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An ensemble of non-interacting bouncing balls being acted on by a constant gravitational force, starting 
at rest from a uniform density distribution, will develop a structure of sharply peaked density waves. We 
describe these waves by computing the density profile of such a system analytically, and we find that the 
analytical results are in good agreement with numerical findings. We suggest that in a real system, these 
density waves could be used to produce measurements of the strength of a gravitational field.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

Systems of elastically or inelastically bouncing balls have been 
a subject of interest in a number of different fields of physics. 
Researchers have used systems involving bouncing balls to study 
the behavior of dynamical systems, and especially the emergence 
and characteristics of chaos. Different variations of these sys-
tems are often complex enough to demonstrate physically in-
teresting behavior while still being simple enough to be ana-
lytically tractable. One well-studied variant involves an oscillat-
ing or vibrating lower boundary with which the balls can ex-
change energy [1,2]. Such systems are often used as a model for 
Fermi acceleration [3–7]. A number of authors have studied the 
dynamical effects of collisions with differing degrees of elastic-
ity or inelasticity [8,9]. Related systems have also been studied 
in the context of adding gravity to the classical billiard prob-
lem [10].

When used as a vehicle with which to better understand non-
linear dynamical systems, models of this kind can potentially 
be useful for understanding the behavior of a range of systems 
ranging from population biology to cryptography [11]. However, 
bouncing-ball models can also be useful in more direct ways. For 
instance, the complexities associated with bouncing dynamics may 
help to explain chaotic behavior in structures that contain pin 
joints with internal degrees of freedom [12].
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Complex density wave structures can arise in systems without 
any inter-particle interactions, under the right conditions. One par-
ticularly simple example is a one-dimensional system of particles 
in a linear gravitational potential V (x) = mgx with boundary con-
ditions so that the particles bounce elastically at x = 0 (in this 
paper, the boundary will not vibrate or oscillate). If N particles be-
gin at rest, uniformly distributed between x = 0 and x = L, we start 
to see a characteristic pattern of high-density pulses immediately. 
Specifically, we see a series of sawtooth-like structures that propa-
gate from small x to large x before disappearing at x = L. As time 
passes, these saw-toothed waves become increasingly frequent and 
thinner. Fig. 1 shows a series of images of these saw-toothed pat-
terns.

We will start by deriving an analytical expression for the den-
sity distribution of the particles in this system at an arbitrary time. 
We will observe in this expression the presence of saw-toothed 
wave structures that have all of the characteristics that we ex-
pect, and that are in good agreement with the results of numerical 
simulations, as shown in Fig. 2. We will also discuss possible ap-
plications of this phenomenon.

2. Partitioning parameter space

For a particle that starts at rest at a position x0, it takes a to-
tal interval of time �t f = √

2x0/g to fall to x = 0. Since the period 
of the particle’s motion will be 2�t f , it will be at x = 0 when-
ever t = (2n + 1)�t f and back at x = x0 for t = 2n�t f , where 
n ∈ {0, 1, 2, ...}.

At any particular time t , we can solve these expressions to find 
the set of particles currently at the maximal heights on their tra-
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Fig. 1. These plots show snapshots of the density distribution with varying times. To get these distributions, we computed the positions of one million particles that started 
out uniformly distributed from 0 to L at t = 0.

Fig. 2. The left plot shows a density distribution at t = 3
√

2L/g obtained by computing the trajectories of one million particles. The right plot shows the density distributions 
corresponding to our analytical result for the first few nonempty Rk intervals.
jectories; these particles are defined by x = x0 = gt2/8n2. A similar 
procedure gives the set of particles currently at x = 0 as x0 =
gt2/2(2n + 1)2. Then the region in x0-space of initial conditions 
for which particles will have bounced k times can be written as

Rk =
{

x0 : gt2

2(2k + 1)2
≤ x0 ≤ gt2

2(2k − 1)2
, x0 ≤ L

}
. (1)

For any time t > 0, there will be regions that have bounced an 
arbitrarily large number of times, since the bounce period goes 
to zero as x0 goes to zero. However, at later times, there will be 
a minimal k for which Rk is nonempty. We can find the mini-
mal k by looking at the slowest-bouncing particle, which will have 
x0 = L. The result is that

kmin =
⌊

1

2
+ t

2

√
g

2L

⌋
. (2)
3. From trajectories to density waves

Within each individual region Rk , we can solve for the con-
stituent particles’ trajectories explicitly. A particle that has bounced 
k times and that started at x = x0 at t = 0 last bounced at tbounce =
(2k − 1)

