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The negative-mass instability, previously found in ion traps, appears as a distinct regime of the sideband

instability in nonlinear plasma waves with trapped particles. As the bounce frequency of these particles

decreases with the bounce action, bunching can occur if the action distribution is inverted in trapping

islands. In contrast to existing theories that also infer instabilities from the anharmonicity of bounce

oscillations, spatial periodicity of the islands turns out to be unimportant, and the particle distribution can

be unstable even if it is flat at the resonance. An analytical model is proposed that describes both single

traps and periodic nonlinear waves and concisely generalizes the conventional description of the sideband

instability in plasma waves. The theoretical results are supported by particle-in-cell simulations carried

out for a regime accentuating the negative-mass instability.
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Introduction.—It is well known that bounce oscillations
of particles autoresonantly trapped in a wave can couple to
wave sidebands, rendering them unstable [1–3]. The side-
band instability (SI) was extensively studied in the past
[4–8], more recently in application to free electron lasers
[9] and storage rings [10], and now is attracting renewed
attention [11,12] in the context of intense laser-plasma
interactions (LPI) and the associated trapped-particle mod-
ulational instability (TPMI) [13], which is the SI’s
geometrical-optics limit [14]. Yet little effort was paid to
unifying SI theories that appeared after the original Kruer-
Dawson-Sudan work [1], further termed KDS. As a con-
sequence, their results are often neglected today, and that,
in turn, leads to misapplications [15]. Thus, even though
quantitative predictions may be better left to simulations in
any case, a transparent theory is needed, particularly as a
practical tool for interpreting LPI-related numerical data,
that would both comprehensively capture and elucidate the
SI paradigmatic physics.

Here we propose such a theory for Bernstein-Greene-
Kruskal (BGK) waves [16], paradigmatic in the LPI con-
text, in one-dimensional (1D) electron collisionless
plasma. We identify a new mechanism of the SI, which is
additional to that implied in KDS. We call this mechanism
a negative-mass instability (NMI), because of its resem-
blance to the NMI in accelerators and storage rings [17].
The NMI is not limited to periodic waves and thus can be
treated also as an extension of the bunching instability
recently found in ion traps [18]. Our analytical model
describes both single traps and periodic nonlinear waves
and represents a transparent generalization of KDS, repro-
ducing the latter as a limit. In contrast to existing theories
that also relate the SI to anharmonicity of bounce oscil-
lations, in the NMI theory, the particle distribution can be
unstable even if it is flat at the resonance. Below, we

present our theory in detail and support it with results of
particle-in-cell (PIC) simulations for a regime accentuating
the NMI effect.
Physical mechanism.—For transparency, we will limit

our consideration to waves that are initially phase mixed,
so the initial trapped population can be characterized by
the distribution FðJÞ of the particle bounce actions, J. [As
proved fruitful by Refs. [14,19–21], finding FðJÞ is treated
as an independent problem, not to be addressed here, but
see Refs. [19,21].] Even in this case, sidebands are sub-
jected to a whole zoo of instabilities, for which SI serves
merely as an umbrella term. A variety of regimes is exhib-
ited already by the KDS model [3], which assumes FðJÞ ¼
�ðJÞ. These instabilities feed on the free energy stored in
the trapped-particle motion at the wave phase velocity, �u,
much like the usual bump-on-tail instability. On the other
hand, the distribution inside trapping islands can also
become unstable by itself, if FðJÞ is inverted (which occurs
naturally [22]) and if the bounce frequency, �, is a
decreasing function of J (which is typical). The specific
mechanism is as follows.
Consider a pair of particles bouncing in the wave poten-

tial, i.e., rotating in phase space around a local equilibrium.
Through Coulomb repulsion (strictly speaking, via collec-
tive fields), the leading particle increases its energy; then it
moves to an outer phase orbit and slows down its phase
space rotation (as �0 < 0), whereas the trailing particle
moves to a lower orbit and speeds up, correspondingly.
This way, mutually repelling particles can undergo phase
bunching, or condensation, as if they had negative masses
[23]. The condensation may or may not eventually saturate
in the form of a stable ‘‘macroparticle’’ [24]; yet, its very
formation, which one may expect to be a generic feature of
ring-shaped distributions, constitutes a fundamental insta-
bility in itself, missed in KDS. We adopt the term NMI to
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refer to this distinct regime of the SI, by analogy with the
well-known bunching mechanism for particles rotating in
accelerators and storage rings [17]. A subtle difference,
however, is that in our case particles rotate in phase space,
so what determines the instability is the canonical fre-
quency � rather than a physical angular velocity.

