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In this paper, we compare two recent models [N. A. Yampolsky and N. J. Fisch, Phys. Plasmas 16,

072104 (2009); D. Bénisti, D. J. Strozzi, L. Gremillet, and O. Morice, Phys. Rev. Lett. 103, 155002

(2009)] introduced to predict the nonlinear growth of stimulated Raman scattering in the kinetic

regime, and providing moreover a nonlinear description of the collisionless, Landau-like, damping

rate of the driven electron plasma wave. We first recall the general theoretical framework common

to these two models, based on the derivation of the imaginary part of the electron susceptibility, vi,

and then discuss in detail why the two approaches differ. By comparing the theoretical predictions

for vi to those derived from test particle or Vlasov simulations, we moreover discuss the range of

validity of the two models. VC 2012 American Institute of Physics. [doi:10.1063/1.3677264]

I. INTRODUCTION

Predicting the nonlinear growth of stimulated Raman

scattering (SRS) in the kinetic regime, when the electron dis-

tribution function may be greatly modified due to the growth

of a large amplitude plasma wave, has remained a challenge

for decades. Yet, this is a problem of great importance for in-

ertial confinement fusion1 or Backward Raman amplifica-

tion,2 two applications that motivated the theoretical works

of Refs. 3 and 4 which we further discuss here. These two

papers placed a particular emphasis on the nonlinear reduc-

tion of the collisionless, Landau-like, damping rate of the

laser-driven electron plasma wave, an effect that may greatly

enhance Raman reflectivity, as invoked to explain the experi-

mental results of Ref. 5. Actually, since these experimental

results have been published, several “reduced” models (see

for example Refs. 6–11), relying on the hypothesis that the

electric field amplitudes may be considered as slowly vary-

ing envelopes, have been introduced in order to recover the

so-called “kinetic inflation” of Raman reflectivity described

in Ref. 5. However, it is not quite easy to understand how all

these models differ, what their ranges of validity are, and

which model should be used depending on the physics condi-

tions. It is the aim of this paper to partially fill this gap by

carefully discussing, and comparing, the theoretical

approaches of Refs. 3 and 4, as well as the precision of the

results deduced from these theories.

A key parameter to derive how efficiently an electron

plasma wave (EPW) may be laser-driven, and therefore to

quantify Raman growth, is the nonlinear electron susceptibility,

v. Indeed, the ratio between the amplitudes, Ed , of the electro-

magnetic drive and, Ep, of the plasma wave is proportional to

the imaginary part, vi, of the electron susceptibility. In this

paper, we carefully and unambiguously define the amplitudes

Ed and Ep, as well as v, so as to show that

viEp � Ed cosðduÞ; (1)

where du is the phase mismatch between the driving and

plasma fields. We then discuss how to derive a simple theo-

retical expression for vi, and how Eq. (1) may be cast into an

envelope equation. More precisely, we restrict here to the sit-

uation when Ep only depends on time, and grows with time,

and compare the theoretical developments of Refs. 3 and 4

showing that Eq. (1) may be written as

dEp=dtþ �Ep / Ed cosðduÞ; (2)

where � is what we call the nonlinear Landau damping rate

of the driven electron plasma wave. We focus here on the

nonlinear variations of vi, or on the terms in the envelope

equation for Ep, and will not discuss the values of the nonlin-

ear phase mismatch du. This is because du is induced by the

nonlinear frequency shift dxp of the plasma wave, and the

relevance of the various theoretical models for dxp was al-

ready discussed in Refs. 12 and 13.

For the two theoretical works of Refs. 3 and 4 we hence-

forth focus on, the derivation of Eq. (2) from Eq. (1) is

actually quite different. In Ref. 3, one makes use of a Taylor

expansion for v to find, viðxþ icÞ � viðxþ i0Þ þ c@xvr ,

where c � E�1
p ðdEp=dtÞ and vr is the real part of the electron

susceptibility. Then, a quasilinear value for vr is used while

viðxþ i0Þ � �@xvr is derived from energy conservation. By

contrast, in Ref. 4, vi is derived directly from the electron dy-

namics and it is found that, for small enough values of c,

vi � @xvenv
r ½cþ ��, where venv

r is some effective real suscep-

tibility. In the linear regime, venv
r ¼ vr while, in the nonlinear

regime once � has dropped to nearly 0, it is found in Ref. 4

that @xvenv
r � @xvr. Moreover, as is obvious from the results

published in Refs. 3 and 4, the nonlinear decrease of �
towards 0 is much more abrupt in the work by Bénisti et al.
than in the approach of Yampolsky and Fisch. Hence, a first

discrepancy is quite apparent between the two models in the

Taylor-like expansion of vi used to cast Eq. (1) into thea)Electronic mail: didier.benisti@cea.fr.
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envelope Eq. (2). However, despite this discrepancy, the

actual values of vi found from the two theories may happen

to be similar, leading to a similar description of Raman

growth. This is what we will discuss in detail by comparing

the theoretical values of vi with those derived from Vlasov

and test particle simulations.