√
2x0/g . Then until the particle leaves Rk (that is, until its 

next bounce), we can write its position as

x(t) = − g

2
(t − tbounce)

2 + √
2gx0 (t − tbounce) . (3)

From this expression, we would like to get a density distribution 
nk(x) for the elements of Rk , in the continuous limit (so that we 
imagine initially having n0 particles per unit length). Now, in the 
limit as k → ∞, this is an easier problem: the region Rk becomes 
arbitrarily thin in x0-space, so the particles in Rk just trace out the 
trajectory of the kth bounce of a particle that starts at x0. In this 
case, the origin of a saw-toothed density distribution is intuitively 
clear, since we can just invert the velocity of the particle to get 
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the relative density (and the velocity will be larger at small x and 
approaches zero around x = gt2/8k2), so the density distribution 
will be smaller at small x, then monotonically increasing until it 
diverges around x = gt2/8k2.

For smaller k, this intuitive picture is still a good guide, but 
the analytical explanation is made somewhat more complicated 
by the fact that we must account for substantial differences in x0
within Rk . We can begin to see this when we check the maxi-
mum value of x(t) for x0 ∈ Rk; we find that dx/dx0 = 0 when 
x(t) = gt2/2(4k2 − 1), so the particle reaching the maximum of its 
own trajectory is actually not the particle currently at the largest 
height in Rk .

To find the density distribution corresponding to Rk , we can 
start by inverting our expression for x(t) to get

x0 =
[

kt
√

2g ± √
gt2/2 − (4k2 − 1)x

4k2 − 1

]2

. (4)

This expression for x0 as a function of x is dual-valued, as it should 
be; for any non-extremal value of x, there is a corresponding parti-
cle with one x0 that is moving upwards and a second particle with 
a different x0 that is moving downwards.

To get nk(x), we want to look at the absolute value of n0dx0/dx. 
It is necessary to include the corresponding contributions both 
from the side of the distribution that is moving up and from 
the side of the distribution that is moving down. The result is 
that

nk(x) = n0
d

dx

[
kt

√
2g − √

gt2/2 − (4k2 − 1)x

4k2 − 1

]2

− n0
d

dx

[
kt

√
2g + √

gt2/2 − (4k2 − 1)x

4k2 − 1

]2

. (5)

If we evaluate these terms, the final expression becomes

nk(x) = 4ktn0
√

g

(4k2 − 1)
√

gt2 − 2(4k2 − 1)x
. (6)

This expression has all of the major characteristics that we had ex-
pected. The density profile is monotonically increasing in x, until 
it diverges at x = gt2/2(4k2 − 1), which is the maximal allowed 
value of x for x0 ∈ Rk . If xmax is defined as this value, then we can 
rewrite the distribution function as

nk(x) = 4kn0

(4k2 − 1)
√

1 − x/xmax
. (7)

Of course, this expression does not take into account the re-
quirement that x0 < L. As a result, the distribution corresponding 
to the Rk with k = kmin will have a somewhat different shape, 
but the distributions for all other values of k will be unaffected. 
We can see this effect in Fig. 1, where there is sometimes a 
small, sharp step in the density distributions in the outermost saw-
tooth.

Quantitatively, the effect on nkmin depends on whether the par-
ticle that started at x0 = L is on its way up or on its way down — 
that is, if L is greater than or less than

x0,max = 2gk2t2

(4k2 − 1)2
, (8)

which is the value of x0 from which a particle has to start in or-
der to end up at xmax at time t . This tells us if x0 = L is on the 
upward-moving or the downward-moving branch of x0(x).

