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The momentum conservation for resonant wave-particle interactions, now proven rigorously and
for general settings, is applied to explain in simple terms how tokamak plasma is spun up by the
wave momentum perpendicular to the dc magnetic field. The perpendicular momentum is passed
through resonant particles to the dc field and, giving rise to the radial electric field, is accumulated
as a Poynting flux; the bulk plasma is then accelerated up to the electric drift velocity proportional
to that flux, independently of collisions. The presence of this collisionless acceleration mechanism
permits varying the ratio of the average kinetic momentum absorbed by the resonant-particle and
bulk distributions depending on the orientation of the wave vector. Both toroidal and poloidal
forces are calculated, and a fluid model is presented that yields the plasma velocity at equilibrium.
VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4823713]

I. INTRODUCTION

It is well known that plasma rotation in toroidal geome-
try can improve confinement, so a question arises how to
control this rotation externally. The traditional method rely-
ing on neutral-beam injection1,2 will not suit next-generation
tokamaks, such as ITER. Other methods of spinning the
plasma need to be found then, and using radiofrequency
waves is one of promising possibilities. For example, poloi-
dal flow driven by ion Bernstein waves was observed on
TFTR,3 and toroidal rotation driven by fast magnetosonic
waves was reported for JET.4 More recently, toroidal and
poloidal flows driven by mode-conversion heating in the ion-
cyclotron radiofrequency (ICRF) range were also observed
on Alcator C-Mod for D-3He plasmas.5,6

A number of papers calculated these rotations in terms
of the ponderomotive force that waves impose on plasma
in equilibrium.6–11 However, those studies do not quite
elucidate how, and how rapidly, the wave momentum ends
up in bulk particles. For instance, it is often assumed that
the plasma acquires only the part of the wave momentum
that is parallel to the magnetic field, as that one gets
picked up by resonant particles that later pass the momen-
tum to the bulk through collisions;12 the perpendicular
momentum is hence considered unimportant.13–15 It is
only recently that alternative interpretations were pro-
posed, independently in Refs. 16 and 17, which suggest
that the wave perpendicular momentum can also play a
significant or even dominant role. Although leading to rel-
atively concise expressions for plasma fluxes, these models
build on the heavy machinery of (appropriately extended)
quasilinear theory and are not entirely complete (see
below). One may expect then that the momentum transfer
between waves and bulk plasma can be given a simpler
and further-reaching explanation.

It is the purpose of this paper to propose such an expla-
nation as well as to extend and correct the existing under-
standing of how the wave perpendicular momentum
influences plasma rotation. As in Refs. 16 and 17, we focus

on the most controversial, resonant momentum transfer, as
opposed to the effect of reactive or gradient ponderomotive
forces.18 A general theorem applies in this case that unam-
biguously relates the wave energy absorbed by a particle to
the change of the particle canonical momentum, DP (in con-
trast with the aforementioned theories, this theorem is also
fully relativistic). The fraction of DP that is due to the wave
parallel momentum input drives a parallel current32 and is
transferred to the bulk plasma in a usual manner, i.e., on a
relatively large time scale of hot-particle collisions. The re-
mainder of DP, which is due to the wave perpendicular mo-
mentum, cannot be utilized as kinetic momentum and thus
does not drive current. Instead, it is accumulated in the form
of a Poynting flux, giving rise to the radial electric field that
builds up due to charge separation across flux surfaces. (We
are at odds with Ref. 17 regarding the direction, but not the
magnitude, of the radial current.) The bulk plasma is then
immediately accelerated up to the electric drift velocity, a
mechanism which is entirely independent of collisions; i.e.,
in principle, collisions are not needed for a wave to spin up
the bulk plasma.

