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Turbulent plasma flow, amplified by rapid three-dimensional compression, can be suddenly dissipated under
continuing compression. This effect relies on the sensitivity of the plasma viscosity to the temperature,
μ ∼ T 5/2. The plasma viscosity is also sensitive to the plasma ionization state. We show that the sudden
dissipation phenomenon may be prevented when the plasma ionization state increases during compression, and
we demonstrate the regime of net viscosity dependence on compression where sudden dissipation is guaranteed.
Additionally, it is shown that, compared to cases with no ionization, ionization during compression is associated
with larger increases in turbulent energy and can make the difference between growing and decreasing turbulent
energy.
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I. INTRODUCTION

Recently, simulations of compressing turbulent plasma
demonstrated a sudden dissipation mechanism, which may
enable a new paradigm for fast ignition inertial fusion [1].
A plasma with initial (turbulent) flow is compressed on a
timescale that is much faster than the dissipation time of the
flow. This amplifies the turbulent kinetic energy (TKE) in the
flow, for an ideal gas with subsonic flows. In a very rapid
three-dimensional (3D) adiabatic compression the energy in
the flow scales at the same rate as the temperature. As the
temperature increases, the plasma viscosity, which starts small,
grows, because it scales as μ ∼ T 5/2. The viscosity first
dissipates the smaller scales in the flow, which do not contain
much energy. Eventually, as the compression continues, the
energy-containing (largest) scales become viscous, and at this
time all the TKE very suddenly dissipates into temperature.
By initially putting most of the plasma energy in TKE, it may
be possible to keep the plasma comparatively cool up until the
sudden dissipation event, at which point it would ignite fusion
or produce a burst of x-rays [1].

However, in addition to the temperature, the plasma charge
state, Z, factors strongly into the viscosity, μ ∼ T 5/2/Z4.
Laser and magnetically driven fusion experiments typically
compress deuterium and tritium, with Z = 1, so that, ignoring
contaminants from the shell, the charge state is constant
during the compression. In contrast, compression experiments
designed to produce x-rays use a variety of higher Z materials,
which increase in ionization state during the compression.

This increase in ionization state has the effect of slowing
the viscosity growth. Consider, for example, a neon gas-puff Z

pinch [2] that starts with T ∼ 13 eV and Z ∼ 3, and finishes
with T ∼ 200 eV and Z ∼ 9. The temperature increase causes
a growth in the viscosity by a factor of ∼900, while the (mean)
ionization state growth reduces the viscosity by a factor of
∼80, drastically cutting the overall viscosity increase.

In the present work, as in Ref. [1], we consider a plasma
temperature that increases due to the 3D adiabatic compression

of an ideal gas in a box of side length L, going as T =
T0(L0/L)2. The (mean) ionization state, Z, is treated as having
some dependence on L (i.e., the amount of compression) as
well. This dependence is treated as fittable with some power,
Z = Z0(L0/L)ζ . Then, defining β = (5 − 4ζ )/2, the viscosity
can be written

μ = μ0(L0/L)2β = μ0(T/T0)β. (1)

In this model, regarding the ionization state as a function
of L is equivalent to regarding it as a function of T (Z =
Z0(T/T0)ζ/2), because T ∝ 1/L2.

Ionization processes in Z pinch [3] and laser-driven plasmas
are not simply temperature dependent, depending on density
and more complex processes (e.g., shock dynamics). However,
if the (mean) ionization state for a given experiment can be
reasonably fit to L as described, then the net effect in the
present model is that the overall temperature dependence of
the viscosity can be treated as some power other than 5/2. We
expect β � 5/2, reflecting the assumption that the charge state
increases under increasing compression (or temperature). For
a rough estimate of a possible value for ζ and therefore β,
consider that the first 26 ionization states of krypton (covering
13–1200 eV) can be fit with Z ∼ T 0.59. This corresponds to
ζ = 1.18, and β = 0.14. Since the ionization state can be
higher at a given temperature than one would predict purely
based on comparing the temperature to the ionization energies,
one expects based on this example that a wide range of β is
possible in experiments, possibly including negative values.

Note that if the adiabatic index of the compression is smaller
than the value of 5/3 assumed here, this also weakens the
scaling of the viscosity with compression, effectively lowering
β (β is defined so that μ ∝ 1/L2β).

We consider initially turbulent plasma undergoing rapid,
constant velocity, 3D isotropic compression, and described
by the same model as in Davidovits and Fisch [1], but with
general β rather than β = 5/2. This model is described briefly
in Sec. II, and a derivation is given in the Appendix Sec. A 1.
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We show that there will be an eventual sudden dissipation when
β > 1. For identical initial condition, starting viscosity, and
compression velocity, lower β cases show larger TKE growth
and later sudden dissipation (when β is still >1). Additionally,
lower β cases can show TKE growth under compression
rates that would lead to the TKE damping in higher β cases.
For β = 1, the TKE reaches a statistical steady state under
constant velocity compression, for any compression rate above
a threshold that we determine. When β < 1, it seems there is
no sudden dissipation, with the TKE increasing indefinitely
instead.