This article is organized as follows. In Sec. II, we first

detail the theoretical framework common to the models of

Refs. 3 and 4. In particular, we introduce the electron suscep-

tibility and discuss how it differs from the previous defini-

tions related to the Laplace transform of the fields. Then, we

briefly recall the derivations of vi given in Refs. 3 and 4 lead-

ing to the envelope Eq. (2) for Ep, and carefully explain how

the two models differ. In Sec. III, we compare the theoretical

values of vi to those found from Vlasov and test particle sim-

ulations, which allows us to estimate the range of validity of

the theoretical expressions for vi. Finally, Sec. IV summa-

rizes and concludes this work.

II. THEORY

A. Common theoretical framework

In this paper, we address stimulated Raman scattering

within the framework of the three wave model where the

total electric field is

~Etot ¼ �ix̂ðEp=2Þeiup þ ŷ½ð�iðEl=2Þeiul þ ðEs=2Þeius � þ c:c:;

(3)

Ep;l;s being the slowly varying amplitudes of the plasma, laser,

and scattered waves, which are chosen to be real and positive,

while the wave number and frequencies of these waves are,

respectively, kp;l;s � @xup;l;s and xp;l;s � �@tup;l;s. We, more-

over, restrict here to the situation when each amplitude Ew,

where w ¼ p; l or s, does not vary spatially and grows slowly

with time, E�1
w ðdEw=dtÞ � xw. Finally, we also assume

that the phase mismatch between the three waves,

du � up þ us � ul, varies slowly with time.

As is well known (see, for example, Ref. 8), the electron

motion along the direction of propagation of the waves, x, is

given by

d2x

dt2
¼ �e

m

�iEp

2
þ Ed

2
e�idu

� �
eiup þ c:c:; (4)

�e being the electron charge, m its mass, and

Ed � ðekpElEsÞ=ð2mxlxsÞ (5)

is the ponderomotive field amplitude. Newton equation (4)

may also be written as

d2x

dt2
¼ ie

m
E0eiw þ c:c:; (6)

where E0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2

p þ E2
d � 2EdEp sinðduÞ

q
and, clearly,

E0eiðw�upÞ ¼ Ep þ iEde�idu: (7)

E � E0eiw þ c:c: may be seen as the total effective electro-

static field inducing the charge density, q (which is only due

to the electron motion, the ions being treated as a neutraliz-

ing background), so that one may write q as

q � ðq0=2Þeiw þ c:c:; (8)

where q0 is a slowly varying complex amplitude unambigu-

ously defined by the requirement (derived from Gauss law)

that,

kpEp ¼ ðq0=e0Þeiðw�upÞ: (9)

Let us now introduce

vðtÞ � � q0

e0kpE0

; (10)

which we define as the electron susceptibility. Then, Gauss

law, Eq. (9), is

kpEp ¼ �kpvðEp þ iEde�iduÞ: (11)

In particular, the imaginary part of Eq. (11) yields,

viEp ¼ Ed

�
� vr cosðduÞ � vi sinðduÞ

�

� Ed cosðduÞ; (12)

since the plasma wave dispersion relation is vr � �1, while

vi � 1 because, as shown in Ref. 14, it is either on the order

of the plasma wave growth rate or of the Landau damping

rate, normalized to the plasma frequency, which are sup-

posed to be small quantities. We thus derived Eq. (1) of the

introduction, which we now need to write as an envelope

equation for the plasma wave. (The envelope equations for

the electromagnetic fields will not be discussed in this paper

since they are the same for all the models we know of).

Before proceeding, we want to make clear how our defi-

nition for v differs from the one introduced by Cohen and

Kaufman in Ref. 15, where the Laplace representation of the

fields is used. More precisely, if the total effective electro-

static field and charge density amplitudes may be written as,

E0eiw ¼ eikpx

ð
L
�i ~EðXÞe�iXtdX; (13)

q0eiw ¼ eikpx

ð
L

~qðXÞe�iXtdX; (14)

where L is the Laplace contour, located in the upper half of

the complex plane, then the electron susceptibility is defined

in Ref. 15 by

~vðXÞ � �~qðXÞ
e0kp

~EðXÞ
: (15)

The difference between the definitions Eqs. (10) and (15) for

the electron susceptibility is quite clear. v as defined by Eq.

