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The shortest duration and the largest non-focused intensity of laser pulses produced by means of

backward Raman amplification (BRA) in plasmas are calculated. These limits occur in moderately

undercritical plasmas and are imposed by combined effects of moderately small group velocity

dispersion and relativistic electron nonlinearity of the amplified pulses. The efficient BRA range

covered by this theory is broader than one known previously. This can be useful for BRA of x-ray

pulses in regular or compressed solids and ultra-powerful optical pulses in the lowest density

solids. VC 2012 American Institute of Physics. [doi:10.1063/1.3683558]

I. INTRODUCTION

The resonant backward Raman amplification (BRA) of

laser pulses in plasmas1 makes feasible producing laser

intensities exceeding the currently available intensities by

several orders of value at frequencies ranging from optical

to x-ray band.2–4 In strongly undercritical plasmas, where

plasma frequencies are much smaller than laser frequencies,

the largest achievable non-focused output intensity is,

roughly speaking, proportional to the plasma frequency.

This tendency could change, however, in moderately under-

critical plasmas, where the plasma frequency is closer to the

amplified laser pulse frequency. The larger dispersion of

the group velocity is then more capable of interfering with

the pulse compression.

The extension of the BRA theory to moderately under-

critical plasmas has significant practical implications in both

the optical and x-ray laser frequency bands. In fact, for suffi-

ciently short-wavelength x-rays, the entire parameter range

for efficient BRA is located in moderately undercritical plas-

mas.4 In the optical band, the parameter range for efficient

BRA is broader and, in principle, includes strongly under-

critical plasmas. Using gas jet technology to make the

plasma, experimental demonstrations of the backward

Raman amplification output have already been carried out in

the optical range5–10 achieving the output laser intensities

hundreds times higher than the input pump intensities and

the efficiencies at several percent level7,8 (although not nec-

essarily reaching the theoretically described pump depletion

regimes11,12). While the gas jet technology worked well at

low power, it might be technologically challenging to extrap-

olate the present gas jet techniques to produce such plasmas

in the volumes needed for compression at the highest power

levels, which might be in the range of multi-exawatt to zeta-

watt powers.2,13,14 An attractive alternative method to pro-

ducing the plasma would be to ionize the lowest density

solids, like foams or aerogels, but then the resulting plasma

would be relatively dense for optical pulses, unless the

plasma were allowed to expand, which likely would make

most of the density profile non-resonant. The resonant opti-

cal BRA could be accomplished prior to the plasma expan-

sion, which would be exactly in the moderately undercritical

regime considered here.

The simplest model describing effects of interest here

includes Raman backscattering, and moderately small rela-

tivistic electron nonlinearity and dispersion of group veloc-

ity. The dispersion and self-nonlinearity need to be taken

into account only for the amplified pulse which is shorter

and grows to intensities greater than that of pump. The par-

asitic forward Raman scattering (FRS) of the amplified

pulse need not to be taken into account here, even though it

is potentially capable of limiting the allowed BRA length.1

This is because the FRS can be suppressed, for example by

detuning techniques.11 In addition, in the moderately under-

critical plasmas considered here, the amplified pulse FRS is

absolutely impossible at plasma frequencies larger than half

of the amplified pulse frequency. The BRA length in this

one-dimensional model is limited by the onset of the longi-

tudinal self-phase modulation instability of the amplified

pulse. This instability is associated with the relativistic

electron nonlinearity. The transverse mode of this filamen-

tation instability need not to be taken into account here,

because it is grows from small transverse noise and there-

fore takes logarithmically larger time to develop.1 The

damping of the resonant Langmuir wave can also be

neglected in a significant part of the efficient BRA range.4

The inverse bremsstrahlung of the laser pulses is negligible

for sufficiently high temperature of plasma electrons,

except of the laser wavelengths close to the theoretical

BRA short-wavelength limit.4 However, at plasma densities

currently accessible in practical laboratory settings, this

limit is not reached, so the inverse bremsstrahlung of the

laser pulses can be neglected here.

Thus, the effects that must be taken into account here, in

addition to 3-wave Raman coupling, are the cubic relativistic

electron nonlinearity and group velocity dispersion of the

amplified pulse. These effects can be taken into account as

independent small corrections, and crossover effects can be

neglected as having a higher order of smallness. Although

smaller than the Raman coupling, both the dispersion and

cubic nonlinearity affect the BRA by producing phase shifts

that accumulate over the amplification distance.