There are a number of implications of these results. The
plasma in magnetically driven [2,4–6] or laser driven [7,8]
compressions can be turbulent. There can be substantial
reduction in viscosity growth due to increasing ionization
state for a gas-puff Z pinch. To the extent the turbulence
generation mechanism(s) of a given compression approach is
insensitive to Z, the present results show that, for a fixed rapid
compression rate, a larger increase in Z (weaker viscosity
growth) is expected to correspond to larger TKE growth.
Furthermore, increases in Z can make the difference between
growing or decaying TKE.

Note that while these gas-puff Z pinches appear to have
substantial nonradial TKE even at stagnation [6], turbulence
in the hot spot of ignition shots at the National Ignition Facility
(NIF) is expected to be dissipated by high viscosity [8]. The
much higher temperatures in these hot spots create this high
viscosity, but they are assisted by fuel of Z = 1, to the extent
it is not contaminated by mix. Our results demonstrate that
even moderate reductions in the effective power β from 5/2
can cause large differences in TKE growth and can determine
whether for a given amount of compression (Lfinal/L0) one
can reach the dissipation regime.

The analysis in this work is carried out for 3D compressions,
and as such is not strictly applicable to 2D compressions such
as those in Z pinches. In a 2D compression, the relative
scaling of the TKE with compression, compared to the
temperature, is different (if the temperature growth is still
assumed to be adiabatic and isotropic, the latter now being a
larger assumption, since the plasma is driven anisotropically).
Nevertheless, the intuition developed here may still be useful;
all else being equal, more ionization enhances TKE growth
under rapid compression by weakening the viscosity growth.
The present work also neglects magnetic field effects, in line
with other studies of turbulence in 3D compressions [7,8].
This, too, limits the applicability to Z-pinch compressions,
though there are also many instances in which the magnetic
field need not dominate the dynamics in a Z pinch [6].

The evolving ionization state during compression may be
exploitable to optimize TKE growth before sudden dissipation
and to control the timing of the dissipation. If the ions in the
compression become maximally ionized, then the viscosity
change reverts to being dominated by temperature, while TKE
growth up to this point will be larger than without ionization.
Mixes of ion species open up a wide range of control
possibilities for the viscosity dependence on compression, but
also introduce other complications (e.g., species separation),
and are beyond the scope of the present work. However,
the prospect of controlling ion charge state and thereby
viscosity appears to enlarge considerably the parameter space

of opportunities for optimizing both the energy and pulse
length in a sudden dissipation resulting in x-ray emission.

The structure of the paper is as follows. Section II gives
a brief description of the model and discusses the energy
equation for the turbulence, which is used in Sec. III to
show some analytic results and to describe the general
phenomenology. To go along with this analysis, the results
from numerical simulations of compressing turbulence with
ionization are displayed in Figs. 1, 2, and 3 and discussed in
the captions and Sec. IV. Section V discusses implications of
the results and caveats associated with them. Some secondary
calculations associated with Secs. II and III are contained in
the Appendix and referenced at the appropriate point.

II. MODEL AND ENERGY EQUATION

A. Model

The model used here follows previous work by Wu [9]
and others [10–13], and is the same as that in Davidovits and
Fisch [1], allowing for a general power β for the viscosity
dependence on temperature. For completeness a derivation is
given in the Appendix Sec. A 1.

The essence of the model is as follows. It describes the 3D,
isotropic compression of homogeneous turbulence in the limit
where the turbulence Mach number goes to zero. Compression
is achieved through an imposed background flowfield. The
effect of the flow is that a cube, of initial side length L0, will
shrink in time but remain a cube. The side length of the box as
a function of time will be

L(t) = L0 − 2Ubt, (2)

where Ub is the (constant) velocity of each side of the cube.
In the low Mach limit, density fluctuations are ignored, and
the density increases in time as one would expect for the
compression,

ρ0(t) = ρ0(0)[L0/L(t)]3. (3)

The temperature of the compressing plasma is that for adiabatic
compression of an ideal gas,

T (t) = T0[L0/L(t)]2. (4)

The viscosity dependence on L (alternatively, T ) is given by
Eq. (1).

The evolution of the initially turbulent flow is solved in a
frame that moves along with the background flow, on a domain
that extends from [−L0/2,L0/2] in each dimension and has
periodic boundary conditions. The energy in the turbulence
in this frame is the same as in the laboratory frame. In this
frame, after using Eqs. (1), (3), and (4) to write the density,
temperature, and viscosity dependence in terms of L, the
Navier-Stokes equation for the turbulence is

∂V
∂t

+ 1

L̄
V · ∇V − 2Ub

L
V + L̄2

ρ0(0)
∇P = ν0

(
1

L̄

)2β−1

∇2V.