(10) is a function of time, which varies with the wave ampli-

tudes, while ~v as defined by Eq. (14) is only a function of the
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complex frequency X and is therefore independent of the

wave amplitudes. Using the definition (15) for ~vðXÞ, one eas-

ily finds from Gauss law the following relation between the

Laplace components ~EpðXÞ and ~EdðXÞ of the plasma wave

and driving electric fields,

½1þ ~vðXÞ� ~EpðXÞ ¼ �i~v ~EdðXÞ; (16)

from which deriving a nonlinear envelope equation is, how-

ever, not straightforward. For example if, when integrating

Eq. (16) over X, one assumes that ~Ed and ~Ep only have signifi-

cant values about a central frequency, X � X0, so that one

may use the Taylor expansion ~vðXÞ � ~vðX0Þ þ ðX� X0Þ
d~v=dX, one would find (see Ref. 15)

½1þ ~vðX0Þ�Ep þ i
d~v
dX

����
X¼X0

dEp

dt
� �i~vðX0ÞEd; (17)

which is not quite the nonlinear envelope equation we are

looking for! Indeed, all the coefficients of Eq. (17) are fixed,

independent of the wave amplitudes. Therefore, the previous

equation would only be useful in the linear limit. This is why

we will henceforth use the function v defined by Eq. (10)

and will work on Eq. (12) to derive an envelope equation for

the plasma wave.

Now, v is a function of time, whose actual value

depends on the central real frequency of the plasma wave,

xp (which also is a function of time, xp � �@tup), and on

the growth rate c � E�1
p ðdEp=dtÞ. In order to derive an enve-

lope equation from Eq. (12), one may think of performing

the following Taylor-like expansion, v � va þ c@xva, where

va is calculated in the adiabatic limit, c! 0. However, prov-

ing such an expansion is not straightforward since v is not

directly a function of ðxp þ icÞ, but it is a function of time

which, under certain conditions, may be expressed in terms

of xp and c. This is one difference with ~vðXÞ since, when the

imaginary part Xi of X is much less than its real part, Xr, it

is quite clear that ~vðXÞ � ~vðXrÞ þ iXi@X~vðXrÞ. How to per-

form a Taylor-like expansion of v in the limit c� xp, in

order to write Eq. (12) as an envelope equation, is one of the

central points that will be discussed in this paper.

Finally, let us note that, in the linear limit when the wave

amplitudes grow exponentially with time, the Laplace expan-

sions (13) or (14) only have one nonzero component. Then, in

this limit, it is clear that v ¼ ~v. However, in the nonlinear re-

gime, enforcing an exponential growth for the wave ampli-

tudes does not necessary entail the same exponential growth

for the charge density so that, in general, v 6¼ ~v.

B. Model by Bénisti et al.

In this subsection, we briefly recall the method used by

Bénisti et al. in Refs. 4 and 8 to derive vi and cast Eq. (12)

into the form of the envelope equation (2). Since the model

of Yampolsky and Fisch is only valid when the wave ampli-

tudes grow, and since this paper is mainly devoted to model

comparisons, we restrict here growing waves.

A first estimate of vi, valid only for small wave

amplitudes, is obtained by Bénisti et al. from a perturbation

analysis. Moreover, using an argument of symmetry they

show that for slowly growing waves, c0 � xp where

c0 � E�1
0 ðdE0=dtÞ, deeply trapped electrons contribute very

little to vi. As a result, Bénisti et al. only include in vi the

contribution of electrons such that jv0 � v/j > Vl, where v0

is the initial electron speed, v/ is the plasma wave phase ve-

locity, and Vl ¼ ð4=pÞð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eE0=mkp

p
� 3c0=2kpÞ (see Ref. 8).

The value chosen for Vl may be understood as follows. The

inequality jv0 � v/j � 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eE0=mkp

p
=p is the condition for

trapping as derived by assuming adiabatic electron motion,

while requiring jv0 � v/j � ð4=pÞð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eE0=mkp

p
� 3c0=2kpÞ

amounts to demanding that an electron has completed about

one half of its trapped orbit in order to be considered as

“deeply trapped.” At first order in the perturbation analysis,

and at 0-order in the time variations of the growth rate c0,

Bénisti et al. then find

vi ¼ �x2
pe

ð
jv�v/j>Vl

fMðvÞ
2c0ðkpv� xpÞ

½c2
0 þ ðkpv� xpÞ2�2

dv; (18)

where xpe is the plasma frequency and fM is the unperturbed

distribution function, chosen here to be a Maxwellian. When

Vl ¼ 0, which corresponds to the linear limit, one recovers

the usual linear value for vi, that may be found for example

in Ref. 16.

It is actually convenient to write Eq. (18) for vi the fol-

lowing way:

vi ¼ �x2
pe

ð
jv�v/j>Vl

�
fMðvÞ

� ðv� v/Þf 0Mðv/Þ
�

2c0ðkpv� xpÞ
½c2

0 þ ðkpv� xpÞ2�2
dv;

� x2
pe

ð
jv�v/j>Vl

ðv� v/Þf 0Mðv/Þ

	 2c0ðkpv� xpÞ
½c2

0 þ ðkpv� xpÞ2�2
dv; (19)

because, unlike the right-hand side of Eq. (18), the first term

in the right-hand side of Eq. (19) is well behaved in the limit

c0 ! 0, even when Vl ¼ 0. Then, for small enough values of

c0, this first term is well approximated by replacing

c2
0 þ ðkpv� xpÞ2 with ðkpv� xpÞ2. As for the second term

in the right-hand side of Eq. (19), it can be explicitly calcu-

lated, so that one finds,

vi ��
2c0x

2
pe

k3
p

ð
jv�v/j>Vl

fMðvÞ � ðv� v/Þf 0Mðv/Þ
ðv� v/Þ3

dv

�
x2

pef 0ðv/Þ
k2

p

p� 2 tan�1 kpVl

c0

� �
þ 2c0kpVl

c2
0 þ ðkpVlÞ2

" #
:

