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When the background density in a bounded plasma is modulated in time, discrete modes become
coupled. Interestingly, for appropriately chosen modulations, the average plasmon energy might be made to
grow in a ladderlike manner, achieving upconversion or downconversion of the plasmon energy. This
reversible process is identified as a classical analog of the effect known as quantum ladder climbing, so that
the efficiency and the rate of this process can be written immediately by analogy to a quantum particle in a
box. In the limit of a densely spaced spectrum, ladder climbing transforms into continuous autoresonance;
plasmons may then be manipulated by chirped background modulations much like electrons are
autoresonantly manipulated by chirped fields. By formulating the wave dynamics within a universal
Lagrangian framework, similar ladder climbing and autoresonance effects are predicted to be achievable
with general linear waves in both plasma and other media.
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Introduction.—Quantum mechanics is well known to be
closely related to the mechanics of classical waves [1–3].
This permits applying common techniques for manipulat-
ing quantum and classical systems and helps bridge
seemingly different areas of physics. One important tech-
nique to study in this context is ladder climbing (LC),
which is the successive transfer of quanta through none-
qually spaced energy levels due to an oscillating driving
force with chirped frequency [4,5]. The system energy
changes with time in a ladderlike manner during LC, with
each transition described by the famous Landau-Zener (LZ)
theory [6]. In the limit of continuous spectra, the effect has
been widely known as classical autoresonance (AR),
enjoying numerous applications in physics of plasmas
[7,8], fluids [9], Josephson junctions [10], optics [11],
and even planetary dynamics [12]. In contrast, the discrete
nature of LC is visible only in systems with sufficiently
discrete spectra and, so far, has been studied exclusively in
quantum contexts [4,5,13–15]. Whether classical systems
can exhibit LC has remained an open question.
Here we report the first theoretical prediction of LC in a

classical system, namely, in an ensemble of plasma waves.
For simplicity, we consider one-dimensional collisionless
plasma, with nondissipative Langmuir waves, whose spec-
trum is quantized due to the boundary conditions. We
derive a Schrödinger-type equation for the “plasmon wave
function,” which is a classical measure of the electric field
whose norm (the total wave action) is manifestly conserved
under mode coupling. This system is mathematically
equivalent to a quantum particle in electrostatic potential.
Hence, plasmons can be manipulated by resonant modu-
lation of the underlying medium much like electrons and
molecules are manipulated by resonant external fields
[16,17]. In particular, we show that plasmons can exhibit

both LC and AR and can be controllably transported up and
down in momentum space. Finally, we report a unifying
Lagrangian formulation of the problem that paves the way
for applying these techniques to general classical waves.
Basic equations.—For simplicity, we consider an elec-

tron plasma described by a hydrodynamic model. The
equations for the electron density ne, electron flow velocity
ue, and the electric field E are then as follows:

∂ne
∂t þ ∂

∂x ðneueÞ ¼ 0; ð1Þ

∂
∂t ðneueÞ þ

∂
∂x ðneu

2
eÞ ¼ −

e
me

neE −
1

me

∂P
∂x ; ð2Þ

∂E
∂x ¼ −4πeðne − ZniÞ: ð3Þ

Here, −e and me are the electron charge and mass, P is the
electron pressure, Ze is the ion charge, and ni is the ion
density. We neglect high-frequency oscillations of ni and
consider ni to be a slow function, Zni ¼ n0 þ ndðt; xÞ;
here, n0 is the unperturbed electron density, and nd is a
prescribed driving modulation. Such a modulation can be
created by external fields, e.g., by means of ponderomotive
forces. Then, ne ¼ n0 þ ndðt; xÞ þ nðt; xÞ, where n ≪ n0
determines a small uncompensated charge density due to
electron inertia. For simplicity, we adopt an isentropic
model, P¼PðneÞ≈P0þ3mev2thðnþndÞþRðnþndÞ2=2;
here, vth is the electron thermal speed, and R¼∂2P=
∂n2jn0 , which are considered constant. We assume hard-
wall boundary conditions, so uejx¼0 ¼ uejx¼l ¼ 0, where l
is the plasma length. We also assume Ejx¼0 ¼ Ejx¼l ¼ 0,
so any field is representable as a series of sinðkmxÞ, where
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km ¼ πm=l. Then, according to Eqs. (1)–(3), the boundary
conditions for the density must be ∂xnjx¼0 ¼ ∂xnjx¼l ¼ 0,
so n is a series of cosðkmxÞ. We consider the external
driving modulation to be the Nth standing-wave mode,