(5)

The initial kinematic viscosity is ν0 = μ0/ρ0(0), and L̄ =
L/L0.
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FIG. 1. Turbulent kinetic energy (TKE) during compression at various rates, for two different effective viscosity dependencies on
temperature, μ(T ) ∼ T β , representing ionization effects [see Eq. (1) and the surrounding discussion]. On the left, β = 2.5, the plasma
case with no ionization effects. On the right, β = 1.5. An initial flow field, with TKE normalized to 1, is compressed with velocity Ub on
times equal to (Ub = 1) and faster than (Ub = 5,10) the initial turbulence decay time (compression times L0/(2Ub) are normalized to the
initial turbulent decay time). The initial domain is a box of size L3

0 = 13, time progresses right to left [t = (1 − L)/(2Ub)] as the compression
shrinks the domain. The same initial flow field is used for all compressions, so that the only difference is β. All cases show an eventual sudden
dissipation of the TKE. For a given compression velocity, the lower β case shows stronger TKE growth and a later, more sudden, dissipation.
For this initial Reynolds number (600), the change from β = 2.5 to β = 1.5 pushes the dissipation L for Ub = 5,10 from ∼0.1 to <0.01,
which could make the difference between dissipating during a compression or not. Similarly, for Ub = 1, the change from β = 2.5 to β = 1.5
greatly increases the compression needed to reach the point where the TKE dissipates. The theoretical rapid distortion theory [15–17] (RDT)
solution is shown for comparison (in this case, it is the solution to Eq. (9), neglecting the dissipation, see also Wu [9]). It gives the theoretical
maximum growth of the TKE with the compression.

B. Energy equation

The energy density in the fluctuating flow, calculated in
the moving frame is E = ρ0(0)V2/2. The total energy is then
ET = ∫∫∫ L0/2

−L0/2 dxE. Since v′ = V (see Appendix Sec. A 1),
this total energy is the same as the total energy in the laboratory
frame (in the laboratory frame, the density increases, but the
volume to be integrated decreases in a manner that balances
it). The time evolution of the energy density is

∂E

∂t
= ρ0(0)V · ∂V

∂t
. (6)

Equation (5) is used to write this energy equation explicitly. In
Fourier (k, wave number) space, since the flow is assumed to
be homogeneous and isotropic, it is

∂E(k,t)

∂t
= T (k,t)

L̄
+ 4Ub

L
E(k,t) − 2ν0L̄

1−2βk2E(k,t), (7)

with T (k,t) a nonlinear term that includes the effects of the
pressure and V · ∇V terms (see, e.g., McComb [14]). The
effect of T (k,t) is to transfer energy between wave numbers
(modes), conservatively. Integrated over the whole of k space,
it vanishes. The total energy is

ET (t) =
∫ ∞

kmin

dkE(k,t). (8)

In the moving frame, kmin = 2π/L0 is fixed, given by the initial
size of compressing system, e.g., capsule (although the current
model uses periodic boundaries). In principle, structures can
be arbitrarily small, so kmax = ∞, but practically E(k,t) will
be zero above some k. The evolution of the total energy is

dET (t)

dt
=

∫ ∞

kmin

dk

(
4Ub

L
− 2ν0L̄

1−2βk2

)
E(k,t). (9)

III. ANALYSIS

Since E(k,t) � 0, the energy is guaranteed to decrease if the
coefficient of E(k,t) in Eq. (9) is negative for all k ∈ [kmin,∞];
conversely, it is guaranteed to increase if the coefficient is
positive for all k where E(k,t) �= 0. (However, this latter
condition is difficult to work with, since for k → ∞ there is
always damping and as the energy increases T (k,t) will tend
to move energy to higher k). These conditions are sufficient
but not necessary. The guaranteed decrease condition requires
that for every mode,

2Ub/L0

ν0k2
< L̄2−2β. (10)

The left-hand side is largest for k = kmin and trends to 0 as
k → ∞.
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FIG. 2. Same as described in the caption of Fig. 1, but for β = 1.0,
at a lower Reynolds number and with a logarithmic scale for L. No
eventual sudden dissipation is observed, even after extreme amounts
of compression. After an initial growth phase, the turbulent kinetic
energy (TKE) saturates and fluctuates around the mean level predicted
by Eq. (13). This theoretically predicted mean level of the TKE is
shown as a dotted line for each compression velocity. Note Eq. (13)
must be written in the same velocity normalization as the figure before
being applied.

A. β > 1

When β > 1, the right-hand side of Eq. (10) starts at 1 at
t = 0 and increases toward ∞ as L → 0. At some time the
condition will be satisfied for all k, when

2Ub/L0

ν0k2
min

= 1

L̄2β−2
. (11)

Thus, the energy will always decay eventually for fixed
ν0, Ub, kmin when β > 1. This is not to say that the energy
cannot decrease before this condition is satisfied.

B. β = 1

When β = 1, the right-hand side of Eq. (10) is 1. In this case
there is no time dependence in the condition for guaranteed
energy decrease. If Eq. (10) is initially satisfied for all k, the
energy will purely decay, with no initial growth phase.