1070-664X/2012/19(2)/023109/5/$30.00 VC 2012 American Institute of Physics19, 023109-1

PHYSICS OF PLASMAS 19, 023109 (2012)

Downloaded 26 Feb 2012 to 128.112.70.118. Redistribution subject to AIP license or copyright; see http://pop.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1063/1.3683558
http://dx.doi.org/10.1063/1.3683558


II. BASIC EQUATIONS

The equations describing BRA, taking into account

moderately small dispersion of the group velocity and rela-

tivistic electron nonlinearity can be presented in the form,15

at þ caaz ¼ V3fb; ft ¼ �V3ab�; (1)

bt � cbbz ¼ �V3af � � ıc0bbtt=2cb þ ıRjbj2b: (2)

Here a, b, and f are envelopes of the pump pulse, counterpro-

pagating shorter pumped pulse and resonant Langmuir wave,

respectively; subscripts t and z signify time and space deriva-

tives; ca and cb are group velocities of the pump and pumped

pulses; c0b is the derivative of the pumped pulse group veloc-

ity over the frequency; V3 is the 3-wave coupling constant

(real for appropriately defined wave envelopes), R is the

coefficient of nonlinear frequency shift due to the relativistic

electron nonlinearity.

The group velocities ca and cb are expressed in the terms

of the respective laser frequencies xa and xb as follows:

ca ¼ c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

e=x
2
a

q
; cb ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

e=x
2
b

q
; (3)

where c is the speed of light in vacuum,

xe ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pnee2=me

p
(4)

is the electron plasma frequency, ne is the electron plasma

concentration, me is the electron rest mass, and e is the elec-

tron charge. Note that

c0b
cb
¼ x2

e

xbðx2
b � x2

eÞ
¼ x2

ec2

x3
bc2

b

: (5)

The pump pulse envelope, a, will further be normalized such

that the average square of the electron quiver velocity in the

pump laser field, measured in units c2, will be jaj2,

v2
ea ¼ c2jaj2: (6)

Then, the average square of the electron quiver velocity in

the seed laser field and in the Langmuir wave field will be

given by the formulas

v2
eb ¼ c2jbj2 xa

xb
; v2

ef ¼ c2jf j2 xa

xf
: (7)

The respective value of the 3-wave coupling constant is16

V3 ¼
kf c

2

ffiffiffiffiffiffiffiffi
xe

2xb

r
; (8)

where kf is the wave number of the resonant Langmuir wave,

kf ¼ ka þ kb; kac ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

a � x2
e

q
; kbc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

b � x2
e

q
:

(9)

The frequency resonance condition is

xb þ xf ¼ xa; (10)

where xf � xe is the Langmuir wave frequency in a cold

plasma.

The nonlinear frequency shift coefficient R, correspond-

ing to the above normalization of wave envelopes, is17–19

R ¼ x2
exa=4x2

b: (11)

Under condition of interest here, the dispersion and cubic

nonlinear terms in Eq. (2) are small during the first stages of

the amplification. As long as these terms are neglected, the

solution of basic equations (1) and (2) is well known.1,20–26

For sufficiently short initial seed pulses, the amplified pulse

tends, during an advanced nonlinear stage, to the so-called

p-pulse which completely depletes the pump. The p-pulse

grows and contracts, so that the amplified pulse duration

becomes much smaller than the time of amplification. This

allows one to simplify the basic equations by splitting two

different time scales, the “fast time” ~t, counted from the seed

pulse arrival to a given location, and the “slow time” �t which

is the time of seed arrival to a given location,

�t ¼ L� z

cb
; ~t ¼ t� �t: (12)

Here L is the width of the amplifying plasma layer. Neglect-

ing the “slow time” derivative compared to the “fast time”

derivative in the Eq. (1) for the pump amplitude a, one can

present the basic equations (1) and (2) for an advanced non-

linear stage of the amplification in the form,

ð1þ ca=cbÞa~t ¼ V3fb; f~t ¼ �V3ab�; (13)

b�t ¼ �V3af � � ıc0bb~t~t=2cb þ ıRjbj2b: (14)

