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For a given voltage across a divergent poloidal magnetic field, two electric potential distributions,
each supported by a rigid-rotor electron cloud rotating with a different frequency, are found
analytically. The two rotation frequencies correspond to the slow and fast rotation frequencies
known in uniform plasma. Due to the centrifugal force, the equipotential surfaces, that correspond
to the two electric potential distributions, diverge more than the magnetic surfaces do, the
equipotential surfaces in the fast mode diverge largely in particular. The departure of the
equipotential surfaces from the magnetic field surfaces may have a significant focusing effect on
the ions accelerated by the electric field. The focusing effect could be important for laboratory
plasma accelerators as well as for collimation of astrophysical jets. VC 2013 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4813243]

I. INTRODUCTION

Because of the high mobility of electrons along mag-
netic field lines, it is often assumed that the potential over a
magnetic flux surface is constant. Indeed, the assumption
that magnetic surfaces tend also to be equipotential surfaces
has been utilized in the design of the potential distribution in
many magnetic devices, including the Hall thruster,1 plasma
lens,2,3 tandem mirror,4 centrifugal fusion,5–7 plasma
centrifuge,8–10 or helicon source.11,12 We have recently
shown that in fact, because of the centrifugal force, equipo-
tential surfaces do not coincide with magnetic flux surfaces
and that this inclination of the equipotential surface with
respect to the magnetic surfaces may have focusing effect on
ion beams.13 In this paper, we examine the electric potential
distribution in an electron cloud immersed in a divergent
poloidal magnetic field.

A divergent poloidal magnetic field with a large axial
component is characteristic to the cylindrical Hall thruster
(CHT).14 The CHT is a promising alternative to the conven-
tional annular Hall Thruster. A number of variations of Hall
thrusters with large axial field components, similar to the
CHT, have now been explored as well.15–18 In this open or
magnetic-nozzle configuration, the outer part of the central
portion of a conventional HT annular channel is eliminated,
giving a larger volume to surface ratio for a given thruster
radial dimension, resulting in smaller electron losses to the
walls and therefore a smaller erosion. A result of the elimina-
tion of that central portion is a significantly larger component
of the magnetic field in the axial direction compared to the
magnetic field in the conventional annular Hall thruster.
Thus, while there are many magnetic field effects such as
magnetic mirroring or focusing exhibited by the conven-
tional annular thruster,17–21 we are interested here in mag-
netic field configurations with a large axial component.

The potential distributions across the magnetic flux
surfaces in the CHT determine the ion dynamics. We were
able to find and to describe analytically two electric potential
distributions, each supported by a rigid-rotor electron cloud

rotating with a different frequency. The two rotation frequen-
cies correspond to the slow and fast rotation frequencies
known in uniform plasma.22 Due to the centrifugal force,
both equipotential surfaces that correspond to the two elec-
tric potential distributions, diverge more than the magnetic
surfaces do, the potential in the fast mode deviates largely in
particular. The departure of the equipotential surfaces from
the magnetic field surfaces may have a significant effect on
the divergence of an ion beam accelerated by the electric
field. We show that the larger divergence of the equipotential
surfaces has a nonmonotonic effect on the direction of accel-
erated ions, although, in general, a considerable focusing
effect is expected. In addition to the CHT, the focusing effect
could be important for other laboratory plasma accelerators
as well as for collimation of astrophysical jets.23

In Sec. II, we present the two families of equipotential
surface with the corresponding two rotating electron clouds.
In Sec. III, we demonstrate the effect of the deviation of
the equipotential surfaces from the magnetic surfaces on the
dynamics of unmagnetized ions that are accelerated by the
electric field.

II. EQUIPOTENTIAL SURFACES IN THE PRESENCE
OF ROTATING ELECTRON CLOUDS

We assume that there is a force balance on the electrons
and neglect electron inertia terms except the centrifugal
force term

~E þ v##̂ " ~B ¼ m

e

v2
#

r
r̂: (1)

Here, ~E and ~B are the electric and magnetic fields, v# is the
azimuthal component of the electron fluid velocity, m is the
electron mass, and e is the elementary charge. In Eq. (1),
the component of ~E parallel to ~B is balanced by the compo-
nent of the centrifugal force parallel to ~B. If there is no
centrifugal force, ~E parallel to ~B is zero, and the electric
potential is constant along a field line. We are examining
here the effect of a finite centrifugal force.
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We note that the electrons have thermal velocity with
components in both the r and the z directions. In addition,
there is a drift velocity towards the anode. However, we
assume that, due to the large applied electric field, the largest
component of the velocity is in the azimuthal direction. To
lowest order, we retain only that component in Eq. (1).