(20)

In the domain of validity of the perturbation analysis, when

Vl is much less than the thermal velocity vth, the first term in

the right hand side of Eq. (20) is very close to @xvlin
r , where

vlin
r is the linear value of the real part of the electron suscepti-

bility calculated in the limit c0 ! 0. Hence, if one denotes
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�ð1Þ �
�x2

pe f 0ðv/Þ
k2

p@xvlin
r

p� 2 tan�1 kpVl

c0

� �
þ 2c0kpVl

c2
0 þ ðkpVlÞ2

" #
;

(21)

Equation (20) just is

vi � c0 þ �ð1Þ
h i

@xvlin
r : (22)

In particular, in the linear regime when Vl ¼ 0, �ð1Þ is noth-

ing but the (linear) Landau damping rate �L derived in Ref.

17, in the limit when �L=xpe � 1. Therefore, in the linear re-

gime, we indeed managed to derive a Taylor-like expansion

for v. Nevertheless, in the general case when Vl 6¼ 0, due to

the complex dependence of �ð1Þ upon c0, and since Vl may a
priori vary from Vl � c0=kp to Vl � c0=kp, it is not quite

clear that any simple expression of vi as a function of c0,

resembling to a Taylor-like expansion, may actually be

extracted from Eq. (22). This point will, however, be clari-

fied in a few lines.

Before coming to this point we first remark that, directly

from Eq. (18), when Vl � c0=k,

vi � �2c0x
2
pe

ð
jv�v/j>Vl

fMðvÞ
ðkpv� xpÞ3

: (23)

Let us now denote by veff
r the “effective” real part of the sus-

ceptibility obtained in the limit c0 ! 0 by neglecting the

contribution of the deeply trapped electrons, those such that

jv0 � v/j < Vl. The first order perturbative estimate, veff;1
r , of

veff
r is easily found to be,

veff;1
r ¼ �x2

pe

ð
jv�v/j>Vl

fMðvÞ
ðkpv� xpÞ2

: (24)

Hence, at first order in the perturbation analysis, and when

Vl � c0=kp,

vi � c0@xveff;1
r : (25)

Moreover, as shown in Ref. 8, at any order n one would find

similarly that when Vl � c0=kp

vi � c0@xveff;n
r ; (26)

where veff;n
r is the nth order approximation of veff

r . This led

Bénisti et al. to the conclusion that, when Vl � c0=kp, the

following nonlinear, non perturbative estimate of vi,

vi � c0@xveff
r ; (27)

should hold. Moreover, a theoretical expression of veff
r was

provided in Refs. 8 and 14 where it was shown that

@xveff
r � @xvlin

r .

Hence, the previous analysis provided a perturbative

estimate of vi valid for small wave amplitudes, and a nonlin-

ear non perturbative approximation of vi which is accurate

when Vl � c0=kp. Now, in Ref. 8, when comparing the theo-

retical values of vi with those derived from test particle sim-

ulations (similar to those described in Sec. III), it was found

that the perturbative estimate of vi was precise up to values

of Vl large enough for Eq. (27) to already be quite accurate.

Then, in order to derive a nonlinear expression of vi valid

whatever kpVl=c0, Bénisti et al. just connected the perturba-

tive estimate of vi to the nonlinear non perturbative expres-

sion (27) the following way:

vi ¼ vper
i 	 ½1� YðkpVl=c0Þ� þ c0@xveff

r 	 YðkpVl=c0Þ; (28)

where YðxÞ is a function rising from 0 to unity as x increases,

and vper
i is the perturbative estimate of vi. At order n,

vper
i � @xvðnÞr ½�ðnÞ þ c0� where �ðnÞ and @xvðnÞr are, respec-

tively, the nth order counterparts of �ð1Þ defined by Eq. (21)

and of the first term in Eq. (20). Then, Eq. (28) becomes

vi ¼ ½� þ c0�@xvenv
r ; (29)

with

@xvenv
r � @xvðnÞr 	 ½1� YðkpVl=c0Þ� þ @xveff

r 	 YðkpVl=c0Þ;
(30)

� � �ðnÞ 	
�

1� YðkpVl=c0Þ
�
: (31)

Now, as shown again by results from test particle simulations,

and as reported in Ref. 8, c0@xveff
r converges very abruptly

towards vi when kpVl=c0 
> 3. Hence, one needs to choose a

Heaviside-like function for YðxÞ, rising very quickly form 0 to

unity as x changes from a little less than 3 to a little more than

3. In Ref. 4, the function YðxÞ ¼ tanh5½ðex=3 � 1Þ3� was pro-

posed. Moreover, it turns out that �ðnÞ remains nearly constant

when kpVl=c0 � 3. Therefore, � in Eq. (29) may be consid-

ered as independent of c0, at least over finite intervals of

kpVl=c0, so that Eq. (29) may indeed be viewed as a Taylor-

like expansion of vi.