As long as the dispersion and cubic nonlinear terms in

Eq. (14) are neglected, Eqs. (13) and (14) have a purely real

solution of the form,

a ¼ a0 cosðu=2Þ; f ¼ a0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ca=cb

p
sinðu=2Þ; (15)

b ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ca=cb

p
u~t=2V3; (16)

where u satisfies the equation,

u�t~t ¼ V2
3a2

0 sin u: (17)

This equation has a particular self-similar solution,

uð�t;~tÞ ¼ UðnÞ; n ¼ 2V3a0

ffiffiffiffiffi
�t ~t
p

; (18)

where U satisfies the ordinary differential equation,

Unn þ Un=n ¼ sin U: (19)

The solution of this equation depends on the parameter

U0 ¼ Uðn! þ0Þ. This parameter has the physical meaning
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of the integrated amplitude of the initial seed pulse (sup-

posed to be short enough),

U0 ¼ �
2V3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ca=cb

p ð
d~tb

����
�t¼0

: (20)

The amplitude of the amplified pulse growing from such a

short seed pulse is expressed in the terms of the function

UðnÞ as follows:

b ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ca=cb

p
V3a2

0
�tUn=n: (21)

At n!1, the function UðnÞ tends to p, oscillating around

this value. The respective amplified wavetrain b is called

therefore “p-pulse.”

For a small initial seed, U0 � 1, the leading (and the

largest) spike of the “p-pulse” wavetrain can be approxi-

mated, around its maximum, by the formula,

U � 4 arctan
U0 exp n

4
ffiffiffiffiffiffiffiffi
2pn
p

� �
: (22)

It is close to the stationary soliton of Eq. (17), called “2p-

pulse.” Namely, replacing Eq. (22) by,

U � 4 arctan½expðn� nMÞ�;
U0 exp nM

4
ffiffiffiffiffiffiffiffiffiffiffi
2pnM

p ¼ 1; (23)

leads to the soliton

Un ¼
2

cosh ~n
; ~n ¼ n� nM: (24)

Using formulas (24) and (21) for the shape of amplified

pulse, one can calculate the fluence acquired by the leading

spike within the amplification time �t as follows:

wb ¼
xakb

pnM

1þ ca

cb

� �
a2

0
�tG; (25)

G ¼ m2
ec4

e2
� 0:3

J

cm
: (26)

The duration of the leading amplified spike, defined as the

ratio of the fluence to the peak intensity, is given by the

formula,

D~t ¼ nM

V2
3a2

0
�t
; (27)

which immediately follows from Eqs. (18), (24), and (21).

The peak intensity is then given by the formula,

max
~t

I ¼ wb

D~t
: (28)

III. LIMITS FOR BRA OUTPUT PARAMETERS

When the dispersion and cubic nonlinear terms are taken

into account in Eq. (14), the solution cannot longer be real,

but rather has to be searched in general complex form,

b ¼ jbj expðı/Þ: (29)

For small enough dispersion and nonlinear cubic terms, the

phase / is small. Substituting the p-pulse solution into the

cubic nonlinear and dispersion terms of Eq. (14), one can

calculate the first order approximation to the phase /,

/ ¼ /nl þ /dsp; (30)

where

/nl ¼ Rð1þ ca=cbÞV2
3a4

0
�t3U2

n=3n2 (31)

is the phase associated with the cubic nonlinearity, and

/dsp ¼ �
2c0bV4

3a4
0

�t3

3cbUn

d

dn
d

ndn
Un

n
: (32)

is the phase associated with the dispersion.

For small seed pulses, U0 � 1, these formulas can be

presented in the form,

/nl ¼
Qnl

cosh2 ~n
; Qnl ¼ R 1þ ca

cb

� �
4V2

3a4
0
�t 3

3n2
M

; (33)

/dsp ¼ Qdsp 1� 2 tanh2 ~n
� �

; Qdsp ¼
2c0bV4

3a4
0
�t 3

3cb
~n2

M

: (34)

Interestingly, the ratio of the phase-shift coefficients associ-

ated with the dispersion and the cubic nonlinearity,

Q ¼ Qdsp

Qnl
¼

k2
f c4xe

4cbðca þ cbÞxax2
b

; (35)

depends neither on the pump pulse amplitude a0, nor on the

amplification time �t.
As seen from formulas (33) and (34), the phase shift is

maximal at the top of the leading amplified spike, where
~n ¼ n� nM ¼ 0,

/ðnM;�tÞ ¼ Qnl þ Qdsp: (36)

Note that the phase shift exceeding p=2 would reverse the

energy flow from the amplified pulse back to the pump pulse.