We use cylindrical coordinates assuming that there is
only a poloidal field, ~B ¼ ðBz;Br; 0Þ, and that there is no
variation in the # direction. The fields are expressed
with the magnetic flux function w and the electric poten-
tial / as

~B ¼ ~r " #̂
w
r

! "
; ~E ¼ &~r/: (2)

From the z and r components of Eq. (1), we derive the gov-
erning equation

& @/
@r2

@w
@z
þ @/
@z

@w
@r2
¼ m

2e

ð@/=@zÞ2

@w=@z
: (3)

The effect of the centrifugal force is obvious also from
Eq. (3). If the centrifugal force is neglected so that the right
hand side (RHS) of the equation is zero, w and / commute
resulting in the coinciding of the equipotential surfaces and
the magnetic flux surfaces. We are interested in the more
general case, when the centrifugal force is not zero, so that
these two families of surfaces do not coincide. Our approach
is to take wðz; rÞ as given and to solve for /ðz; rÞ for a diver-
gent magnetic field. We use a magnetic flux function of the

form24 w ¼ ðB0=2Þr2=½ð1þ r=RÞ2 þ z2=R2(3=2. Since in the
present paper we address the case of a magnetic field with a
large axial component, we use the paraxial approximation
and approximate further to

w ¼ B0r2

2ð1þ z2=R2Þ3=2
: (4)

The magnetic field associated with w of Eq. (4) is not curl-
free, and the associated azimuthal current density is on the
order of B0r=R2l0, usually smaller than the actual azimuthal
current in the CHT, which induces a small perturbation only
to the vacuum field. In any event, our aim is to demonstrate
the deviation of the equipotential surfaces from the magnetic
flux surfaces for a prototypical case of a diverging magnetic
field, and the exact form of the magnetic field surfaces is not
that important.

We look for /ðz; rÞ that satisfies Eq. (3) when the elec-
tric potential /ðz ¼ 0; rÞ is specified as follows:

/ðz ¼ 0; rÞ ¼ /1

r2

r2
1

; 0 ) r ) r1: (5)

Without the centrifugal force, the curves of constant w are
the characteristics of the equation for / and the potential dis-
tribution is simply

/ðz; rÞ ¼ /1

r2

r2
1

1

ð1þ z2=R2Þ3=2
: (6)

Taking into account the centrifugal force, we seek a solution
of the form /ðz; rÞ ¼ /11gðf Þ, where 1 * r2=r2

1 and f
* 1=ð1þ z2=R2Þ3=2. The governing equation (3) with the
magnetic flux of the form (4) becomes

pg02 & fg0 þ g ¼ 0; (7)

where according to the boundary condition (5), g(1) ¼ 1, and

p * 2m/1

eB2
0r2

1

: (8)

Here, g0 * dg=df . Substituting u * gðf Þ=f 2 and s ¼ lnf into
Eq. (7), we obtain the nonlinear homogeneous differential
equation: pð2uþ du=dsÞ2 & ð2uþ du=dsÞ þ u ¼ 0. This
equation is easily integrated to provide two analytical solu-
tions to Eq. (3) with the boundary condition (5)

/ðz; rÞ ¼ /1r2

4pr2
1

17
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1& 4p

p$ %

" 2

ð1þ z2=R2Þ3=2
& 17

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1& 4p

p$ %" #
: (9)

The two solutions correspond to the two rotation modes
known in uniform plasma,22 the slow mode and the fast
mode (upper and lower sign, respectively). Calculating the
rotational frequency as X ¼ v#=r ¼ ð@/=@zÞ=ð@w=@zÞ, we
find that

X ¼ eB0

2m
17

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1& 4p

p$ %
; (10)

which are the two frequencies in a uniform magnetic field22

calculated at z¼ 0. The two rigid-rotor equilibria coincide at
the Brillouin flow, when 4p¼ 1. At the limit p! 0, the slow
mode of Eq. (9) is reduced to that in Eq. (6).

The parameter p can also be expressed as ðE=rBÞ=Xc,
where Xc is the electron cyclotron frequency and the quanti-
ties are taken at z¼ 0.

We note on passing that, when 4p¼ 1, Eq. (7) has a third
solution, u¼ 1 or g ¼ f 2, which is written explicitly as

/ðz; rÞ ¼ /1

r2

r2
1

1

ð1þ z2=R2Þ3
: (11)

This additional solution for 4p¼ 1 is different from the two
rotation modes described above. It is a special case of a par-
ticular solution for Eq. (3)

/ðz; rÞ ¼ e

2m

w
r

! "2

: (12)

The electric potential described by Eq. (12) satisfies the
governing equation (3) for any magnetic flux function, w,
not only for w of the form (4). The rotational frequency in
the case of the particular solution is found again through
X ¼ v#=r ¼ ð@/=@zÞ=ð@w=@zÞ with 4p¼ 1

X ¼ eB0

2m

1

ð1þ z2=R2Þ3=2
: (13)
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This is a rigid-rotor equilibrium but the rotational frequency
varies along z. This variation implies that the flow is not
iso-rotational.