Let us recall that in Eq. (29) c0 � E�1
0 ðdE0=dtÞ, while

one would need an expansion of vi in terms of

c � E�1
p ðdEp=dtÞ in order to derive an envelope equation for

Ep. Now, in the linear regime of SRS, all waves should grow

similarly so that, in this regime, c0 � c. Moreover, in the

nonlinear regime, once � has dropped to nearly 0 then, as

discussed, for example in Ref. 13, Ep � E0 so that, once

again, c0 � c � E�1
p ðdEp=dtÞ. Using this result and plugging

Eq. (29) into Eq. (12) one finds

dEp

dt
þ �Ep �

Ed

@xvenv
r

cosðduÞ; (32)

where @xvenv
r is defined by Eq. (30), and where � given by

Eq. (31) is the expression for the nonlinear Landau damping

rate proposed by Bénisti et al. Note that this coefficient

appears naturally from the expression of vi derived for a

driven wave, and not from an estimate of the rate of energy

gained by the electrons.
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Let us now discuss Eq. (29) along lines similar to those

of Ref. 18 in order to explain why the simple Taylor expan-

sion vi ¼ @xvr½� þ c� one would expect is not recovered.

Actually, using a variational approach, like that developed

by Whitham in Ref. 19 for an undamped wave, one would

find the following envelope equation:

@xvrðdEp=dtÞ ¼ Ed cosðduÞ; (33)

provided that collisionless dissipation is negligible. More-

over, in the linear regime, we previously showed that

@xvlin
r ðdEp=dtÞ þ �L@xvlin

r Ep ¼ Ed cosðduÞ; (34)

where �L is the (linear) Landau damping rate. Hence, in the

nonlinear regime, one is naturally led to write the following

envelope equation:

@xvrðdEp=dtÞ þ NðEpÞ ¼ Ed cosðduÞ; (35)

where the operator NðEpÞ is the nonlinear counterpart of

�L@xvlin
r Ep and allows for collisionless dissipation in the

nonlinear regime. Now, the only functional form for NðEpÞ
consistent with the fact that the nonlinear Landau damping

rate has vanished is NðEpÞ proportional to the time derivative

of Ep, NðEpÞ � @xv0rðdEp=dtÞ. Then, the envelope equation

for Ep becomes,

@xvenv
r ðdEp=dtÞ ¼ Ed cosðduÞ; (36)

with @xvenv
r � @xðvr þ v0rÞ � @xvr . Hence, @xvenv

r differs

from @xvr because of collisionless dissipation, and therefore

all the more as �L is large, as was checked numerically in

Ref. 18.

Let us try to clarify this point further by noting that, as

the wave grows, there keeps on being a net transfer of mo-

mentum and energy from the wave to the electrons, even af-
ter the model by Bénisti et al. has predicted � � 0. Indeed, it

is clear that while the electrostatic wave grows, it keeps on

trapping new electrons whose phase mixing eventually leads

to an increase in the electron kinetic energy. Similarly, the

wave growth changes the orbits of the untrapped electrons,

and therefore their energy and momentum. However, once

the bounce frequency xB �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eE0kp=m

p
has become much

larger than the wave growth rate, c0, one may assume that

the electrons phase mix nearly instantaneously. In other

words, the electron motion is nearly adiabatic and one may

consider that the electron orbits, and electron energy E, only

depend on the instantaneous wave amplitude. Hence, what-

ever the time Dt� 2p=xB it takes for the wave amplitude to

increase from E0 to E0 þ DE0, the change in the electron

energy is very close to DEadia � EðE0 þ DE0Þ � EðE0Þ.
Then, whatever Dt� 2p=xB, the growth rate in the electron

energy is just DEadia=Dt and is therefore inversely propor-

tional to Dt. We therefore conclude that, when xB � c0, the

rate of energy transfer from the wave to the electrons is

nearly proportional to the wave growth rate, c0. Hence, in

the model by Bénisti et al., � � 0 does not mean that the

electron acceleration by the electrostatic field, responsible

for Landau damping in the linear limit, has vanished, but this

means that this acceleration, and therefore the collisionless

dissipation of the EPW, is better modeled in the envelope

equation for the plasma wave by a term proportional to the

wave growth rate than by a genuine damping rate. Then,

physically, @xvenv
r � @xvr just because the energy transfer

from the plasma wave to the electrons slows down the

growth of the EPW induced by the laser drive.

C. Model by Yampolsky and Fisch

Yampolsky and Fisch provide in Ref. 3 a kinetic model-

ing of stimulated Raman scattering as simple as possible.