Otherwise, a fixed range of wave numbers have a net
positive coefficient for E(k,t) in Eq. (9), while the rest have
a net negative coefficient (ignoring the nonlinearity). The
wave-number cutoff between these two regions is given by
equality in Eq. (10),

kcutoff =
(

4Ub/L0

2ν0

)1/2

. (12)

The width of wave numbers with a net forcing (linearly) is
�kforced = kcutoff − kmin. Since the range of net forced wave
numbers is fixed, it might be expected that the energy will
reach a (statistical) steady state. This is the case, and it can

FIG. 3. Similar to Figs. 1 and 2; the turbulent kinetic energy
(TKE) for the same initial condition compressed at two different
rates and different values of β, showing the effect of varying the
amount of ionization during compression (β). The red, solid lines use
a compression time that is half the initial turbulent decay time, while
the blue, dashed lines use a compression time that is the same as the
initial turbulent decay time. For a given compression rate (Ub = 1 or
Ub = 2), the TKE is larger at every stage of the compression when β

is lower (when there is more ionization during compression). For the
case when Ub = 1, the TKE purely decays when β = 2.5 (the plasma
case with no ionization). Ionization during compression can cause
this to no longer be the case; when β decreases to 1.5 or 1.0, the TKE
either grows before dissipating, or grows without dissipating.

be shown (see Appendix Sec. A 3) that the statistically steady-
state energy is

ET
steady = (1.9)ρ0(0)U 2

b . (13)

Further, the spectrum itself, E(k,t), converges to a statistical
steady state E(k) in simulations [18]. While the steady-state
energy is independent of the viscosity ν0 (alternatively, the
initial Reynolds number), the details of the energy spectrum
of the saturated turbulence will not be. Also, as already
mentioned, if the initial viscosity is too large, there is no steady
state and the energy will purely decay.

This steady-state energy can be rewritten in terms of
�kforced by using Eq. (12),

ET
steady = (1.9)

4
ρ0(0)ν2

0L2
0

(
�kforced + 2π

L0

)4

. (14)

Once the sign of the coefficient of E(k,t) at a given k in Eq. (9)
is being considered (rather than the sign of all coefficients), the
nonlinearity cannot be ignored. Thus, kcutoff is not necessarily
a true (statistically steady-state) cutoff between net forced and
damped modes, but rather the linear cutoff.

C. β < 1

When β < 1, the right-hand side of Eq. (10) trends to
0 as time increases, and an increasing number of shorter
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wavelength modes will have a net forcing (ignoring the
nonlinearity). This means that �kforced trends to infinity as
L → 0. With the rather large caveats that in this case the
problem is not an equilibrium one, and that the nonlinearity
has been ignored in looking at the number of modes with
a net forcing, the result from the equilibrium case that the
steady-state energy is proportional to the number of linearly
forced modes suggests that the energy for β < 1 continually
increases for late times (after any initial transients are erased)
under constant compression.

Note that neutral gas, compared to plasma with no ion-
ization, has a weak dependence of viscosity on temperature,
with studies of compressing gas turbulence using values that
fall in the β < 1 case (e.g., β = 3/4 [9,10,19]). Turbulence
closure models in these works, which include the evolution of
the TKE in a neutral gas under compression, give a continually
increasing TKE when evaluated for an initially rapid, constant
velocity, 3D compression, consistent with the suggestion here.

IV. SIMULATIONS

In Sec. III we showed that, for β > 1, the TKE should
always eventually damp, even with continued constant velocity
compression (which represents an ever increasing compressive
force); and when β = 1, the TKE will either purely decay or
reach a steady state under continued compression. We also
suggested that the energy always increases under continued
constant velocity compression when β < 1 (if the compression
is initially rapid; if not, the energy may decrease for some
period before eventually increasing). These represent different
regimes of the viscosity dependence on compression—with
little to no ionization during compression, β will be near
the ionization free value, β = 5/2, and the sudden viscous
dissipation phenomenon will still be possible. If substantial
ionization occurs during a phase of the compression, then
β may be significantly reduced from 5/2, and the viscous
dissipation of the TKE will be prevented.

In order to get a better sense of the effect of decreasing
β, we perform direct numerical simulation of compressing
turbulence for a few values of β. The scaled form of the
momentum equation, Eq. (A33), is simulated with periodic
boundary conditions using the spectral code Dedalus [20].
Results are then translated back into the laboratory frame using
the appropriate rescaling. Initial conditions are generated using
the forcing method of Lundgren [18,21]. All simulations are
carried out on a 1923 Fourier grid, which is dealiased to 1283.

Simulations are done for three different values of β, 5/2,
3/2, and 1. Of note is that for β = 3/2, the forcing term
drops out of Eq. (A33), and it is simply the usual Navier-
Stokes equation. This means that a single decaying turbulence
simulation can give results for all compression velocities (at
one initial Reynolds number).

Figures 1, 2, and 3 and their captions describe results from
these simulations. The simulations in Fig. 1 are carried out with
an initial Reynolds number of 600. Those for Fig. 2 are carried
out with an initial Reynolds number of 100, which is necessary
so that the turbulence remains fully resolved at saturation.
Those in Fig. 3 also use an initial Reynolds number of 100,
again to keep the β = 1.0 case fully resolved at saturation.

V. DISCUSSION

The present model ignores many effects that do or may
play an important role during compression of plasmas. The
suggested β = 1 cutoff between eventually dissipating and
perpetually growing TKE need not hold true in a more com-
plete model. Nonideal equation of state effects are neglected.
It should be noted that only constant velocity compressions
were considered; compressions with time-dependent velocities
would also change the cutoff. Boundary effects, which are
ignored, would be expected to become increasingly important
as the amount of compression increased. The manner in which
the ionization is accounted for neglects, among other effects,
the energy required to achieve the ionization. If this energy
comes at the expense of the temperature, and the true rate of
temperature increase is less than ∼1/L2, this would alter β,
but the general idea remains the same.