We turn back to the rigid-rotor flows [Eqs. (9) and (10)].
The equipotential surfaces determined by Eq. (9) do not
coincide with the magnetic field surfaces. The equipotential
surfaces of the slow mode equilibrium do converge to the
magnetic field surfaces at the limit p! 0. In the fast mode,
however, the deviation of the equipotential surfaces becomes
larger as p! 0. That deviation of the fast mode may have a
dramatic effect on ion beam collimation.

Figures 1 and 2 show the magnetic flux surfaces and the
equipotential surfaces according to Eq. (9) for r1=R ¼ 0:1.
Figure 1 shows these surfaces for the Brillouin limit at
4p¼ 1, for which X ¼ eB0=2m for the two rotational modes.
Figure 2 shows the equipotential surfaces for the two modes
for p¼ 0.2. While the deviation of the equipotential surfaces
from magnetic flux surfaces is small for the slow mode, that
deviation is very large for the fast mode.

III. THE ION DYNAMICS

We solve for ion trajectories under magnetic fields and
electric fields derived from the magnetic flux function (4)
and electric potential (9). We assume that the potential distri-
bution corresponds to the slow mode, which we write in the
form

/ðz; rÞ ¼ /1r2

4pr2
1

1&
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1& 4p

p$ %

" 2

ð1þ z2=R2Þ3=2
& 1&

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1& 4p

p$ %" #
: (14)

We write the equation of motion for the ions in the fol-
lowing dimensionless form:

d2ð~r=RÞ
ds2

¼ ~a þ
ffiffiffiffiffi
m

mi

r
dð~r=RÞ

ds
" ~b; (15)

where mi is the ion mass, and s; ~a, and ~b, the normalized
time, electric field, and magnetic field, are

s * eB0ffiffiffiffiffiffiffiffiffi
mmi
p t; ~aðp; r=R; z=RÞ * m=eB2

0R~E;

~bðr=R; z=RÞ *
~B

B0
: (16)

A diagram of the cylindrical Hall thruster, for which this
analysis is relevant, is shown in Fig. 3. Our solution for the
electric potential holds in the bulk of the plasma. We do not
address the problem of matching our solution to the solution
at the plasma plume outside the magnetized region. There a
different model has to be used. However, it stands to reason
that at a certain distance from the axis on the plane denoted
as z¼ 0, the potential is close to that at the anode, / ¼ /1,
while on axis the potential is that of the cathode, which we
denote as / ¼ 0. It is likely that the potential drops to the
cathode potential at some plane in the vicinity of the

FIG. 1. Normalized magnetic flux surfaces 2w=B0r2
1 and normalized equipo-

tential surfaces /=/1 (colored)-Brillouin flow–4p¼ 1.

FIG. 2. Normalized magnetic flux surfaces 2w=B0r2
1 and normalized equipo-

tential surfaces /=/1 for the slow mode (red) and for the fast mode
(blue)–p¼ 0.2.

FIG. 3. A schematic of the cylindrical Hall thruster. As an illustration,
denoted are planes z ¼ 0 and z ¼ zf that correspond to the particular analyti-
cal solution.
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cathode, there / ¼ 0. Somewhat arbitrarily, we assume that
this plane is perpendicular to the axis of symmetry, and
according to Eq. (14) it satisfies

2

ð1þ z2
f =R2Þ3=2

& 1&
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1& 4p

p$ %
¼ 0 (17)

so that / ¼ 0 at all r. A plane denoted as z ¼ zf is shown in
Fig. 3.

If an ion is released at rest at any r ) r1, at the plane
z¼ 0, it will only oscillate around r¼ 0, without moving axi-
ally. We solve the equations of motion under the assumption
that an ion is released at rest at z ¼ zi > 0 at /ðzi; riÞ ¼ /1,
so that ri satisfies

1¼ r2
i

4pr2
1

1&
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1& 4p

p$ %
2

ð1þ z2
i =R2Þ3=2

& 1&
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1& 4p

p$ %" #
:

(18)

We examine what the velocity of the ion is as it propagates
through the exit at zf, as described above.

If the centrifugal force is neglected, the electric potential
becomes

/ðz; rÞ ¼ /1r2

r2
1ð1þ z2=R2Þ3=2

; (19)

as is obtained at the limit p! 0 [see Eq. (6)]. For each initial
location ðzi; riÞ, we compare an ion trajectory in the presence
of the potential of the slow mode, as in Eq. (14), due to the
centrifugal force, with an ion trajectory in the absence of the
centrifugal force, the slab case, as in Eq. (19). Note that in the
slab case the potential / vanishes at a different, curved plane.