We explicitly calculate the ratio of the associated colli-
sional and collisionless forces on the plasma, which is the
fundamental parameter that determines (i) how much current
is produced per unit wave momentum20 and (ii) how rapidly
the wave momentum is transferred to the bulk. We find that
it is possible, e.g., to accelerate resonant particles but not the
bulk or, alternatively, the bulk but not resonant particles,
depending on how the wave vector and the magnetic field are
oriented with respect to each other. The direction and time
history of the bulk acceleration can also be varied. We derive
not only the toroidal acceleration (as in Refs. 16 and 17) but
also the poloidal acceleration, which we identify as a charac-
teristic feature of wave-plasma resonant interaction. We also
present a fluid model, from which the effect of the parallel
and perpendicular wave momenta can be estimated and
which explains how kinetic models, such as ours and those in
Refs. 16 and 17, relate to the earlier “ponderomotive”
theories.6–11
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II. CONSERVATION LAW

As rigorously proved in the Appendix, whenever a parti-
cle resonantly gains energy DE from a wave, it also receives
canonical momentum DP such that its projection on every
cyclic axis xh is given by

DPh ¼ khDE=x; (1)

where kh is the corresponding component of the wave vector,
and x is the wave frequency (“cyclic” means that the particle
Lagrangian is independent of xh). The effect of gradient pon-
deromotive forces, which can input a comparable amount of
momentum,19 is not included in Eq. (1) and will not be con-
sidered below, but could be introduced additively in a more
general theory.

Let us apply the theorem (1) specifically to wave-particle
interaction in static electric and magnetic fields, E ¼ "r/ðXÞ
and B ¼ r% AðXÞ. The particle Lagrangian is then given by
K ¼ K0 þ eV ' A=c" e/; here K0 ¼ K0ðVÞ is the free parti-
cle Lagrangian, V is the particle velocity, e is the particle
charge, and c is the speed of light. For simplicity, assume cy-
lindrical geometry (including slab geometry as a limit), so the
field lines lie on surfaces of constant radius, r, and / ¼ /ðrÞ.
Let us adopt the orthogonal coordinate system (r,g,b), such
that eb is along B. Then, one can take A ¼ WðrÞeg, so
B ¼ W0ðrÞeb (We assume orthonormal coordinates, so upper
and lower indexes are hence interchangeable; in particular, co-
variant basis vectors, eq, are indistinguishable from contravar-
iant basis vectors, eq ¼ rxq,21 where q¼ r, g, b.). Since g is a
cyclic variable, the conjugate canonical momentum Pg satisfies
Eq. (1); i.e., kgDE=x ¼ Pgf " Pgi, where the indexes f and i
(hereupon replaced with a generic index t) denote the final and
initial states. Assuming a particle is outside the wave in these
states, one can take Pgt ¼ pgt þ eWðrtÞ=c, where pg is the ki-
netic momentum. However, Pgt is conserved outside the wave,
so one can also replace it with the gyrophase-average,
Pgt ¼ heWðrtÞ=ci, where we used hpgti ¼ 0. For small enough
Dr, Taylor expansion then yields DPg ¼ ðeW0=cÞDrgc, where
Drgc¼

: hDri is the guiding-center displacement (the symbol
¼: denotes definitions). This leads to ðeB=cÞDrgc ¼ kgDE=x, or

Drgc ¼ ck?DE=ðeBxÞ: (2)

We switched to the conventional notation here, k? ( kg, but
keep in mind that kr does not contribute to this k?, even
when kr is nonzero. Also note that Eq. (2) reproduces the key
a-channeling equation,22 which couples diffusion in energy
space to diffusion in geometrical space. The difference is
that our derivation is relativistic, accounts for static electric
field (a part of DE is actually spent on the work against E),
and does not assume the heating to be instantaneous, unlike
in Ref. 22 (In Ref. 23, the latter assumption was relaxed
too.).

Equation (2) describes an effect similar to what Ref. 17
identifies as an outward electron pinch,24 except that we find
it to be inward for k? > 0 and e< 0. It is dominant over neo-
classical pinches26 for, say, Alcator C-Mod typical parame-
ters.17 Hence, we will not introduce a tokamak geometry

separately; i.e., toroidal and cylindrical coordinates will not
be distinguished. In particular, we will not consider trapped-
particle effects, as the wave perpendicular momentum that
we focus on here is absorbed through trapped and circulating
particles in the same way. (It would, however, be interesting
to revisit in the future neoclassical effects such the Ohkawa
current drive25 with the wave-induced electric field taken
into account.)