Clearly, the bunching mechanism applies to single traps
too, thus bridging the SI with a similar instability found in
ion traps [18]. To our knowledge, a Vlasov theory of the
ion-trap NMI does not exist, so it is worth considering the
two instabilities together, drawing on their similarity. As
will be seen, this approach is different from both ‘‘para-
metric’’ theories [1–5], which deduce the SI from mode
coupling, and ‘‘quasilinear’’ theories [6], which treat side-
bands as independent harmonics and infer the SI as their
inverse Landau damping on a nonlinearly perturbed slow
part of the velocity distribution.

Single trap.—Let us first consider a single trap absent
bulk plasma. Suppose a given 1D static potential well,
UðxÞ, which causes an individual particle to oscillate at
some nonlinear frequency, _� ¼ �ðJÞ; here ðJ; �Þ � � are
the corresponding action-angle variables. When multiple
particles are placed in the same well, their oscillations
become perturbed by the collective electrostatic potential,
�. For clarity, we will consider only perturbations along
the x axis, so the transverse dynamics is decoupled and
need not be considered below. The individual-particle
Hamiltonian can then be written as H ¼ R

J
0 �ðJ0ÞdJ0 þ

e�ðx; tÞ, where e is the charge, and x is now understood as
a function of the phase-space coordinates, x ¼ Xð�Þ.
Absent collisions, the particle distribution fð�; tÞ is gov-
erned by the Vlasov equation,
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@f

@J
¼ 0; (1)

somewhat unusual as the electrostatic force is now for-
mally a function of both coordinate and momentum. The
corresponding Poisson’s equation then can be written as

@2�

@x2
¼ �4�eNt

Z

�
d��ðx� Xð�ÞÞ fð�Þ; (2)

where N t is the average number of particles per unit
surface transverse to the x axis,

R
� d�fð�Þ ¼ 1,

R
� d� ¼:R1

0 dJ
Rþ�
�� d�, and the symbol ¼: denotes definitions.

Let us search for a solution in the form f ¼
�fðJÞ þ Re~fð�Þe�i!t, where ~f ¼ P

m
~fmðJÞeim� � �f, and

� ¼ ��ðxÞ þ Re ~�ðXð�ÞÞe�i!t. The static part of the poten-
tial, ��, is determined by �f and can be eliminated by

redefining UðxÞ. Correspondingly, ~� is determined by ~f,

which contains no net charge,
R
� d�

~fð�; tÞ ¼ 0; thus the

quiver field, ~E ¼: �@ ~�=@x, vanishes at x ! �1. We will
assume that UðxÞ is even and the phase is defined such
that the sign of cos� matches that of X. This givesR1
0 �ðx� Xð�ÞÞdx ¼ Hðcos�Þ, where H is the Heaviside

step function; hence, integrating Eq. (2) over x from zero to

infinity yields E ¼ �4�eN t

R1
0 dJ

Rþ�=2
��=2 d�

~fð�Þ, where
E ¼: ~Eðx ¼ 0Þ. From the linearized Eq. (1), we have ~fm ¼
�em ~�m

�f0=ð!�m�Þ, and thus

E ¼ 8�e2N t

X

m

sin

�
�m

2

�Z 1

0

~�mðJÞ �f0ðJÞ
!�m�ðJÞdJ: (3)

The integration contour can be taken along the real axis in
J space if � ¼: Im!> 0 but otherwise must be understood
as a Landau contour in the J complex plane.
To simplify the right-hand side in Eq. (3), let us use

~�mðJÞ ¼
Rþ�
��

~�ðXð�ÞÞe�im�d�=ð2�Þ and replace the po-

tential with its Taylor series, ~�ðxÞ ¼ P1
‘¼0 q‘x

‘; in par-

ticular, q1 ¼ �E. We will assume that oscillations are
close to linear, with some constant frequency �0; hence