ndðx; tÞ ¼ n0A cos ðkNxÞ cosφdðtÞ: ð4Þ

We assume that A ≪ 1 and ωd ¼ _φ ≪ ωp, where
ω2
p ¼ 4πe2n0=me. Hence, Eqs. (1)–(3) can be combined

in a single equation. Specifically, let us subtract the spatial
derivative of Eq. (2) from the temporal derivative of Eq. (1),
then substitute ∂xE ¼ −4πen, which flows from Eq. (3),
and integrate over x. Assuming that n is small enough, we
neglect terms nonlinear in E ¼ OðnÞ, and we also neglect
the slow driving force, OðE0A1Þ, as nonresonant to the
rapid plasma oscillations. As we estimate below, resonant
terms of higher orders in A can be dropped too. To the
lowest order in ωd [18], this gives the following linear
dimensionless equation for E:

∂2E
∂t2 − 3

∂2E
∂x2 þ E ¼ − ~ndEþ ~R

∂
∂x

�
~nd

∂E
∂x

�
: ð5Þ

Here and further we measure time in units ω−1
p and

length in units vth=ωp; also, ~nd ¼ nd=n0, and ~R ¼
Rn0=ðmv2thÞ. Next, we decompose the field into unper-
turbed eigenmodes,

E ¼ Re
X∞
m¼1

Eme−iωmt
ffiffiffiffiffiffiffiffi
2=l

p
sinðkmxÞ; ð6Þ

where EmðtÞ are complex coefficients. To zeroth order in A,
Eq. (5) yields the dimensionless dispersion relations
ω2
m ¼ 1þ βm2, where β ¼ 3π2=l2 is analogous to the

anharmonicity parameter in a quantum oscillator [5]. We
also assume βm2 ≪ 1, as usual. It is convenient to
introduce new variables ψm via ρmψmðtÞ ¼ Eme−iωmt.
Here ρm are constants such that in the unperturbed system,
jψmj2 are the actions of individual modes; specifically one
finds ρm ¼ ð8π=ωmÞ1=2 [19]. The equations for ψm,
obtained via the Fourier-transform of Eq. (5), are

i _ψm ¼ ωmψm þ
X
m0

hm;m0ψm0 ; ð7Þ

hm;m0 ¼ ρmρm0

8πl

Z
l

0

sinðkmxÞF̂ sinðkm0xÞdx; ð8Þ

where F̂ ¼ ~nd − ∂x
~R ~nd∂x is a differential operator. Since

hm;m0 is Hermitian, the evolution of ψm is manifestly
unitary; i.e., the wave total action

P
mjψmj2 is conserved.

The vector ψ ¼ ðψ1;ψ2;…Þ can then be understood as the
plasmon wave function in the energy representation. Next,
we will assume the resonance condition ωd ≈ ωm;mþN ,

where the level spacing is ωm;mþN ¼ ωmþN − ωm ≈
βNðmþ N=2Þ. Then, β ∼ ωd ≪ 1, and therefore, in the
already small coupling term, we must adopt ωm ≈ 1, i.e.,
ρm ≈

ffiffiffiffiffiffi
8π

p
, and neglect the higher order terms in pressure.