Let us now adopt the standard cylindrical (or toroidal)
coordinates ðr; h;uÞ for the same system. The vector-
potential components, Ar¼ 0 and Ah ¼ WðrÞðeg ' ehÞ (where
h ¼ h;u), are independent of h and u, so Eq. (1) applies,
yielding hDphiþ hDPhi ¼ khDE=x. Here hDphi is the aver-
age kinetic momentum gained by a resonant particle (e.g., a
nonrelativistic particle with mass m has ph¼mVh), so
hDPhi ¼ ðeB=cÞðeg ' ehÞDrgc must be the momentum trans-
ferred to the dc field through the particle. Due to Eq. (2), it
equals hDPhi¼ðeg 'ehÞk?DE=x, where eg 'eh¼eu 'eb¼Bu=B
and eg 'eu¼"eh 'eb¼"Bh=B.31 Also notice that kh¼kk 'eh

þk? 'eh, where kk¼
:

kkeb and k?¼
:

k?eg; thus (cf. Fig. 1)

kh ¼ kk ' eh þ k?Bu=B; ku ¼ kk ' eu " k?Bh=B: (3)

One can hence re-express the above results as follows:

hDphi ¼ ðkk ' ehÞDE=x; hDPhi ¼ ðk? ' ehÞDE=x: (4)

III. WAVE-INDUCED FORCES

Adding plasma into the picture leads to deceleration of
resonant particles and relaxation of the dc field, so both
hDphi and hDPhi are transferred to the bulk eventually. Until
then, however, the effects of these two momenta are quite
different. The former is well-studied;32 namely, the momen-
tum hDphi contributes to plasma current and, while decaying
on the long time scale of the hot-particle collisions, creates a
force directly applied to the bulk plasma

Fkh ¼ ðkk ' ehÞPabs=x: (5)

For the effect of hDphi on trapped particles, see Ref. 30. Less
understood is the action of the perpendicular momentum
input, hDPhi. As we explained above, one can interpret it as
the momentum that resonant particles pass to the dc field, so
the rate of this transfer,

F?h ¼ ðk? ' ehÞPabs=x; (6)

FIG. 1. Schematic of the assumed geometry.
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can be understood as a wave-induced force on the field. In a
tokamak, this is reflected in the change of the Poynting flux
S / E% B that is associated with the electric field E ¼ Erer

produced by the resonant-particle transport across flux surfa-
ces [Eq. (2)]. The bulk plasma responds to DS by adjusting
its drift velocity, U. For times smaller than those of collisions
in the bulk, this leads simply to the change in E%B drift ve-
locity, DU / DS, where we used DB=B) DSh=Sh. Both
electrons and ions pick up the same DU within one gyroper-
iod (i.e., almost instantaneously), so no current is generated
by F?h per se,20 at least until the bulk pressure changes sig-
nificantly. Also remarkably, collisions are not needed here to
pass the wave momentum to the bulk; they can only moder-
ate U by limiting Er. Thus, absent collisions, bulk plasma
would actually experience unlimited acceleration.

The difference between how Fkh and F?h act on the
plasma renders their ratio, }h¼

:
Fkh=F?h, a fundamental pa-

rameter that determines (i) how much current is produced
per unit wave momentum20 and (ii) how rapidly the wave
momentum is transferred to the bulk. This parameter hap-
pens to be merely a geometrical factor

}h ¼ ðkk ' ehÞ=ðk? ' ehÞ; (7)

which depends on how k is oriented with respect to B

}h ¼ kkBh=ðk?BuÞ; }u ¼ "kkBu=ðk?BhÞ: (8)

Notice, in particular, that }h can have either sign, so plasma
can be first accelerated by F?h, which kicks in faster, and
later decelerated by Fkh; cf. Ref. 17.

For instance, lower-hybrid current drive (LHCD)33 is
performed at k? * kk, so, together with Bh ) Bu, that gives
}u + 1 (see below for estimates). This means that a signifi-
cant portion of the wave toroidal momentum is transferred to
plasma on the ion-gyroperiod time scale, because it is done
by F?u, whereas the comparable effect of Fku is delayed by
the collision time scale. (We discuss the momentum transfer
only in the resonance region; it takes additional time to dis-
tribute this momentum within the whole tokamak volume.32)
This is in agreement with Ref. 17. However, we also derive
the poloidal momentum transfer here, and it is almost
entirely due to F?h, since }h ) 1. The appearance of this
poloidal rotation (as well as the appearance of Er) can be
considered a characteristic feature of wave-plasma resonant
interaction, at least in the limit of large aspect ratio.