Xð�Þ � A cos�, where A ¼ ½2J=ðM�0Þ�1=2, and M is the

particle mass. Then, ~�m ¼ �ð�m;1 þ �m;�1ÞAE=2, and

Eq. (3) yields the following dispersion relation:

1þ 2!2
t

ffiffiffiffiffi
J0

p Z 1

0

F0ðJÞ ffiffiffi
J

p
!2 ��2ðJÞdJ ¼ 0: (4)

Here we replaced �ðJÞ with �0 in the numerator and
defined FðJÞ ¼: 2� �fðJÞ, so R1

0 FðJÞdJ ¼ 1. Also, x0 is

the maximum amplitude of the unperturbed oscilla-
tions, so J0 ¼: M�0x

2
0=2 is their maximum action [i.e.,

�fðJ > J0Þ ¼ 0]; �nt ¼: N t=ð2x0Þ is the trapped-particle av-
erage density; �!t ¼: ð4� �nte

2=MÞ1=2 is the characteristic

plasma frequency, and we introduced !t ¼: �!tð2=�Þ1=2.
Suppose a ring distribution, FðJÞ ¼ �ðJ � J0Þ. For har-

monic bounce oscillations [�ðJÞ ¼ �0], Eq. (4) yields
!2 ¼ �2

0 þ!2
t ; this is understood, because then !t hap-

pens to equal the local plasma frequency at x ¼ 0, which
must also be the eigenfrequency at vanishing�0. Consider
now nonzero � ¼: ��0ðJ0ÞJ0=�0. In this case, Eq. (4)
rewrites as w2��wþ4��¼0, where w¼: ð!=�0Þ2�1
and � ¼: !2

t =�
2
0. We will assume � � 1 and � � 1,

implying� � U [3]; yet, for simplicity, wewill also adopt
b ¼: �=ð16�Þ � 1, so there are very few trapped particles.

Then w � �=2� 2ð���Þ1=2, and thus ! � �0 þ �!�
!tð��Þ1=2, where �! ¼ !2

t =ð4�0Þ. Hence, having �> 0,
which corresponds to �0 < 0, leads to an instability with

� � !t�
1=2. This is the NMI cold limit.

Clearly, a nonzero width of the distribution, JT , corre-
sponding to the thermal spread of natural frequencies
����0JT , cannot affect the growth rate if �� � �.
(The effect on the real frequency shift is insignificant, as
�! � �). The latter rewrites as J2T=J

2
0 & 16b, so it can be

satisfied even at JT � J0 due to the large numerical coeffi-
cient on the right-hand side. Thus, except at too small b,

Eq. (4) yields ��!t�
1=2 for almost any invertedFðJÞ, and

it does not matter what part of the distribution realizes the
exact resonance,�ðJÞ ¼ �0 þ �!. One can as well ascer-
tain this numerically or by recalculating the dispersion
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relation for test cases such as a Gaussian or rectangular
distribution, FðJÞ ¼ HðJ0 � JÞHðJ � J0 þ JTÞ=JT .

Periodic BGK wave.—Now consider a sinusoidal BGK
wave with amplitude �E, wave number �k � 2�= ��, and
nonlinear frequency �!ð �k; �EÞ [19,21]. In the frame traveling
at (nonrelativistic) velocity �u ¼ �!= �k, the medium is peri-
odic and stationary, so any perturbation with a well-defined
frequency !0 is a Bloch-Floquet wave. In particular, the

charge density becomes ~	 ¼ e�i!0tþik0x0P
‘ ~	‘e

i‘ �kx0 , where
x0 ¼ x� �ut, ‘ hereupon spans from �1 to þ1, and the
constant k0 is a quasi-wave-vector, which is restricted to the
first Brillouin zone; i.e., 
 ¼: k0= �k satisfies j
j< 1=2. In
terms of x and t, this gives ~	 ¼ P

‘ ~	‘e
�i!‘tþik‘x, where

!‘ ¼: !þ ‘ �!, k‘ ¼: kþ ‘ �k, ! ¼: !0 þ k0 �u, and k ¼: k0.
Gauss’s law yields then ~E‘ ¼ 4�~	‘=ðik‘�‘Þ, where �‘ ¼:
�ð!‘; k‘Þ ¼ �ð!0 þ ð‘þ 
Þ �!; ð‘þ 
Þ �kÞ. As in Ref. [1],
we assume that the bulk plasma response is modeled
with a linear dielectric function, say, �ð!; kÞ �
1�!2

p=ð!2 � 3k2v2
TÞ, where !p ¼: ð4�ne2=MÞ1=2, n is

the bulk electron density, vT is the electron thermal speed,
and ß ¼: �kvT=!p � 1.