Subsonic compressions have been assumed, which is not
necessarily the case for current compression experiments,
nor is it the regime in which schemes utilizing the sudden
dissipation effect would likely be operated. Because the
compressions are subsonic, the feedback of the dissipated TKE
into the temperature is also neglected, which is expected to
only make the sudden dissipation, once it happens, even more
sudden.

As previously discussed, magnetic effects have also been
neglected. Although this may be reasonable for 3D com-
pressions, and certain regimes of 2D Z pinch compressions,
to expand the study for general 2D compression (Z pinch)
applicability will require the inclusion of magnetic effects. The
inclusion of magnetic fields through a magnetohydrodynamic
(MHD) model will introduce a number of new considerations.
If there is a strong background magnetic field, the plasma
conditions can be highly anisotropic, and the intuition from
the present discussion may be difficult to apply. With magnetic
fields included, turbulent energy can be stored in fluctuations
of the magnetic field, and turbulent dissipation can occur
through the plasma diffusivity, η. Continuing to assume
the incompressible limit, then, in addition to the Reynolds
number, the magnetic Reynolds number Rem = UL/η and
the magnetic Prandtl number Prm = Rem/Re = ν/η are also
important for characterizing any turbulence.

The plasma magnetic diffusivity scales with ion charge
state and plasma temperature as ηSpitzer ∼ Z/T 3/2. Then, the
magnetic Prandtl number has a temperature and charge state
scaling of Prm ∼ T 4/Z5. The behavior of MHD turbulence
is influenced by the relative values of Re, Rem, and Prm;
they affect whether magnetic fluctuations will grow (see, e.g.,
Refs. [22,23]), the saturated ratio of turbulent magnetic energy
compared to kinetic energy, and the steady state ratio of viscous
dissipation to dissipation through the magnetic diffusivity
(see, e.g., Ref. [24]). From the considerations in the present
work, it is clear that, depending on the amount of ionization
during compression, a range of behaviors for the dimensionless
quantities is possible. Considering the limit of no ionization,
and assuming the scalings T ∼ 1/L2,L ∼ L,U ∼ 1/L, one
has that the viscosity increases with compression (and the
Reynolds number decreases), the magnetic diffusivity de-
creases (and the magnetic Reynolds number increases), and
the magnetic Prandtl number increases. At high magnetic
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Prandtl number and large magnetic Reynolds number (but
assuming the Reynolds number is still large enough for
turbulent flow), the small scale dynamo is effective, so that
magnetic perturbations can grow up quickly and saturate, while
the ratio of kinetic dissipation to magnetic dissipation appears
to grow large [24]. Investigations of these effects are a subject
of current research and debate and are typically carried out
in steady state, whereas the sudden dissipation effect relies on
dynamics far from steady state. As such, specific investigations
of MHD effects on sudden dissipation are needed before
making predictions.

A simple model of the impact of radiation, the effects of
which have been neglected in the preceding discussion, is
included in the Appendix Sec. A 4. This model consists of
a temperature equation that includes mechanical heating and
radiative cooling due to optically thin electron bremsstrahlung.
With no radiation, the mechanical heating gives the T ∼ 1/L2

adiabatic temperature scaling. When the bremsstrahlung is
included, it is shown that the temperature can still track
closely with the adiabatic result for a large amount of the
compression, provided the initial ratio of the radiation term to
the mechanical heating term is very small. Then, the results
in the present work will not be significantly modified. The
ratio of radiation term to mechanical heating term, R, can
be written as R ∼ (τc/3.01 × 10−9)(ρg/cc/AiT

1/2
keV )[2Z3/(1 +

Z)]; for details, see Appendix Sec. A 4. Here τc is the
compression time, ρ the density, T the temperature, Ai the ion
mass number, and Z the ion charge state. These considerations
are a subset of the usual power balance requirements for inertial
confinement experiments (see, for example, Lindl [25]). In
both cases, it is desirable to operate in parameter regimes where
the temperature increases under compression when radiation
effects are included. From the perspective of radiation, the
presence and quantity of the hydrodynamic motion does
not modify the potential operating regimes as compared to
compression schemes without hydrodynamic motion. The
same will be true with the inclusion of line-radiation, important
for high-Z plasmas.

However, the operating regimes where the temperature in-
creases under compression will be modified by the turbulence
in (at least) two ways that are neglected in this work. First,
before any sudden dissipation event, there will be some level of
viscous dissipation of hydrodynamic motion into temperature.
When the hydrodynamic energy is large compared to the
thermal energy, this heating may somewhat relax the operating
regimes where the temperature increases under compression.
On the other hand, a second neglected effect, turbulent heat
transport, represents a cooling effect that opposes this heating
effect.

Once the sudden dissipation event is triggered, in the
supersonic case with the feedback of dissipated TKE into
temperature included, the temperature should rise rapidly.
Taking into account radiation will then be important for
modeling the sudden dissipation event itself, which occurs
over a small time interval so that the plasma volume hardly
changes.