In fact, the p-pulse compression/amplification regime

becomes significantly affected even earlier, by the phase

shift /ðnM;�tÞ � 1. Therefore, the largest allowed amplifica-

tion time �t ¼ �tM can be approximated by,

d ¼ Qnl þ Qdsp ¼ Qnlð1þ QÞ

¼ Rð1þ QÞ 1þ ca

cb

� �
4V2

3a4
0
�t 3
M

3n2
M

; (37)

where d� 1, and d may be thought of as a “safety factor.”

As seen from here, for constant d, �tM / a
�4=3
0 , so that,

according to Eq. (25), wb / a
2=3
0 . Thus, the larger output flu-

ence of the leading amplified spike can be obtained at larger
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pump amplitudes. However, the pump amplitude cannot

exceed much the wavebraking threshold,1,16

abr ¼
xa

2kf c

xe

xa

� �3=2

: (38)

This leads to the following formula for the maximal achieva-

ble fluence of the leading amplified spike,

wbM ¼
Gxbkb

pkf c

6xað1þ ca=cbÞ2d
ð1þ QÞnMkf c

" #1=3

: (39)

The duration D~t ¼ D~tm, which is the shortest achievable du-

ration of the leading amplified spike, is given by the formula,

D~tm ¼
8

xe

x2
að1þ ca=cbÞð1þ QÞnM

6k2
f c2d

" #1=3

: (40)

These fluence and duration are not very sensitive to specific

values of parameters d, Q, and nM.

The largest achievable peak intensity of the leading

amplified spike is given by,

IM ¼
wbM

D~tm
: (41)

In the limit of highly undercritical plasma, xe � xb, where

Q � xe=2xb � 1 (i.e., the dispersion is much weaker than

the cubic nonlinearity), formulas (39) and (40) reduce to,

wbM ¼
Gxb

pc

3d
2nM

� �1=3

; (42)

D~tm ¼
4

xe

2nM

3d

� �1=3

: (43)

In this case, extending the amplification time beyond �tM

would lead to the splitting of the leading amplified pulse,

making no more energy available to the leading pulse.

In the opposite limit of nearly critical plasma,

xb � xe � xe, where Q �
ffiffiffi
3
p

c=4cb � 1 (i.e., the disper-

sion is much stronger than the cubic nonlinearity), formulas

(39) and (40) reduce to,

wbM ¼
Gxe

pc

ffiffiffi
3
p

d
4Q2nM

� �1=3

; (44)

D~tm ¼
8

xe

4Q2nM

9d

� �1=3

: (45)

In the general case, the fluence, duration and peak intensity

of leading spike achievable within the amplification time �tM

can be presented in the form,

wbM ¼
Gxb

pc

d
nM

� �1=3

ŵðrÞ; r ¼ xe

xb
; (46)

D~tm ¼
8

xb

nM

d

� �1=3

t̂ðrÞ; (47)

IM ¼
wbM

D~tm
¼ Gx2

b

8pc

d
nM

� �2=3

ÎðrÞ; (48)

ŵðrÞ ¼ k̂b

k̂f

6x̂að1þ ĉa=ĉbÞ2

k̂f ð1þ QÞ

" #1=3

; (49)

t̂ðrÞ ¼ 1

r

x̂2
að1þ ĉa=ĉbÞð1þ QÞ

6k̂2
f

" #1=3

; (50)

ÎðrÞ ¼ ŵðrÞ
t̂ðrÞ ; Q ¼

k̂2
f r

4ðĉa þ ĉbÞĉbx̂a
; (51)

x̂a ¼
xa

xb
¼ 1þ r; k̂a ¼

kac

xb
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2r
p

; (52)

k̂b ¼
kbc

xb
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2
p

; k̂f ¼ k̂a þ k̂b; (53)

ĉb ¼
cb

c
¼ k̂b; ĉa ¼

ca

c
¼ k̂a

1þ r
: (54)

The maximal averaged square of the electron quiver velocity

in the amplified spike field is given by the formula,

v2
bM ¼ c2 d

nM

� �2=3

v̂2
b; v̂2

b ¼
ÎðrÞ
2k̂b

: (55)

Due to the small factor d=nM � 1, the electron motion stays

non-relativistic v2
bM � c2.

