31T. H. Stix, Waves in Plasmas (AIP, New York, 1992), Sec. 4.2.
32From S� 1, one gets another estimate, /� (�/j3)1/2. Thus, j
 � /�1

0

ð�=j0Þ1=2
and /
 � /3=2

0 j3=4
0 ��1=4.

33M. J. Lighthill, J. Inst. Math. Appl. 1, 1 (1965).
34C. D. Decker and W. B. Mori, Phys. Rev. Lett. 72, 490 (1994).
35C. D. Decker and W. B. Mori, Phys. Rev. E 51, 1364 (1995).
36C. B. Schroeder, C. Benedetti, E. Esarey, and W. P. Leemans, Phys. Rev.

Lett. 106, 135002 (2011).
37Considered here is nondissipative dynamics only. For dissipative effects,

see D. Bénisti, O. Morice, L. Gremillet, E. Siminos, and D. J. Strozzi, Phys.

Plasmas 17, 082301 (2010); D. Bénisti, D. J. Strozzi, L. Gremillet, and

O. Morice, Phys. Rev. Lett. 103, 155002 (2009); D. Bénisti, and L. Gremil-

let, Phys. Plasmas 14, 042304 (2007). See also our Ref. 3 for comparison.
38L. D. Landau and E. M. Lifshitz, Fluid Dynamics (Pergamon, New York,

1987), Secs. 103 and 104.
39S. Brunner and E. J. Valeo, Phys. Rev. Lett. 93, 145003 (2004).
40To our knowledge, the results of Ref. 13 have never been associated with

the TPMI before.
41P. E. Masson-Laborde, W. Rozmus, Z. Peng, D. Pesme, S. Hüller,

M. Casanova,V. Yu. Bychenkov, T. Chapman, and P. Loiseau, Phys. Plas-

mas 17, 092704 (2010).
42G. B. Whitham, Proc. R. Soc., London Ser. A 283, 238 (1965).
43M. J. Lighthill, J. Inst. Math. Appl. 1, 269 (1965).
44M. J. Lighthill, Proc. R. Soc., London Ser. A 299, 28 (1967).
45W. D. Hayes, Proc. R. Soc., London Ser. A. 332, 199 (1973).
46V. E. Zakharov and L. A. Ostrovsky, Physica D 238, 540 (2009).
47E. E. Kunhardt and B. R.-S. Cheo, Phys. Rev. Lett. 37, 1688 (1976).

012104-9 Adiabatic nonlinear waves with trapped particles. III Phys. Plasmas 19, 012104 (2012)

Downloaded 16 Jan 2012 to 198.35.3.38. Redistribution subject to AIP license or copyright; see http://pop.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1017/S0022112065000745
http://dx.doi.org/10.1103/PhysRevLett.107.035005
http://dx.doi.org/10.1016/0375-9601(92)90408-E
http://dx.doi.org/10.1017/S0022377800024193
http://dx.doi.org/10.1088/0031-8949/49/4/016
http://dx.doi.org/10.1103/PhysRevLett.28.215
http://dx.doi.org/10.1063/1.862198
http://dx.doi.org/10.1063/1.1829066
http://dx.doi.org/10.1063/1.2901197
http://dx.doi.org/10.1103/PhysRevLett.23.838
http://dx.doi.org/10.1063/1.1693061
http://dx.doi.org/10.1063/1.1693512
http://dx.doi.org/10.1088/0741-3335/51/11/115011
http://dx.doi.org/10.1063/1.1410111
http://dx.doi.org/10.1063/1.2790385
http://dx.doi.org/10.1063/1.3250983
http://dx.doi.org/10.1103/PhysRevLett.105.175003
http://dx.doi.org/10.1103/PhysRevD.82.044044
http://dx.doi.org/10.1093/imamat/1.1.1
http://dx.doi.org/10.1103/PhysRevLett.72.490
http://dx.doi.org/10.1103/PhysRevE.51.1364
http://dx.doi.org/10.1103/PhysRevLett.106.135002
http://dx.doi.org/10.1103/PhysRevLett.106.135002
http://dx.doi.org/10.1063/1.3464467
http://dx.doi.org/10.1063/1.3464467
http://dx.doi.org/10.1103/PhysRevLett.103.155002
http://dx.doi.org/10.1063/1.2711819
http://dx.doi.org/10.1103/PhysRevLett.93.145003
http://dx.doi.org/10.1063/1.3474619
http://dx.doi.org/10.1063/1.3474619
http://dx.doi.org/10.1098/rspa.1965.0019
http://dx.doi.org/10.1093/imamat/1.3.269
http://dx.doi.org/10.1098/rspa.1967.0121
http://dx.doi.org/10.1098/rspa.1973.0021
http://dx.doi.org/10.1016/j.physd.2008.12.002
http://dx.doi.org/10.1103/PhysRevLett.37.1688