This leads to

i _ψm ¼ ωmψm þ A
4
ðψm−N þ ψmþNÞ cosφd: ð9Þ

Note also that, for βm2 ≪ 1, Eq. (9) is equivalent to the
energy representation of the Schrödinger equation for a
quantum particle in a square potential well [20]. This can be
understood as follows: at weak spatial dispersion, all ωm
are close to ωp, so Eq. (5) permits a quasioptical approxi-
mation, turning into the standard quantum Schrödinger
equation with ~nd serving as an effective potential. (This
analogy has been noted, e.g., in Ref. [21].)
LC regime.—Classical AR was previously studied in the

infinite square potential well as a limiting case ðj → ∞Þ of
the potential V0 ¼ x2j [22], but quantum LC was not [23].
For studying LC in our system, we consider the modulation
(4), with N ¼ 1 and a monotonically increasing driving
frequency, ωd ¼ ω1;2 þ αt, where α > 0. At t ¼ 0, this will
initiate resonant transitions between levels m ¼ 1 and
m ¼ 2, which we denote as 1 → 2. Later, transitions
between higher levels, m → mþ 1, occur when the reso-
nance condition, ωd ¼ ωm;mþ1, is satisfied. Following the
quantum LC theory [4,5], we define slow time τ ¼ ffiffiffi

α
p

t,
driving parameter P1 ¼ A=ð4 ffiffiffi

α
p Þ, and anharmonicity

parameter, P2 ¼ β=
ffiffiffi
α

p
, which plays the role of an effective

Planck constant in the classical system. If P2 ≫ 1þ P1, the
system remains in the quantum LC regime, when only two
levels are resonantly coupled at any given time. Then,
transitions m → mþ 1 occur at times τm ¼ mP2, where
each such transition can be described by the commonly
known LZ theory [2,6] and thus has a probability

Pm→mþ1 ¼ 1 − exp ð−πP2
1=2Þ: ð10Þ

At large enough P1, one gets Pm→mþ1 ≈ 1; i.e., all quanta
are being transferred, and the dynamics in this limit is
characterized by successive two-level LZ transitions.
In Fig. 1, we illustrate this LC dynamics of Langmuir

modes by numerically simulating Eq. (9) with N ¼ 1 and
initial conditions ψmðt¼ t0Þ¼ δm;1. We choose fα; β; Ag ¼
f10−8; 10−3; 6 × 10−4g, so P2 ¼ 10, and P1 ¼ 1.5. In the
figure, snapshots of the levels’ population [1(a), 1(c), 1(e),
and 1(g)] and the electric field [1(b), 1(d), 1(f), and 1(h)] are
shown for multiple τ, respectively. The inset also shows the
total energy,

P
mωmjψmj2, which is seen to increase with

time in a ladderlike manner. The moments of time at which
m → mþ 1 transitions occur agree with the theory, which
predicts τm ¼ mP2 [5]. Themth-level occupation numbers,
jψmj2, also agree with the theoretical predictions, namely,
jψmj2 ¼

Q
m−1
j¼1 Pj→jþ1, where Pj→jþ1 are given by
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Eq. (10). For example, at the adopted parameters, one has
jψ7ðτ ¼ 55Þj2 ¼ 0.83, which deviates by only about 1%
from the value obtained in the simulation.
A similar argument justifies our neglecting the terms of

higher order in A in the derivation of Eq. (5). A direct
calculation shows that those terms have the form
OðωdE1A2Þ, so they cause additional “subharmonic” res-
onant transitions m → mþ 2 with the effective driving
parameter ~P1 ∼ βA2=

ffiffiffi
α

p
. The corresponding probability

~Pm→mþ2 is given by an expression similar to Eq. (10),
but P1 should be replaced with ~P1 [14]. For small
enough A, one obtains ~Pm→mþ2 ∼ β2A4=α ≪ 1. To have
both Pm→mþ1 ≈ 1 and ~Pm→mþ2 ≪ 1, one must then require
the condition (which is satisfied in our simulations)