Now use ~	‘ ¼ L�1
R
dx0 ~	ðx0; tÞei!0t�ik‘x

0
, where L is the

plasma length, and substitute ~	 ¼ P
jrje

�i!0t, where rj ¼
eN t½

R
� d��ðx0 � j ��� Xð�ÞÞ~fð�Þ�j are the contributions

of individual islands, and ~f can be taken from the single-
trap problem. We will assume again that most significant
are oscillations near the trapping-island center, so
k‘Xð�Þ � 1. (This overestimates the contribution of
high-‘ harmonics, but see below.) A straightforward cal-

culation yields then ~	‘ ¼ �ðik‘=4�Þ �!2
tJA. Here �!t ¼:

ð4� �nte
2=MÞ1=2, like before, with the average trapped den-

sity being �nt ¼ N t= ��; also, J ¼: RJ�
0 dJJF0ðJÞ=½!02 �

�2ðJÞ�, J� is the separatrix action [so FðJ > J�Þ ¼ 0],

and A¼ð ��=LÞPjEje
�ik‘j ��, where Ej¼ ~Eðx¼ j ��Þ. Using

Gauss’s law, we hence arrive at ~E‘ ¼ � �!2
tJA=�‘. On the

other hand, Ej ¼
P

‘0 ~E‘0e
ik‘0 j �� yields A ¼ P

‘0 ~E‘0 , which

does not depend on ‘. Summing over all relevant ‘ then
leads to

1þ �!2
t

�eff

Z J�

0

JF0ðJÞ
ð!� k �uÞ2 ��2ðJÞdJ ¼ 0; (5)

where 1=�eff ¼:
P

‘1=�ð!‘; k‘Þ. As a side note, the ampli-
tudes of individual harmonics are thereby locked (�‘ ~E‘ ¼
const). This means, contrary to a popular misconception,
that a sideband wave with well-defined! and k has neither
a single frequency nor a single wave vector, but rather
consists of multiple harmonics with different (!‘, k‘); in
particular, all of them have identical growth rates, Im!‘ ¼
Im! � �, and similarly for Imk‘.

Absent plasma, the number of harmonics contributing to
�eff is about ��=x0; then Eq. (4) is recovered, at least
qualitatively. Plasma, in contrast, accentuates harmonics
with small �‘, which is realized (assuming that nonlinear

effects are weak, so !0 � �!) at ð‘þ 
Þ �! � �!p. Since

�! is itself close to�!p, that requires small 
 and ‘ ¼ �1.

Following KDS, we retain only these resonant terms, so

1=�eff ¼ 1=�ð!� �!; k� �kÞ þ 1=�ð!þ �!; kþ �kÞ: (6)

If one redefines ! and k according to the (less symmetric)
notation adopted in Ref. [1], the KDS result is hence
reproduced from Eq. (5) as a limiting case corresponding
to �0ðJÞ ¼ 0, through integration by parts. [That being
said, realistic �0ðJÞ is nonnegligible even at zero J, so
KDS is not the universal cold limit here; the shape of FðJÞ
matters even when its width is vanishingly small.]
Contrary to Ref. [2], the stationary-wave dispersion,

�!ð �k; �EÞ, need not be derived separately, for it is already
contained in the model as a limit. Since � � 1 is assumed,
substituting!0 ¼ 0 and k0 ¼ 0 into Eqs. (5) and (6) yields,
within the accuracy that we have adopted,