FIG. 1. (Color online) The normalized fluence ŵðrÞ (solid line), duration

t̂ðrÞ (dash-dotted line), peak intensity ÎðrÞ (dashed line), and electron quiver

energy v̂2
b (bold-dotted line) of the leading amplified spike as functions of

the ratio xe=xb plasma to seed laser frequency. The ratio Q of the phase

shifts associated with the dispersion and cubic nonlinearity is shown by the

thin-dotted line.
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Plots of the normalized fluence ŵðrÞ, duration t̂ðrÞ, peak

intensity ÎðrÞ, and electron quiver energy v̂2
b of the leading

amplified spike are shown in Fig. 1, along with the ratio Q of

the phase shifts associated with the dispersion and cubic nonli-

nearity. As seen, the shortest duration t̂ � 1 and the largest in-

tensity Î � 0:8 of the BRA output laser pulses can be obtained

specifically in moderately undercritical plasmas with

r ¼ 0:5$ 0:85 ratios of the plasma to seed laser frequency.

In this range, the output fluence ŵ � 0:8 is also reasonably

close to the maximum value ŵ ¼ ð3=2Þ1=3 � 1:14 achievable

in strongly undercritical plasmas. The coefficient Q grows

with plasma density in this range from Q � 0:3 to Q � 0:7.

Since Q < 1, the dispersion effect is somewhat smaller than

the effect of cubic nonlinearity. However, such a dispersion

may already be capable of delaying the development of the

self-phase modulation instability associated with the cubic

nonlinearity. This could enable obtaining even larger output

fluences, as explained in Ref. 15, in situations when the high-

est fluence is more desirable than the shortest duration of the

output pulse. In such situations, the “safety factor” d could be

allowed to grow up to values of the order of 1.

IV. DISCUSSION

The above theoretical results are applicable for all laser

wavelengths not too close to the BRA short-wavelength limit.

The most important applications of these results are associated

with backward Raman amplification and compression in the x-

ray and optical bands. The x-ray BRA appears possible, so

long as it is restricted, in fact, primarily to moderately under-

critical plasmas.4 In the optical band, the final step to reach

ultra-powerful BRA should be accomplished in moderately

undercritical plasmas.14 Such plasmas could be produced by

ionizing foams or aerogels. For example, the wavelength of

NIF laser pulses, k ¼ 0:351lm, corresponds to the critical

plasma electron concentration ncr ¼ 9	 1021 cm�3. Such

plasma could be produced by direct ionization of a foam of

density q ¼ 30 mg=cm
3
. To enable the Raman backscattering

of pump laser pulses, the plasma concentration should be

smaller than the critical concentration for seed laser pulses,

which is approximately 4 times smaller than for pump pulses,

so that respective foam density should not exceed

q ¼ 7:5 mg=cm3. In fact, it must be even smaller, because of

the thermal addition to the resonant Langmuir wave frequency.

Note that the results obtained here are in a very different

regime than those considered in recent particle-in-cell (PIC)

simulations,27,28 which suggested operation in strongly

undercritical plasmas, noticeably above the Langmuir wave-

breaking threshold. Those studies were apparently driven

towards the strongly undercritical regime in order to avoid

FRS. However, as noted here, FRS is completely absent for

plasma frequencies larger than half of the amplified pulse

frequency, and there are methods for suppressing FRS

(through detuning) at smaller plasma frequencies. Thus, the

moderately undercritical plasma considered here was not

taken into consideration in the recent simulations.27,28 Note

as well that in the moderately undercritical plasma regimes

considered here, the wavebreaking threshold is not exceeded

and relatively less powerful seed pulses can be employed

compared to the regimes described in these recent

simulations.

V. SUMMARY

To summarize: the BRA theory is extended to moderately

undercritical plasmas taking into account the dispersion of

group velocity and relativistic electron nonlinearity of ampli-

fied pulses. Approximate scalings are found analytically,

through which the BRA output pulses in multi-dimensional

parameter space are expressed in terms of universal functions

of the single parameter—the ratio of the plasma frequency to

the seed laser frequency. The shortest duration and the largest

non-focused intensity of the BRA output pulses are calculated

explicitly and shown to occur specifically in moderately

undercritical plasmas. This provides a much needed guide for

further experimental and numerical studies, which otherwise

would be hardly capable of capturing the most important

BRA regimes in multi-dimensional parameter space.
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