They first simply assume that the usual Taylor expansion

vi ¼ @xvrð� þ cÞ holds, where � is the nonlinear Landau

damping rate of the driven plasma wave. This is clearly one

major difference with the model by Bénisti et al. who found

that such a Taylor-like expansion would not be accurate in

the strongly nonlinear regime. Plugging the expression

vi ¼ @xvrð� þ cÞ into Eq. (12) straightforwardly yields the

envelope equation

dEp

dt
þ �Ep ¼

Ed cosðduÞ
@xvr

: (37)

Yampolsky and Fisch, moreover, use a quasilinear estimate

for @xvr which is actually just given by the first term of Eq.

(20) with fM replaced by the quasilinear distribution function

fQL. This distribution function solves the differential

equation

@tfQL ¼ Re
1

2i

eE

m

����
����@v

@vfQL

xp þ ic� kpv

� 	
; (38)

with fQL ¼ fM at t ¼ 0 for vanishing field amplitudes.

As for the Landau damping rate, �, it is derived from

conservation laws, namely, the conservation of energy and

of the number of electrons. These read

d

dt

nm

2

ðþ1
�1

v2

�
fQLðv; tÞ � fMðvÞ

�
dv

� �
¼ 2�xp@xvr

e0E2
p

4
;

(39)

ðþ1
�1

�
fQLðv; tÞ � fMðvÞ

�
dv ¼ 0: (40)

Equation (39) clearly relates the rate of variation of the elec-

tron kinetic energy (left-hand side of this equation) to the

Landau damping of the electrostatic energy (right-hand side)

so that, unlike in Bénisti et al., � is indeed related to the elec-

tron acceleration by the plasma wave.

In order to take advantage of Eqs. (39) and (40) to derive

the nonlinear Landau damping rate, Yampolsky and Fisch

make two more simplifying hypotheses,

1. fQL differs from fM only over a finite range in velocity,

jv� v/j < axB=kp, where a is a constant that is still to be
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determined. This range is representative of the trapping

domain.

2. In the domain jv� v/j < axB=kp, one may use a Taylor

expansion of the distribution functions, f ðvÞ � f ðv/Þ
þðv� v/Þf 0ðv/Þ.

Using these approximations, Eq. (40) yields fQLðv/Þ
¼ fMðv/Þ, so that Eq. (39) becomes

d

dt

nm

2

ðaxB=kp

�axB=kp

uðu2 þ 2uv/ þ v2
/Þ
�

f 0QLðv/Þ � f 0Mðv/Þ
�

du

 !

¼ e0x�
2

@xvrE
2
p: (41)

Using the quasilnear definition of �,

� ¼ �
px2

pe f 0QLðv/Þ
k2

p@xvr

; (42)

and approximating the linear Landau damping rate by

�L � ½�px2
pef 0Mðv/Þ�=½k2

p@xvr�, Eq. (41) is

d

dt
ð�L � �Þx3

BðtÞ

 �

¼ � 3p
4a3

x4
BðtÞ; (43)

which therefore needs to be solved together with Eq. (37).

As for the factor a, its value is obtained by matching the

change in the total electron momentum with that calculated

by Dewar in Ref. 21 by assuming adiabatic electron motion.

It is then found, a ¼ 32=ð3pÞ.
Moreover, as shown in Ref. 3, the quasilinear Landau

damping rate is proportional to the wave growth rate, � / c,

at large plasma wave amplitudes
Ð

xBdt� 1. In this regime,

the imaginary part of the electron susceptibility is propor-

tional to the wave growth rate, vi / c, like in model the by

Benisti et al. as described by Eq. (27).

III. COMPARISONS BETWEEN NUMERICAL AND
THEORETICAL RESULTS

The comparisons will be on vi which, from Eq. (1),

measures how efficiently an EPW may be laser driven and

therefore has a very clear physical meaning. By contrast, that

of � is not as straightforward as for a freely propagating

wave. Indeed, �� it is not the rate of variation of the EPW

amplitude, since this wave grows. Moreover, as explained,

for example, in Ref. 4, there is no unique way to derive an

envelope equation like Eq. (2) from the theoretical expres-

sion of vi. Hence, models providing similar expressions for

vi would lead to similar predictions for the growth of the

plasma wave amplitude, and therefore of SRS, although the

terms of the envelope equation, and especially the damping

rate �, may be model dependent. This explains why we chose

to focus here on the values found for vi.