Then we can define the critical value of x corresponding to the 
height of the particle that started at x0 = L, that is,
xcrit = − gt2

2
+ 2kt

√
2gL + (1 − 4k2)L. (9)

There are a few possible scenarios. If x and t are such that both 
the upward- and downward-moving branches of x0(x) have x0 < L, 
then nkmin (x) is as previously calculated; we will call this original 
distribution function n(0)

k . If x and t are such that the downward-
moving branch has been cut off by the boundary condition x0 < L, 
then we keep only the first of the two terms in Equation (5), and 
the result is

n(1)

k = 2kn0

(4k2 − 1)
√

1 − x/xmax
− n0

4k2 − 1
. (10)

Finally, if both branches that would contribute to nkmin at x are cut 
off by the boundary condition, then the density distribution at x
must go to 0. In general, then, the outermost wave has a density 
distribution governed by

nkmin(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

n(0)

k (x) : x0,max < L and x > xcrit

n(1)

k (x) : x < xcrit

0 : x0,max > L and x > xcrit

. (11)

4. Density wave structure

The total density distribution of the system is given by

n(x) =
∞∑

k=kmin

nk(x). (12)

That is, the overall distribution is a sum of infinitely many 
sawtooth-like waves. However, for any given x, the sawtooth cor-
responding to Rk only contributes to n(x) if x ≤ gt2/2(4k2 −1). For 
instance, at t = √

2L/g , n(L/20) only includes contributions from 
n1(x) and n2(x). At t = 2

√
2L/g , n(L/20) includes contributions 

from n1(x), n2(x), n3(x), and n4(x).
If we change coordinates to use the normalized position x̄ =

x/L, then the system parameters g and L only ever appear in 
the dynamics of the system in the combination gt2/L. Then if we 
define τ = t

√
g/L, the density profile n can be written as a func-

tion only of x̄ and τ . As such, the system is invariant under any 
transformation that preserves τ , such as simultaneously mapping 
g → λg and L → λL. Any modification of the system parameters g
and L only has the effect of speeding up or slowing down the evo-
lution of n(x̄, t) by a constant factor. In light of this, Fig. 1 could be 
interpreted as the time evolution of the system for fixed g and L, 
but it also shows the system’s behavior when g or L are varied at 
some fixed time.

We can see from our expressions for xmax and nk(x) that these 
density waves will originate at x = 0 and move to larger x until 
they disappear at x = L. The dependence of nk(x) on k shows that 
the waves will appear thinner as time goes on, although defining 
a wave amplitude is tricky given that every wave peak is infinitely 
tall. There is always an infinite number of wave peaks in 0 ≤ x ≤ L, 
but for any region 0 < ε ≤ x ≤ L, there will be an increasing num-
ber of wave peaks as time goes on and the peaks will get closer 
together. We can see this by looking at the peak-to-peak separa-
tion in x; the distance between the kth and (k + 1)th peak is given 
by

�xk,k+1 = 2gt2

(2k − 1)(4k2 + 8k + 3)

=
(

4

2k + 3

)
xmax,k . (13)
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Here xmax,k is the location of the kth peak. As each successive peak 
reaches any given height x, the distance to the next one decreases 
and will scale like 1/k for long times.

Our expression for kth peak’s location also allows us to com-
pute that the velocity of the kth peak is given by

vk = gt

4k2 − 1
. (14)

All of the peaks move more quickly as time goes on, but the ratio 
between any two peaks’ velocities does not change. At any given 
time, higher-k peaks move more slowly. Moreover, the value of k
corresponding to the peak at a particular height is roughly linear 
in time (it is linear for long times); the velocities of wave peaks 
passing any particular height will decrease as time goes on and 
will eventually scale like 1/t .

For long times, the details of these wave structures become 
less and less obvious. We can analytically compute the shape of 
the final distribution n(x) in the limit that the particles starting 
from different initial conditions are completely uncorrelated. For 
any fixed x0, we can invert x(t) to find that the amount of time 
the particle spends at a position scales like (x0 − x)−1/2. If we ac-
count for the different period lengths at different values of x0, then 
n(x) for a fixed x0 is proportional to (x2

0 − xx0)
−1/2. Then account-

ing for the whole distribution of values of x0, and considering the 
fact that a particle only contributes to the distribution at x if it has 
x0 ≥ x, we get

n(x) ∝
L∫

x

dx0√
x2

0 − xx0

. (15)

Integrating and normalizing, the result is that

n(x) = n0 log

(√
L + √

L − x√
x

)
. (16)

In fact, it is possible to recover precisely this result by looking at 
the sum over nk(x) for large t . For sufficiently large time, we can 
write that k → (t/2)

√
g/2xmax, and for a given x, the terms in the 

sum over nk that contribute are given by

n(x) =
(t/2)

√
g/2x∫

(t/2)
√

g/2L

4kn0dk

(4k2 − 1)
√

1 − x/xmax
. (17)