IV. EQUILIBRIUM STATE

The total force on a plasma in equilibrium,
Fh ¼ Fkh þ F?h, is determined by kh

Fh ¼ khPabs=x: (9)

It is seen then (contrary to the existing tradition of identify-
ing ku with kk, as in Ref. 6) that, to maximize the toroidal
force, one needs to maximize kk ' eu " k?Bh=B [Eq. (3)]
rather than kk. Even the sign of Fu is not necessarily the
same as that of kk and can be controlled by varying k?. This
also means that one can make ku zero at nonzero kk; then hot

particles are resonantly accelerated toroidally by Fku, but the
bulk plasma is not, as Fu ¼ 0.

The plasma equilibrium under the action of Fh can be
found from a simple hydrodynamic model, specifically, as
follows. Let us treat the bulk plasma as a single fluid with ve-
locity u and mass density q, acted upon by a force density fh
such that its integral over the plasma volume, C ¼ 2p2Ra2,
equals Fh (Here R and a are the tokamak major and minor
radii.). Then one can adopt

@tuh ¼ "luh þ fh=q; @tuu ¼ D̂uu þ fu=q; (10)

cf. Refs. 8 and 34–36; here l is the poloidal momentum
damping rate, and the operator D̂ is defined as

D̂uu¼
:

r"1½@rðrv @ruuÞ þ @rðrvuuÞ-; (11)

where v is the toroidal momentum diffusivity, and v is the
pinch velocity (The equation for uh ignores momentum trans-
port because neoclassical damping is considered dominant, as
usual.8,34). For negligible @t, these yield uh ¼ fh=ðlqÞ and
D̂uu ¼ "fu=q. Integration over the tokamak volume leads to
C!uh ¼ Fh=ðlqÞ and ð2C=a2Þ

Ð a
0 D̂uurdr ¼ "Fh=q, where the

bar denotes volume average. Using
Ð a

0 D̂uurdr ¼ vau0uðaÞ
and estimating au0uðaÞ as "!uu, we get !uh ¼ Fh=ðlqCÞ and
!uu ¼ a2Fh=ð2qvCÞ. Equation (9) gives then

!uh ¼
khPabs

2p2Ra2xlq
; !uu ¼

kuPabs

4p2Rxqv
: (12)

These estimates agree with those yielded by “ponderomotive”
theories such as Ref. 9, except that here we consider nonzero
kh, and Pabs accounts for the total power deposition through
any resonances. We also can tell now that the relative contribu-
tions of the wave parallel and perpendicular momentum input
to !uh are, correspondingly, }h=ð}h þ 1Þ ) 1 and 1=ð}h þ 1Þ
+ 1. Finally, Eqs. (12) can as well be used to model the aver-
age rotation of essentially inhomogeneous plasma, i.e., account
for reactive ponderomotive forces, as those do not affect the
total momentum input in a tokamak equilibrium.

V. NUMERICAL ESTIMATES

To compare our predictions with experiment, consider
parameters typical for LHCD on Alcator C-Mod. Specifically,
assume that the wave power 1 MW is delivered at frequency
of 4.6 GHz with parallel refractive index kkc=x . 2, so

kk. 1:93%102 m"1. Also, k?=kk+ðmi=meÞ1=2. 61,11 which

gives }h. 1=600 and }u."1=6, assuming Bh=Bu. 0:1.