�ð �!; �kÞ þ 2 �!2
t =�

2
0 � 0; (7)

in agreement with the adiabatic theory [19]. This com-
pletes the set of equations [Eqs. (5)–(7)] generalizing the
KDS model. The growth rate that flows from those is
determined by both the KDS effect, yet quantitatively
modified now because of non-constant �ðJÞ, and the
NMI. As the NMI remains a cold instability, its rate is
primarily determined by the integral principal value, so a
wave can be unstable even if FðJÞ is flat at the resonance.
This, in particular, leads to a very different � than the one
that Ref. [5] attributes [25] to the resonance pole in an
equation resembling Eq. (5). Below, we discuss results of
numerical simulations that support our predictions.
Numerical results.—To illustrate the NMI and unambig-

uously validate the difference between our Eq. (5) and
KDS (rather than to mimic a specific experiment), we
performed 1D PIC simulations under conditions that
controllably accentuate these effects. A self-consistent
phase-mixed electron plasma wave was seeded, with ions
modeled as a homogeneous background. We then emulated
[26] plasma compression perpendicularly to the wave vec-
tor. During this compression, �nt=n � �, �k, and vT remain

fixed, but �!�!pðtÞ grows as N1=2, where N ¼: nðtÞ=n0.
(The index 0 hereupon denotes initial values.) Electrons
that were trapped initially are then accelerated such that
their average velocity remains equal to �uðtÞ, so the trapping
island detaches from the bulk distribution. The wave elec-
trostatic energy density, W , is adiabatically amplified
through compression and then decays, as explained in
Ref. [27]. Here we are interested in only the initial stage,
whenW grows; each trapped particle then preserves its J,
but J=J�ðtÞ decreases, so a deeply trapped ring-shaped
distribution is formed.
Specifically, we start out with ß0 � 0:26, �0 �

6	 10�4, and ½ �ntm �u2=ð4W Þ�0 � 0:29. As we use peri-
odic boundary conditions, only k ¼ 2�p=L is allowed,
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where p is integer; then, j
j< 1=2 leads to jpj< �kL=ð4�Þ.
We operate at the lowest spatial mode ( �� ¼ L), so the
inequality becomes jpj< 1=2, and, for integer p, this
means p ¼ 0; i.e., 
 ¼ 0. (Although the quasi-wave-
vector is zero in this case, the perturbation, being a
Bloch wave, yet contains spatial harmonics with wave
vectors ‘ �k). Under these conditions, the KDS model pre-
dicts zero � (and so does Ref. [5]), but sideband amplifi-
cation from noise is nevertheless observed [Fig. 1(a)].
Quantitative assessment of the instability is hindered by
the fact that the plasma is nonstationary. Still, the inferred
characteristic values, !=!p0 � 0:25 and �=!p0 � 0:006

[Figs. 1(b) and 1(c)], agree with the theory (which predicts
!=!p0 � 0:2 and �=!p0 � 0:01 throughout the whole

process), and phase bunching is observed indeed
[Figs. 1(d)–1(g)]. We also theoretically calculated ! for
realistic FðJÞ at the specific t when W is at its maximum
(W =W 0 � 5, N � 5:4). Both the real and imaginary
parts of ! inferred from Eqs. (5) and (6) match the
observed values within a few percent.

Discussion.—As the domain of certain quantitative va-
lidity for our theory is limited to particles trapped at orbits
deeper than in the numerical example above, the high
precision with which the theory matches our simulations
may be, to some extent, accidental. What is actually
important, however, is that we have been able to predict
correctly the qualitative dynamics observed in ab initio
simulations. This means that our theory adequately
describes the leading-order thermal effects in the SI and
thus can be used as an advancement of KDS, whether or
not the NMI is present. This responds to the long-standing
need for a transparent theory that would permit analyzing
the effect of the trapped-particle distribution on the SI, at
least partially, rather than solely relying on simulations or
precariously ascribing to KDS the generality that the latter
cannot possess in principle (see also Ref. [14]), as is often
done in literature.

In particular, on the score of our theory being transpar-
ent, we have been able to identify a new mechanism of the
SI, which is additional to that implied by KDS, and which
we term NMI because of the resemblance to the NMI
in accelerators and storage rings. This instability is caused
by phase bunching of particles bouncing within trapping
islands. Contrary to existing theories that also infer BGK-
wave instability from the anharmonicity of bounce oscil-
lations, spatial periodicity of the islands turns out to be
unimportant for the NMI, and the particle distribution can
be unstable even if it is flat at the resonance. An analytical
model is proposed which describes both periodic nonlinear
waves, thus generalizing KDS, and also single trapping
islands, thus relating the SI to a similar instability recently
found in ion traps. The theoretical results are supported by
PIC simulations carried out for a regime accentuating the
NMI effect.
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