α1=2 ≲ A ≪ β−1=2α1=4: ð11Þ

Also note another, kinetic restriction of the LC mecha-
nism. It stems from collisionless dissipation, which is not
contained in our fluid equations. The local Landau
damping rate for the mth mode in Maxwellian plasma is
given by γm ≈ k−3m

ffiffiffiffiffiffiffiffi
π=8

p
expð−k−2m =2 − 3=2Þ [24], where

km ¼ m
ffiffiffiffiffiffiffiffi
β=3

p
, as before. Therefore, during the transition

between neighboring levels, which occurs on the time scale
Δt ¼ ðτmþ1 − τmÞ=

ffiffiffi
α

p ¼ β=α, the energy decreases by the
factor expð2ΓmÞ, Γm ¼ γmΔt. The value of Γm grows
rapidly with m. Hence, just as the wave energy is shifted
to the mode with m ¼ mkin, defined as that having Γm ∼ 1,

the energy is transferred to electrons almost momentarily,
heating the tail distribution much like in Ref. [25]. At the
parameters used in Fig. 1, mkin ¼ 9. This is larger than the
maximum m attained in the simulation, so neglecting
Landau damping is justified.
AR regime.—In contrast to the LC dynamics, in the limit

P2 ≪ 1, many levels are coupled simultaneously. It can be
shown then (e.g., using the Wigner phase space approach,
as in Ref. [5]) that quantum LC continuously transforms
into the classical AR by decreasing the effective Planck
constant, P2. The electric field dynamics is then understood
as AR acceleration of plasmons that satisfy ωd ¼ kdvg,
where

vg ¼
ωmþ1 − ωm

kmþ1 − km
≈
∂ω
∂k : ð12Þ

Notably, this is the same “group-resonance” condition that
was recently discussed in Ref. [26] (see Ref. [27] too). Also
notably, the AR acceleration of plasmons that we report
here is akin to AR acceleration of resonant electrons in
phase-mixed nonlinear waves such as Bernstein-Greene-
Kruskal waves [8,16,28]. The AR dynamics of Langmuir
waves is illustrated in Fig. 2, for which we adopted
fα; β; Ag ¼ f10−8; 10−5; 4.8 × 10−3g, so P2 ¼ 0.1. The
simultaneous coupling of many levels is clearly seen in
the left subplots, while the right subplots present the
electric field of the autoresonant plasmon (solid blue lines)
driven by the chirped density modulations, ~nd (red dashed
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FIG. 1 (color online). Langmuir wave evolution in the LC
regime (P2 ¼ 10). Left: Spectral representation, snapshots of the
occupation numbers, jψmj2, vs mode numbers m. Right: Spatial
representation, snapshots of the wave field, E, vs x. The subplots
correspond to times τ ¼ −5 [(a), (b)], 15 [(c), (d)], 35 [(e), (f)],
and 55 [(g), (h)]. The inset in subplot (a) shows the energy
growing with time in a ladderlike manner, where the transitions
occur at the theoretically predicted times τm ¼ mP2.
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FIG. 2 (color online). Langmuir wave evolution in the AR regime
(P2 ¼ 0.1). Left: Spectral representation, snapshots of the occupa-
tion numbers, jψmj2, are shown vs mode numbersm, illustrating an
autoresonant plasmon trapped in a density modulation effective
potential. Right: Spatial representation, snapshots of the wave field,
E (solid blue lines), and the driving density modulations, nd (dashed
red lines), are shown vs x. The subplots correspond to times τ ¼ 0
[(a), (b)], 3 [(c), (d)], 6 [(e), (f)], and 9 [(g), (h)]. The inset in subplot
(a) shows the energy growing with time.
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lines). In this case, Landau damping affects the total wave
energy only by about 1% overall, so the kinetic restriction
is not essential.
Interestingly, the dynamics is reversible, at least

approximately. In fact, one can just as well capture
a wave envelope at large k and then transport it down
the spectrum, much like a trapped charged particle
can be decelerated by a resonant field. We demonstrate
the effect in Fig. 3, where the initial conditions are
E0ðxÞ ∼ exp½−ðx − x0Þ2=2σ2� sin ðkmr

xÞ, where mr is the
resonant wave number. In this example, we apply down-
chirped driving phase φd ¼ ωmr;mrþ1t − αt2=2þ φ0 with
fβ;x0;σ;mr;α;A;φ0g¼f10−5;0;0.05;100;10−8;0.004;πg,
where φ0 was chosen such that the plasmon is initially
phase locked with nd.
Variational formulation.—Let us now recast our theory

in a form that is not restricted to Langmuir waves but allows
extending the above results to general nondissipative linear
waves. Any such wave, described by some real fieldEðt;xÞ
(electric field being an example), can be assigned a
Lagrangian bilinear in E, namely, of the form [3]