(The indexes i and e denote ions and electrons, correspond-
ingly; mi is twice the proton mass, assuming deuterium
plasma.) Both toroidal and poloidal rotations are then mainly
driven by the perpendicular momentum input, contrary to ear-
lier theories.15,37 We take the toroidal momentum diffusivity,

v, to be 0:15m2=s.35,36 We also take l+ !ii+ 103 s"1, since

the banana regime is realized [as !iiRq=½ða=RÞ3=2ðTi=miÞ1=2-
) 1, where !ii is the ion-ion collision frequency, and q + 3
is the safety factor], assuming the ion temperature
Ti. 1:5KeV.38 The plasma mass density is q.mini, where
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ni¼ 1020 m"3. Together with R¼0.67m and a¼0.21m, for
these parameters Eqs. (12) yield !uu."30km=s and
!uh. 2km=s, where kh and ku are substituted from Eqs. (3).
The value of !uu is consistent with experiments.39 The poloidal
rotation, in contrast, has not been reported for LHCD, so our
prediction for !uh is yet to be verified. On the other hand, our !uh

is close to observations for plasma with mode-conversion
ICRF heating.6 (The direction of rotation is not necessarily the
same as in the above calculation, because the experimental k?
can have either sign.) However, keep in mind that our integral
estimates do not resolve possible redistribution of the plasma
intrinsic rotation through wave absorption, as is believed to
occur, e.g., at electron cyclotron heating.40–42 The momentum
carried by the wave per se can be negligible in this case, so dif-
ferent estimates need to be applied that are not discussed here.

VI. DISCUSSION

In this paper, we show how tokamak plasma is spun up
by the wave momentum perpendicular to the dc magnetic
field. As in Refs. 16 and 17, we focus on the most controver-
sial, resonant momentum transfer, as opposed to the effect
of reactive, or gradient ponderomotive forces. (The latter,
which we neglected here as in Refs. 16 and 17, could be
introduced additively but remain outside the scope of our
study.) As opposed to other recent theories that arrive at con-
clusions similar to ours through detailed (but nonrelativistic)
quasilinear calculations, here we appeal merely to the mo-
mentum conservation theorem, which we prove rigorously
for general resonant interactions (Appendix). This permits us
to elucidate details of the underlying basic physics, including
answering how much momentum gets deposited into reso-
nant particles as opposed to the bulk. We find that it is possi-
ble, e.g., to accelerate resonant particles but not the bulk or,
alternatively, the bulk but not resonant particles, because
(and one may find this counterintuitive) collisions happen to
be unnecessary for spinning up the bulk plasma. We derive
not only the toroidal acceleration but also the poloidal accel-
eration, which we identify as a characteristic feature of
wave-plasma resonant interaction. We then present a fluid
model, from which the effect of the parallel and perpendicu-
lar wave momenta can be estimated and which explains how
kinetic models, such as ours and those in Refs. 16 and 17,
relate to the earlier “ponderomotive” theories.6–11

Per referee’s suggestion, we also notice that our calcula-
tions point out the need for a fully consistent description of
high-frequency wave-particle interactions (nonlinear and not
limited to waves with fixed central x and k) that would man-
ifestly conserve the total energy and momentum of the
plasma. Most suitable for this purpose seems to be a field-
theoretic variational formalism that would be similar in spirit
to those recently reported, albeit in different contexts, in
Refs. 27–29. Developing such a formalism for radiofre-
quency waves remains a matter of future research.
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APPENDIX: ENERGY-MOMENTUM CONSERVATION
FOR GENERAL RESONANT INTERACTIONS

In this Appendix, we prove a general theorem describing
energy-momentum conservation at wave-particle resonant
interaction. In doing so, we rely only on the fundamental
symmetry of such interactions, so our final result, Eq. (A1),
is fully relativistic and applies to waves of arbitrary nature,
including non-electromagnetic waves.

Let us start out with considering a nondissipative linear
wave absent resonant particles. Such a wave can be assigned
a Lagrangian density, L, expressed in terms of two independ-
ent real functions, namely, the (arbitrarily normalized)
amplitude Aðt; xÞ and phase nðt; xÞ; here t is time, x
¼ ðx1;…xDÞ are general spatial coordinates, and D is the
number of dimensions. In the geometrical-optics (GO) limit
assumed below, one has L ¼A2Dðx; k; t; xÞ, where
x¼: " @tn is the local frequency, and k¼: rn is the local
wave vector;18 the symbol ¼: denotes definitions. (More gen-
erally, L can also depend on derivatives of A, x, and k, but
still not on n, which reflects conservation of the wave total
action, or the number of quanta.) The densities of the wave
canonical momentum and energy are then p ¼ kLx and
w ¼ xLx,18 and subindexes hereupon denote partial deriva-
tives except where explicitly stated otherwise.