Changing variables and noting that 4k2 − 1 → 4k2 for sufficiently 
large t ,

n(x) =
L∫

x

n0dxmax

2xmax
√

1 − x/xmax

= n0 log

(√
L + √

L − x√
x

)
. (18)

5. Possible applications

Beyond the intrinsic interest of the dynamics of such a sys-
tem, these density waves could have some practical applications. If 
we could produce a system with the behavior described here, we 
could use that system to measure the value of g . Such a detector 
might not easily compete with the precision that can be achieved 
with measurements by atomic interferometry [13–15], using the 
properties of cold atoms [16], or other modern methods, but it 
might have some advantages in simplicity.
Consider a container filled with particles that are diffuse 
enough that their mean free path is at least the height of the con-
tainer, with the property that they bounce elastically when they 
strike the surfaces of the container. If the particles were released 
into the container with a uniform density distribution in height 
and with sufficiently small initial velocities, and if the container 
were equipped with instrumentation to measure the density of 
the particles as a function of height, then it would be possible 
to determine g by measuring the locations of the wave peaks at 
x(t) = gt2/2(4k2 − 1).

Of course, any kinematic scheme for measuring gravitational 
fields is only interesting if it can outperform the simplest possi-
ble kinematic g measurement device: a detector consisting of a 
bouncing ball and a device that measures the length of its bounce 
periods (or its position at a time t). Such a detector would lack the 
practical challenge of preventing collisions between particles.

These density waves have a couple of advantages. The first 
has to do with statistical fluctuations. The density waves’ behav-
ior depends on a whole ensemble of particles, so measurements 
of the wave peaks’ positions would be resistant to some sources 
of error (for instance, variations in the initial particles’ initial posi-
tions). In principle, we could also set up an ensemble of objects 
to be dropped from the same height, but if the collision rate 
of the particles scales with their local density, then this would 
result in a higher collision rate for the same number of parti-
cles.

The second major advantage is that the peaks of the waves 
propagate more slowly than their constituent particles move, and 
many wave peaks will be visible at the same time; if the loca-
tion of each wave peak provides another measurement of g , then 
it may be possible to get statistical precision more quickly under 
some conditions (since we can take effectively take many measure-
ments of g at the same time).

There are some cases in which the density wave system easily 
produces better measurements of g . For instance, for any system 
size, it is possible to pick a time interval between measurements 
that makes position measurements of the single-bouncing-ball sys-
tem virtually useless; if the time between measurements is com-
parable to the period of the bounce, then we could no longer tell 
how many times the ball has bounced. The same is not true of the 
density-wave system, because (with sufficiently precise position 
measurements) we can always identify the kth wave peak by mea-
suring the inter-peak distances and using Equation (13). On the 
other hand, there are also situations in which the single-bouncing-
ball system is definitively better. For instance, if the spatial reso-
lution is not sufficient to resolve the spacing between peaks, then 
the density wave structures cease to be useful. If we wait a suffi-
ciently long time, this will happen for any finite spatial measure-
ment precision.

In less extreme cases, the effects of measurement uncertainty 
are more complicated. Generally speaking, the single-bouncing-
ball model is more robust against uncertainty in spatial position, 
whereas the density-wave model is more robust against uncer-
tainty in time. As a heuristic model, consider a system in which we 
have perfect initial conditions (perhaps because of the statistical 
benefits of a large sample size) and perfect spatial measurements 
but imperfect temporal measurements, so that measurements of 
the density distributions will be characterized by some standard 
deviation σt . We will compare this against a model in which we 
drop a bouncing ball from some height h, again with perfectly pre-
cise initial conditions and perfectly precise position measurements, 
and measure its position at different times with the same preci-
sion σt (in either case, one might imagine watching the system 
evolve and trying to track with a stop-watch how long it takes to 
reach certain fixed points).
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Consider a measurement taken at some time t . For the density-
wave system, the location of the kth peak is given by x =
gt2/2(4k2 − 1). Then we can estimate the error on an estimate 
of g given an imperfect measurement of t by

σg,k =
∣∣∣∣∂ g

∂t

∣∣∣∣σt

= 4(4k2 − 1)xσt

t3
. (19)