L ¼
Z

E · D̂ðt;x; i∂t;−i∇Þ · E d3x: ð13Þ

The differential operator D̂ can be considered Hermitian
without loss of generality. Suppose now that D̂¼ D̂0þ D̂d,
where D̂0 is some Hermitian operator that determines the
Lagrangian in a stationary homogeneous medium, and D̂d
is a Hermitian operator that governs the mode interaction
driven by some weak modulation. Let us represent the field
as Eðt;xÞ ¼ Re

P
mEmðtÞemðxÞ. Here Em are complex

amplitudes and em are orthonormal eigenmodes corre-
sponding to the eigenfrequencies ωm of D̂0. Then,
L ¼ P

mLm þ Ld, where the two terms are, respectively,
due to D̂0 and D̂d. Specifically [3],

Lm ¼ i
2
ðψ�

m _ψm − _ψ�
mψmÞ − ωmjψmj2; ð14Þ

where the complex amplitudes ψm are defined such that
jψmj2 is the action of the mth unperturbed mode;
i.e., ρmψm ¼ Em, where ρ−2m ¼ dL̄m=dωm, L̄m ¼
ð1=2Þ R e�m · D̂0 · emd3x, and ωm are found by solving
L̄mðωmÞ ¼ 0 [29]. Also, it is easy to see that

Ld ≈
X
m;m0

ψ�
mhm;m0ψm0 ; ð15Þ

hm;m0 ¼ ð1=2Þρmρm0

Z
e�m · D̂d · em0d3x: ð16Þ

Then the equation for ψm has the form (7), and, since hm;m0

is Hermitian, manifestly conserves the wave total action,P
mjψmj2. For electromagnetic waves in particular, one has

D̂d ¼ χ̂d=ð8πÞ, where χ̂d is the modulation-driven pertur-
bation to the medium susceptibility. This can be seen, for
instance, by comparing Eq. (13) with its geometrical-optics
limit [29]. In the case of Langmuir waves, χ̂d ¼ F̂ , and
D̂0 ¼ ϵ̂=ð8πÞ, where ϵ̂ is the dielectric permittivity oper-
ator; then, one recovers Eq. (9). Finally, we note that it is
straightforward to apply this approach to other classical
waves [30]; hence, our further observations of LC and AR
apply too.
Summary.—We report the first theoretical prediction of

LC in a classical system. Specifically, we show that
quasiperiodic chirped modulations of the background
density can couple discrete eigenmodes of bounded plasma
to produce a controllable shift of the wave spectral energy
distribution. Apart from academic interest, the new method
of continuously controlling the wavelength of Langmuir
oscillations might find practical applications, such as
regulating coherent Raman scattering of laser radiation
in plasma for generating short ultraintense pulses [31]. Our
results indicate how similar techniques might be practiced
with other plasma modes too, or in other settings such as
waveguides or photonic crystals. Our work also bridges a
number of effects that were previously considered unre-
lated. In particular, plasmon acceleration reported here can
be seen as the resonant counterpart of the adiabatic
ponderomotive effects on waves discussed recently in
Ref. [26]. It is also akin to the resonant acceleration of
charged particles trapped by chirped nonlinear plasma
waves [16,28]. Finally, our results further advance the
general idea [1–3] that posing classical waves in quantum-
like terms can be quite fruitful.
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FIG. 3 (color online). Langmuir wave evolution in the down-
chirped AR regime (P2 ¼ 0.1). The plotted quantities are the
same as in Fig. 2, but the wave is initialized at larger m, and
the chirp of the modulation frequency has the opposite sign. The
subplots correspond to times τ ¼ 0 [(a), (b)], 3 [(c), (d)], 5 [(e),
(f)], and 8 [(g), (h)].
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