A. Test particle simulations

The first set of comparisons we present are with test par-

ticle simulations where we numerically solve

dn
dt
¼ v� v/; (44)

dv

dt
¼ �UðtÞ sinðnÞ; (45)

where UðtÞ is a growing function of time. Then, as shown in

Ref. 8,

vi ¼
�2hsinðnÞi
ðkpkDÞ2U

; (46)

where kD is the Debye length and where hsinðnÞi is the statis-

tical average of sinðnÞ. Numerically, we only consider the

situation when UðtÞ increases exponentially with time,

FIG. 1. (Color online) vi as calculated numerically using test particles simulations (blue solid line) or theoretically by either using the model by Yampolsky

and Fisch (green dashed-dotted line) or the model by Bénisti et al. with vper
i in Eq. (28) derived at order 11 (red dashed line), when v/ ¼ 3vth. Panel (a),

c ¼ 0:01 (the inset of panel (a) is a close-up for small values of
Ð

xBdt); panel (b), c ¼ 0:02; panel (c), c ¼ 0:05.
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UðtÞ � U0ect, and when v/ remains constant. Equations (44)

and (45) are numerically integrated for N ¼ 105 particles

with initial velocities distributed in a Maxwellian fashion,

and the numerical estimate of hsinðnÞi is

hsinðnÞinum ¼
1

N

XN

i¼1

sinðniÞ; (47)

where ni is the position of the ith particle.

Figs. 1 and 2 plot the variations of vi, calculated either

numerically or theoretically, respectively, when v/ ¼ 3vth

and v/ ¼ 4vth, and when c ¼ 10�2; 2	 10�2 and 5	 10�2,

as a function of
Ð

xBdt ¼ 2
ffiffiffiffi
U
p

=c. For all the cases we inves-

tigated, there was a very good agreement between the results

from test particle simulations and from the model by Bénisti

et al., and usually a good agreement with the theoretical pre-

dictions of Yampolsky and Fisch. Nevertheless, vi as calcu-

lated by Yampolsky and Fisch systematically decreases

more rapidly for small wave amplitudes than is observed

numerically, as is made clear in the insets of Figs. 1(a) and

2(a). This is because, in their model, the damping rate

changes as soon as particles get trapped, while, in reality,

only after particles have experienced a large fraction of their

trapped orbits (about half of it) does � nonlinearly change.

Moreover, for large wave amplitudes, the theoretical results

of Yampolsky and Fisch may significantly differ from the

numerical ones, as illustrated, for example, in Fig. 2(c). This

is due to the use of a quasilinear expression for @xvr, which

becomes clearly wrong in the strongly nonlinear regime. In

this regime, the fully nonlinear expression @xvenv
r derived by

Bénisti et al. is needed.

B. Vlasov simulations

The second set of numerical simulations are similar to

those presented in Ref. 3, where Vlasov-Poisson equations are

FIG. 2. (Color online) Same as Fig. 1 but with v/ ¼ 4vth.

FIG. 3. (Color online) vi as calculated numerically using Vlasov simulations (blue solid line) or theoretically using the model by Yampolsky and Fisch (green

dashed line) or by Bénisti et al. (red dashed-dotted line) when vth ¼ 0:35 and when the normalized growth rate of the drive is, panel (a), C ¼ 2:5	 10�3, panel

(b), C ¼ 3:3	 10�3 and, panel (c), C ¼ 5	 10�3.
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solved inside of a uniform plasma, with periodic boundary

conditions. The length of the simulation domain is the wave-

length of the electron plasma wave which, in the dimension-

less units used in the code, e ¼ m ¼ kp ¼ xpe ¼ 1, is just 2p.

The EPW is driven inside an initially Maxwellian plasma,

with normalized thermal velocity vth, by an externally

imposed field, Eext � E0eCt cos½x� u0ðtÞ� (which is, there-

fore, not self-consistently calculated using Maxwell equations

as should be the case for a realistic SRS simulation). The fre-

quency of the drive, x0 � @tu0, is chosen to decrease with

the EPW amplitude in a fashion close to that theoretically cal-

culated in Ref. 13.

In these simulations, the external field Eext is, therefore,

just the counterpart of the driving field Ed cosðup � duÞ intro-

duced theoretically so that, in order to numerically estimate

vi, we first need to compute the dephasing du between the

driving and electrostatic fields, and then calculate the ratio

vnum
i � E0 cosðduÞ=Ep. In order to compare this numerical

estimate to the theoretical one, we also need to numerically

compute the EPW growth rate, c, and plug it into to the for-

mulas, vYF
i � @xvrðcþ �Þ or vB

i � @xvenv
r ðcþ �Þ, respec-

tively derived by Yampolsky and Fisch and by Bénisti et al.
[using for vper

i in Eq. (28) a perturbative result at order 11].

These comparisons are plotted in Fig. 3 when vth ¼ 0:35 in

normalized units (in physics units this would correspond to

kpkD ¼ 0:35), and in Fig. 4 when vth ¼ 0:4 and vth ¼ 0:3.

Just like for the comparisons with test particle simula-

tions, there is good agreement between the numerical and

theoretical values of vi, although one can still notice an ini-

tial drop in vYF
i more rapid than in vnum

i . As for vB
i , it exhibits

some oscillations which are representative of the oscillations

in the numerical estimate in c (in the model by Bénisti et al.
� drops more rapidly to 0 so that the value of vi is more sen-

sitive to c than in the model by Yampolsky and Fisch).