In Figs. 4–7, we show the results for the initial condi-
tions zi=R ¼ 0:1; 0:3; 0:7, and 0.9, respectively. The parame-
ters in the calculations are r1=R ¼ 0:1 as in Figs. 1 and 2
(which determines the values of ri/R), and m=mi ¼
1:36" 10&5 (corresponding to argon). For the case with the
centrifugal force, p¼ 0.2, while for the slab case, p! 0. In
the comparison, we chose to compare in each of Figs. 4–7
the trajectories of ions that are born at the same location.
Since the equipotential surfaces are different when the cen-
trifugal force is different, the ion trajectories compared in
each figure are accelerated across different voltages.

Because of the ion oscillations around the axis, the angle
of the ion motion at the exit is hardly predictable. The
angle of the ion trajectory is sometimes smaller with the
centrifugal force and sometimes larger. For example, when

FIG. 4. Ion trajectories under the magnetic field and the electric field that
corresponds to the slow mode for p¼ 0.2 (red), and in the slab case p! 0
(blue), both for zi=R ¼ 0:1. The angle of divergence at the exit is 21+ and
39+, respectively. Also shown are the magnetic field lines, and the electric
field lines for the slow mode (black dashed) and for the slab case (gray
dashed), the / ¼ /1 (orange dashed) and / ¼ 0 (orange dotted-dashed)
lines for the slow mode and the / ¼ /1 (green dashed) for the slab case.

FIG. 5. Ion trajectories under the same magnetic and electric fields as in
Fig. 4. Here, zi=R ¼ 0:3. The angle of divergence at the exit is 26+ for the
slow mode and 46+ for the slab case.

FIG. 6. Ion trajectories under the same magnetic and electric fields as in Fig.
4. Here, zi=R ¼ 0:7. The angle of divergence at the exit is 42+ for the slow
mode and 24+ for the slab case.
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zi=R ¼ 0:7 (Fig. 6), the angle at the exit is 428 with the cen-
trifugal force, and it is only 248 in the slab case.

Ions that are borne near the exit leave the system with
the centrifugal force without bouncing off the axis. Such tra-
jectories are not shown here. However, it is clear that in that
region the angle of the ion trajectory relative to the axis is
smaller with the centrifugal force. We note that the trajecto-
ries we show are of ions that were born near the axis,
because our calculation is for a magnetic field that is
described within the paraxial approximation. The relative
number of ions that leave the system without bouncing off
axis is expected to be larger if they are born away from the
axis. Because the number of ions that do not bounce off axis

is expected to be larger in experiments than in the region in
our calculation, the effect of the centrifugal force on reduc-
ing the angle of divergence is also expected to be larger than
what is shown in the figures here.

Figure 8 shows the angle of divergence of the ions at the
exit versus zi=R under the electric field as in Figs. 4–7. The
average angle of divergence, over all values of zi=R in
Fig. 8, is 258 in the presence of the centrifugal force
(p¼ 0.2), while in the slab case (p! 0) the average angle is
428. Thus, the results confirm our prediction13 of the focus-
ing effect of the centrifugal force.

IV. SUMMARY

We have described analytically two electric potential
distributions, each supported by a rigid-rotor electron cloud
rotating with a different frequency, across a divergent poloi-
dal magnetic field. These potential distributions and the asso-
ciated rotation frequencies correspond to the slow and fast
rotation frequencies known in uniform plasma. The centrifu-
gal force on the rotating clouds is the source of the two
steady-state distributions.

We have shown that, due to the centrifugal force, the
equipotential surfaces, which correspond to the two electric
potential distributions, diverge more than the magnetic surfa-
ces do; the divergence is particularly large for equipotential
surfaces in the fast mode. The departure of the equipotential
surfaces from the magnetic field surfaces may have a signifi-
cant focusing effect on the ions accelerated by the electric
field. That focusing effect has been examined here for the
slow mode by calculating ion trajectories in the specified
magnetic and electric fields. The numerical solutions confirm
our previous prediction13 and show that, indeed, the diver-
gence of equipotential surfaces due to the centrifugal force
has a collimating effect on the exiting ion beam.

It remains to find efficient means of exciting the fast
mode that was described here. In addition, for a specified
potential along a plane, we found two (and sometimes even
three) different electric potential distributions in the same
domain. It also remains to explore what physical boundary
conditions could allow a unique solution. It remains as well
to explore how the focusing, that results from the deviation
of the equipotential surfaces from the magnetic flux surfaces,
affects laboratory plasma accelerators, such as the cylindrical
Hall thruster, and, perhaps, the collimation of astrophysical
jets.
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