Suppose now that a wave interacts with a resonant parti-
cle described by generalized coordinates Xq(t) and velocities
Vq¼: dtXq; here dt ( d=dt, and q¼ 1,… D. We hence intro-
duce a joint Lagrangian density, L ¼ dðx;XÞLþ L, where

dðx;XÞ¼: dðx" XÞ=
ffiffiffiffiffiffiffiffiffi
gðxÞ

p
is a generalized delta function,43

g is the spatial metric determinant, L¼K þ k is the particle
Lagrangian, K ¼ Kðt; x;VÞ is that absent the wave, and k ¼
kðt; x;V; n;A;x; kÞ is the interaction Lagrangian. (To ensure
that L satisfies GO requirements, one should, in fact, intro-
duce many particles smoothly distributed along the wave,
but this does not affect our conclusions.) The Euler-
Lagrange equations (ELE) are then obtained from the least

action principle, dS¼ 0, where S¼:
Ð

L dx dt, and

dx¼:
ffiffiffiffiffiffiffiffiffi
gðxÞ

p
dx1…dxD is a volume element.

The first ELE, dXq S ¼ 0, yields dtPq ¼ Kxq þ @xqk,
where Pq¼

:
LVq is the particle canonical momentum, and the

right-hand side is evaluated at x¼X(t). (We use @, and also
r below, to denote “full” derivatives in the sense that they
treat each argument as a function of (t, x); cf. Ref. 18.) Let
us consider q such that KXq is zero or negligible. Under the
same assumptions as in Ref. 17, we also assume that the
main component of the wave-driven force is due to the reso-
nance rather than due to gradients of A, x, and k. This means
@xqk . kqkn, so dtPq . kqkn. The second ELE, dAS ¼ 0,
gives the wave dispersion relation, La ¼ 0; i.e., roughly,
Dðx; k; t; xÞ . 0. (We will not need this equation below.)
The third ELE, dnS¼ 0, gives @tLx "r ' Lk þ dðx;XÞ kn

¼ 0; cf. Ref. 18. One may recognize this as Whitham’s equa-
tion for the wave action density, Lx, whence the equation for
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pq is inferred readily.44 Integrating that over the volume
yields dtPq ¼

Ð
Lx _kq dx" kqkn, where Pq¼

: Ð pq dx is the
wave total canonical momentum. The term _kq ( ð@t

þvg 'rÞkq, where vg¼
: " Lk=Lx is the group velocity,

describes the evolution of kq due to both plasma inhomoge-
neity [i.e., nonzero xxqðt; x; kÞ] and interaction with resonant
particles. However, we have ruled out the former by neglect-
ing the gradient force, and resonant particles cannot signifi-
cantly affect kq either, as it is determined primarily by the
bulk plasma; thus, we drop _kq. This leads to dtPq . "kqkn,
so dtðPq þPqÞ ¼ 0. For the canonical energy, W¼:

Ð
w dx,

one similarly finds that dtW ¼ "xkn . @tk ¼ "Ht ¼ "dtH
(assuming a quasistationary state, so _x is negligible, like
_kq), where H ¼ Hðt;X;LÞ is the particle Hamiltonian; hence
dtðH þWÞ ¼ 0. Assuming constant kq and x, one also has
dtPq . ðkq=xÞ dtW. The increments of the particle momen-
tum and energy are then expressed as

DPq ¼ kqDE=x; DH ¼ DE; (A1)

where DE¼: " DW is the absorbed canonical energy. Notice
that resonant interaction is a “package deal”; a particle
simultaneously absorbs all components of the wave momen-
tum, except those corresponding to zero kq.

The above analysis explains how to interpret similar
results that often appear in literature without a derivation.45

For instance, it makes clear that Eq. (A1) describe the trans-
fer of the wave canonical, rather than full, energy-momen-
tum.18 (The fact that there is more than one definition of the
wave energy-momentum in plasma is often overlooked in
applied literature.) Also note that our results apply in any ge-
ometry and are independent from specific motion equations;
e.g., they are fully relativistic and are not limited to electro-
magnetic interactions. As a side corollary, the wave momen-
tum need not be associated with a Poynting flux for Eq. (A1)
to hold.
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