Despite these deficiencies, the present work serves to
highlight the sensitivity of TKE growth under compression
to changes in the viscosity scaling with compression, in
which ionization can play a strong role. Thus, even modest

contamination of a low-Z plasma with higher-Z constituents
may have substantial hydrodynamic implications, as, say,
atomic mix in an ICF hotspot. Finally, this sensitivity to the
ionization state suggests that the possibilities for control of
TKE growth and sudden dissipation for x-ray production are
now significantly expanded. This expansion of possibilities
comes in part from the prospect of considering a wide range of
ion-species mixes. Although outside the scope of the present
work, it can be anticipated that using a variety of mixtures
could enable detailed and controlled shaping of the x-ray
emission pulse.
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APPENDIX: DERIVATIONS

1. Model derivation

Although essentially identical models have been discussed
elsewhere [9–13], for the sake of completeness, and to explain
some details, we present a derivation here. Start with the
continuity and momentum equations for compressible Navier-
Stokes:

∂

∂t
(ρ) + ∂

∂xi

(ρvi) = 0, (A1)

∂

∂t
(ρvi) + ∂

∂xj

(ρvivj ) + ∂

∂xj

(δijp) = Di (A2)

∂

∂xj

[
μ

(
∂vi

∂xj

+ ∂vj

∂xi

− 2

3
δij

∂vk

∂xk

)]
= Di. (A3)

The Stokes hypothesis has been used, where the second
viscosity coefficient, often denoted λ, is λ = − 2

3μ. This form
of the rate of strain tensor is consistent with the Braginskii
result [26]. The unknowns are rewritten as two parts,

vi(x,t) = vi0(x,t) + v′
i(x,t), (A4)

ρ(x,t) = ρ0(x,t) + ρ ′(x,t), (A5)

p(x,t) = p0(x,t) + p′(x,t), (A6)

where vi0 is given, and the subscript 0 indicates ensemble
averaged quantities, while prime quantities have 0 ensemble
average. The prime quantities are assumed to be statistically
homogeneous, and ultimately the equations governing their
evolution will have no explicit spatial dependence, allowing
the use of periodic boundary conditions. For the prime
quantities to be homogeneous, it can be shown (see, e.g.,
Blaisdell [11]) that the flow vi0 must be of the form

vi0(x,t) = Aij (t)xj . (A7)

For this work, only pure (no shear), isotropic compressions are
considered, so that

Aij (t) = a(t)δij , (A8)
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with δij the Kronecker δ. When a(t) < 0 this enforced,
“background,” flow is compressive.

With these assumptions, the continuity equation is

∂

∂t
(ρ0 + ρ ′) + ∂

∂xi

[(ρ0 + ρ ′)a(t)xi + ρ0v
′
i + ρ ′v′

i] = 0.

(A9)
Taking an ensemble average gives an equation for ρ0. Denoting
the average as 〈〉, then by definition 〈ρ ′〉 = 〈v′

i〉 = 0. Also,
∂〈ρ ′v′

i〉/∂xi = 0 because ensemble averages, such as 〈ρ ′v′
i〉,

are assumed to be homogeneous. The equation for ρ0 is then

∂ρ0

∂t
+ a(t)xi

∂ρ0

∂xi

+ 3a(t)ρ0 = 0. (A10)

It can be shown [11] that only for ρ0(x,t) = ρ0(t) can the
homogeneous turbulence constraint be satisfied. Dropping the
second term in Eq. (A10) accordingly, the density is

ρ0(x,t) = ρ0(t) = ρ0(0) exp

[
−3

∫ t

0
a(t ′)dt ′

]
. (A11)

The fluctuating density is determined by Eq. (A9), which
can be simplified by canceling the terms that sum to 0
according to Eq. (A10). It is

∂ρ ′

∂t
+ ∂

∂xi

(ρ ′a(t)xi + ρ0v
′
i + ρ ′v′

i) = 0. (A12)

For incompressible fluctuating (nonbackground) flow, we
assume that the flow vi is low Mach, so that sound waves can be
neglected and the density perturbation ρ ′ can be ignored. Then,
the fluctuating continuity equation reduces to the divergence
free constraint on the prime velocity,

ρ0
∂

∂xi

(v′
i) = 0. (A13)

With vi0 as given, ρ ′ → 0, and ρ0 depending only on time, the
momentum equation is

ρ0

[
∂v′

i

∂t
+ v′

j

∂v′
i

∂xj

+ (a2 + ȧ)xi + axj

∂v′
i

∂xj

+ av′
i

]

+ ∂

∂xj

[δij (p0 + p′)] = Di. (A14)

The ensemble averaged momentum equation is

ρ0(a2 + ȧ)xi + ∂

∂xj

(δijp0) = 0. (A15)

In arriving at 〈Di〉 = 0, the viscosity μ is assumed to
be independent of space. The mean momentum equation,
Eq. (A15), says p0 is quadratic in x, unless a2 + ȧ = 0, in
which case p0 is independent of x. Since a sets the time
dependence of the background flow (the rate of compression),
this means only for one particular background flow can p0 be
independent of x. For the purposes of this work, we consider
temperature dependent viscosity, μ = μ(T ). The equation of
state relates the pressure, density, and temperature, p = ρRT .
This is p0 + p′ = ρ0RT , which becomes, after taking the
ensemble average,

p0 = ρ0(t)R〈T 〉. (A16)

In order to have T = T (t), so that μ(T ) is independent of
space, we must take

a2 + ȧ = 0, (A17)

so that p0 = p0(t). Then, Eqs. (A11), (A16), and (A17) and
the condition for an adiabatic compression together determine
T and p0.