Despite these small discrepancies, the agreement between

the theoretical and numerical values of vi is good for the mod-

erate values of
Ð

xBdt we investigated;
Ð

xBdt � 50 for the

simulation results of Fig. 3, while we let
Ð

xBdt go up to 150

in Figs. 1 and 2. Actually, for the Valsov simulations of Fig.

3, the dephasing du between the driving and plasma fields

gets very close to p=2 as the EPW amplitude increases, so

that a small mistake in the numerical evaluation of du may

lead to a very bad estimate of vnum
i � E0 cosðduÞ=Ep. Hence,

in Figs. 3 and 4, we chose to stop the comparisons between

the theoretical and numerical values of vi when du is so close

to p=2 that a small relative error, of the order of 5%, in du
would entail a relative error close to 100% in vnum

i , whose ac-

curacy therefore becomes doubtful.

IV. CONCLUSION

In this paper, we compared the nonlinear kinetic model-

ings of stimulated Raman scattering derived in Refs. 3 and 4,

respectively, by Yampolsky and Fisch and by Bénisti et al.
Starting from Eq. (1) deduced directly from Gauss law, these

papers provide a theoretical description of vi so as to derive

the following envelope equation for the plasma wave ampli-

tude, dEp=dtþ �Ep / Ed cosðduÞ, where � is the so-called

nonlinear damping rate of the driven electron plasma wave.

The derivation of this envelope equation is made in a com-

pletely different spirit in Ref. 3 as compared with Ref. 4.

Indeed, Yampolsky and Fisch look for a very simple model-

ing and mainly resort to the quasilinear approximation,

which is the most simple way to go beyond a perturbative

analysis. By comparing the lengths of Subsections B and C,

it is quite clear that their theory is much less complex than

that of Bénisti et al., who looked for the most accurate and

general description of vi. This required connecting high

order perturbative results with a totally nonlinear, and non

perturbative, expression for vi. As a result, and as shown by

comparing the numerical values of vi to the theoretical ones,

the model by Bénisti et al. always seems quite accurate,

whatever the physics conditions and the wave amplitude,

while that of Yampolsky and Fisch is always good for mod-

erate amplitudes, but may be inaccurate for very small or

very large values of
Ð

xBdt. Moreover, the theory of Bénisti

FIG. 4. (Color online) vi as calculated numerically using Vlasov simulations (blue solid line) or theoretically using the model by Yampolsky and Fisch (green

dashed line) or by Bénisti et al. (red dashed-dotted line) panel (a), when vth ¼ 0:4 and C ¼ 2:5	 10�3, panel (b), when vth ¼ 0:4 and C ¼ 3:3	 10�3, panel

(c) when vth ¼ 0:3 and C ¼ 5	 10�3.

013110-8 Benisti, Yampolsky, and Fisch Phys. Plasmas 19, 013110 (2012)

Downloaded 31 Jan 2012 to 198.35.3.38. Redistribution subject to AIP license or copyright; see http://pop.aip.org/about/rights_and_permissions



et al. may be generalized to allow for arbitrary space and

time dependence of the wave amplitudes, as was done in

Refs. 4, 11, 14, 18, and 21, while, for the moment, that of

Yampolsky and Fisch only applies to growing waves. We,

therefore, suggest that the model by Yampolsky and Fisch

could be used in analytic estimates of collisionless dissipa-

tion for growing plasma waves, due to its simplicity. As for

the model by Benisti et al., it provides higher accuracy and

is currently implemented in an envelope code for quantita-

tive predictions of Raman growth (see Ref. 14 for the one-

dimensional version of that code which has recently been

upgraded to allow for three-dimensional variations of the

wave amplitudes).

In our comparisons, we really focused on vi which

measures how efficiently an EPW may be laser driven, and

found good agreements between both models for moderate

values of
Ð

xBdt. However, when writing vi as,

vi ¼ @xvrðcþ �Þ, or vi ¼ @xvenv
r ðcþ �Þ, the relative nonlin-

ear values of � for each model may be quite different, just as

@xvenv
r may notably differ from @xvr. At this point, it should

be noted that the physical meaning of � is not as straightfor-

ward as for a freely propagating wave. Indeed, �� it is not

the rate of variation of the EPW amplitude, since this wave

grows. Moreover, as shown, for example, in Ref. 4, the non-

linear envelope equation of a driven EPW is more compli-

cated than dEp=dtþ �Ep / Ed cosðduÞ, which may only be

viewed as an “effective” equation, so that relating � to some

physics quantities is not that obvious. Nevertheless, such an

envelope equation was shown, in Ref. 3 for the model by

Yampolsky and in Ref. 14 for the model by Bénisti et al., to

provide a description for Raman growth similar to that

deduced from a Vlasov simulation. In this paper, we more-

over showed that, for purely time growing waves, there is a

range in (moderate) wave amplitudes where the predictions

of both models as regards vi, and therefore the efficiency to

laser drive a plasma wave, are similar.
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