Subtracting Eq. (A15) from Eq. (A14) gives the equation
governing the fluctuating flow,

ρ0

(
∂v′

i

∂t
+ v′

j

∂v′
i

∂xj

+ axj

∂v′
i

∂xj

+ av′
i

)

= − ∂

∂xj

(δijp
′) + μ(T )

∂2v′
i

∂xj ∂xj

. (A18)

The explicit spatial dependence can be removed by transform-
ing coordinates. Transforming as

xi = α(t)Xi, (A19)

v′
i(x,t) = Vi(X,t), (A20)

p′(x,t) = P (X,t), (A21)

yields,

ρ0

[
∂Vi

∂t
+ 1

α
Vj

∂Vi

∂Xj

+
(

a − α̇

α

)
Xj

∂Vi

∂Xj

+ aVi

]

= − 1

α

∂

∂Xj

(δijP ) + μ(T )

α2

∂2Vi

∂Xj∂Xj

. (A22)

Then, if the condition

a − α̇/α = 0 (A23)

is satisfied, the explicit spatial dependence is removed from the
moving frame momentum equation, Eq. (A22), and it becomes

ρ0

(
∂Vi

∂t
+ 1

α
Vj

∂Vi

∂Xj

+ aVi

)

= − 1

α

∂

∂Xj

(δijP ) + μ(T )

α2

∂2Vi

∂Xj∂Xj

. (A24)

Together, the conditions Eq. (A23) and Eq. (A17) say that
α̈(t) = 0. Consistent with this, define

α(t) = (L0 − 2Ubt)/L0 = L(t)/L0, (A25)

L(t) = L0 − 2Ubt. (A26)

Then

a = L̇/L, (A27)

and the background flow (v0) is such that a cube of initial
side length L0, placed in the flow at t0 = 0, will remain a
cube and shrink in time at a constant rate while having a side
length of L(t). Using a from Eq. (A27) in Eq. (A11) gives
the expected density dependence, Eq. (3). Using the viscosity,
density, and temperature solutions, Eqs. (1), (3), and (4), in
the moving frame momentum equation, Eq. (A24), gives the
model equation, Eq. (5).
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2. Scaled momentum equation

The independent variables in Eq. (5) can be rescaled, and
some time-dependent coefficients eliminated. This is useful for
simulations and can be an aid in analysis. Using the scalings,

Vi = L̄δV̂i , (A28)

P = L̄ηP̂ , (A29)

dt̂ = L̄τ dt, (A30)

in Eq. (5) gives,

∂V̂
∂t̂

+ L̄δ−1−τ V̂ · ∇V̂ − 2ŪbL̄
−τ−1(1 + δ)V̂

= −L̄2+η−δ−τ∇P̂ + 1

Re0
L̄−2β−τ+1∇2V̂. (A31)

The standard nondimensionalization has been used, so that
Re0 = L0V0/ν0. Equation (A31) has four independent powers
of L̄, and three undetermined scaling factors, δ, η, and τ ,
so that the time dependence can be eliminated from all but
one term. One specific choice takes δ = −1 to eliminate
the forcing term (with Ub in the coefficient), and then the
time dependence of two other terms can be eliminated. The
choice where the forcing term and all time dependence but
the viscosity’s are eliminated has been discussed by Cambon
et al. [12]). Choosing to eliminate the time dependence of all
but the forcing term, by selecting

τ = 1 − 2β, (A32a)

δ = 2 − 2β, (A32b)

η = 1 − 4β, (A32c)

gives

∂V̂
∂t̂

+ V̂ · ∇V̂ − 2ŪbL̄
2β−2(3 − 2β)V̂ = −∇P̂ + 1

Re0
∇2V̂.

(A33)

3. β = 1 steady-state energy

A steady-state solution (dET /dt = 0) to the total energy
equation, Eq. (9), when β = 1, would mean

ET
steady = L0

4Ub

εsteady, (A34)

where εsteady = 2ν0
∫ ∞
kmin

dkk2E(k) is the mean dissipation in
steady state. When β = 1, the scaled momentum equation
in the moving frame, Eq. (A33), is the usual Navier-Stokes
equation with a time-independent forcing. This equation has
been studied in the context of a forcing scheme for isotropic
fluid turbulence, where the term 2ŪbV̂i is added as an alterna-
tive to band-limited wave-number space forcings [18,21,27].
Numerical simulations by Rosales and Meneveau [18] show
that, in steady state, solutions have a characteristic length scale,
l = u3

rms/ε = 0.19L, where L is the domain size. Accounting
for definitions and the scalings in Eq. (A32), this relationship

between εsteady, L0, and ET ∝ u2
rms allows us to solve for εsteady,

εsteady =
(

2ET
steady

3ρ0(0)

)3/2
1

0.19L0
. (A35)

Then Eqs. (A34) and (A35) can be solved for ET
steady, yielding

Eq. (13) in Sec. III B.

4. Temperature equation including bremsstrahlung

Given here is a simple accounting of the effects of radiation
without straying far from the present model. An optically
thin plasma, with a single ion species of a single (time-
dependent) charge state Z is assumed. The power density of
electron bremsstrahlung emitted from an optically thin plasma,
assuming Ti = Te = T and ne = Zni = Zn, is

PBr[W/m3] = CB(T [eV ])1/2n2Z3. (A36)

The bremsstrahlung constant is CB = 1.69101 × 10−38W ×
m3/

√
eV . The internal energy equation for the isotropically

compressed plasma, including the mechanical work and
bremsstrahlung terms only, and continuing to assume that the
adiabatic index γ = 5/3, is

∂

∂t

(
3

2
nT kBT

)
= −5

2
nT kBT

(
3
L̇

L

)
− CBT 1/2n2Z3.

(A37)
Here kB is the Boltzmann constant, L̇ can be found from
Eq. (A26), and nT is the total number density, nT = ni + ne =
(1 + Z)n. Consistent with the spirit of the model described in
Sec. II and the Appendix Sec. A 1, the density is taken to be
n = n0/L̄

3 [see Eq. (3)]. Then, if the bremsstrahlung term in
Eq. (A37) is ignored, the solution is T = T0/L̄

2, as in Eq. (4).
Rewriting Eq. (A37) as an equation for the normalized

temperature, T̄ = T/T0, as a function of the compression,
while assuming that the charge state Z is a function of
temperature, gives

∂T̄

∂L̄
= −2

T̄

L̄
+ 2

τc

τr,0

2Z3

1 + Z
L̄−3T̄ 1/2 − T̄

1 + Z

∂Z

∂T̄

∂T̄

∂L̄
.

(A38)

The first term in Eq. (A38) gives the mechanical heating
(adiabatic heating when taken alone), while the second term
represents bremsstrahlung cooling. The last term is associated
with the energy needed to bring newly ionized electrons
to the temperature T . If the charge state increases with
temperature, and the temperature increases with compression
(with decreasing L̄) then it is a cooling term (acts to decrease
the temperature). It should not, however, be taken as an
accurate accounting of this energy. Our primary focus is
comparing the radiation and adiabatic compression terms. The
relative size of the radiation term is set by the compression
time,

τc = L0

2Ub

, (A39)

and the initial radiation time,

τr [s] = 3.01 × 10−9 AiT
1/2
keV

ρg/cc

. (A40)
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The ratio τc/τr multiplied by the charge state coefficient
2Z3/(1 + Z) gives the ratio of the bremsstrahlung cooling to
the mechanical heating for any set of density, temperature,
charge state, and ion mass number Ai . To solve for the
temperature evolution as a function of compression, one
evaluates the ratio at the initial temperature and density, as in
Eq. (A38), and solves that equation. For an arbitrary function
Z(T ), the temperature will have some dependence on L, which
can be used instead of the adiabatic relation T̄ = L̄−2 in the
model described in Secs. II and Appendix A 1. Generally this
will break the ability to reach a nicely scaled equation for the
sake of simulation, Eq. (A33).

To give a simple example, consider the case where the
charge state takes a simple power law relation with the
temperature,

Z = Z0T̄
φ. (A41)

Approximating 1 + Z ∼ Z, Eq. (A38) can be reduced to

(1 + φ)
∂T̄

∂L̄
= −2

T̄

L̄
+ 2

2τc

τr,0

T̄ 2φ+1/2

L̄3
, (A42)

where the prefactor is due to the last term in Eq. (A38)
(the energy required to bring newly ionized electrons to

temperature T̄ ), and will result in an effective lower adiabatic
index. However, this is not a radiation effect, and will be
ignored for the discussion here. Equation (A42) can be solved
analytically, and the solution takes a particularly simple form
for φ = 1/4, which has behavior that is qualitatively similar
to the solutions for other φ. When φ = 1/4, and ignoring the
prefactor on the derivative, the solution to Eq. (A42) is

T̄φ=1/4 = 1

L̄2
exp

[
2τc

τr,0
(1 − L̄−2)

]
. (A43)

For small initial compression time to radiation time (τc/τr,0 
1), the temperature tracks very closely with 1/L̄2, up until the
radiation becomes important—L̄ ∼ √

2τc/τr for this φ = 1/4
case. Then, the model for turbulence behavior with ionization
discussed in this work will be unmodified up until the point
where the radiation becomes important. Provided that one
starts the compression with a small initial τc/τr , this can
hold for large compression ratios. Note that in this case, the
temperature is no longer a state-function of compression, since
it depends also on the compression rate. When the temperature
tracks closely with 1/L̄2, φ = 1/4 corresponds to the β = 1.5
case, for which simulation results are included in Figs. 1 and 3.
Radiation considerations are discussed further in Sec. V.
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