For our overall estimate of g , we will want to combine the infor-
mation from several peaks, each of which will give us a different 
level of precision for g . In order to combine such measurements, 
we would take the weighted average of the measurements, where 
the weight of each peak’s contribution is given by 1/σ 2

g,k for that 
peak [17]. The overall error would then be given by

σg =
√

1∑
k 1/σ 2

g,k

=
⎡
⎣ kmax∑

k=kmin

1

(4k2 − 1)2x2

⎤
⎦

−1/2
4σt

t3
. (20)

The lower limit of this sum is the same kmin from Equation (2), 
that is, kmin = ⌊

1/2 + (t/2)
√

g/2L
⌋

. The upper limit will be the 
largest k for which the kth wave peak can be distinguished from 
the (k + 1)th peak. Using Equation (13), this means that

2gt2

(2kmax − 1)(4k2
max + 8kmax + 3)

≈ σx. (21)

This starts getting messy quickly. However, once we know kmin and 
kmax for a particular choice of parameters, then we can simplify 
our expression for σg by writing that kmax −kmin is the total num-
ber of discernible peaks and substituting in our expression for the 
peak position to get

σg = 2gσt

t
√

kmax − kmin
. (22)

The quantity kmax − kmin is still somewhat complicated. The dis-
tance between the kth and (k + 1)th peak is quadratic in time, but 
each pair of peaks has a maximal separation that it will achieve 
before they disappear, and any peak that is currently possible to 
resolve will disappear in a finite time. If the resolution is small 
compared to the system size, this means that the number of dis-
cernible peaks will start at some finite value, then increase for a 
period of time, then decrease to zero.

The version with a single bouncing ball only provides a single 
measurement at any time t . If we use the same procedure to esti-
mate σg for this measurement, then if the ball was dropped from 
a height h and has bounced b times, we get

σg = 2
(

2b
√

2h ± √
2(h − x)

)2 σt

t3

= 2gσt

t
. (23)

This function is double-valued because for any given measurement 
of x there are two possible choices of g , since the ball reaches 
that height twice on every bounce. We will assume for now that 
our measurements are frequent and precise enough that we can 
tell when the ball is moving up, when it is moving down, and 
how many times it has bounced, so that these are not additional 
sources of error. Under these assumptions, the measurements of 
g from the density-wave model are more robust against errors in 
time measurement so long as we can reliably identify more than 
one wave peak at a time.

An alternate possible approach by which these density waves 
could be used to measure g involves introducing a perturbation 
to the potential. In particular, if we could introduce a sinusoidal 
time-varying perturbation with an appropriately chosen phase, we 
could set up a stable limit cycle, which would result in a signif-
icant number of particles oscillating together at a particular fre-
quency. For instance, consider the perturbation g → g − rg cos (ωt)
for some 0 < r < 1. For this perturbation, there are stable limit cy-
cles at the trajectories of the particles starting at x0 = 2gπ2n/ω
for n ∈ {1, 2, ...}. Trajectories with x0 slightly above these limit cy-
cles will experience, on average, higher values of g as they initially 
fall, while trajectories with x0 slightly below will initially expe-
rience lower values of g . As such, for any driving frequency ω, 
we could measure g by looking for long-lived oscillations in the 
density profile with frequencies equal to ω/n that go between 
x = 0 and x = 2gπ2n/ω. We might introduce such a perturba-
tion to g by shaking the system back and forth at the given fre-
quency.

This approach has the advantage that it doesn’t require par-
ticularly precise initial conditions; there could be some variation 
in the initial density and the limit cycles would still produce ob-
servable and distinctive effects. It also has the advantage that 
the limit cycle will stay where it is indefinitely. In the unper-
turbed version of the system, the density waves get closer together 
with time until they eventually become impossible to resolve, 
but this version does not have that problem. The robustness of 
this system to measurement uncertainty is basically comparable 
to that of the bouncing-ball system, but this system has the ad-
vantage that it does not require any minimal sampling rate, so 
long as we could identify the maximal height that each pulse 
reaches.

Either of these techniques could also be applied to a system 
of charged particles in a constant electric field, to produce mea-
surements of �E . However, such a detector would be less practi-
cal, since it would be substantially harder to prevent the inter-
particle interactions. This would likely force the starting density 
of the particles to be much lower, so the system would have to 
occupy a much larger volume in order to achieve the same statis-
tics.

6. Discussion

We initially encountered these density waves in a series of sim-
ulations modeling particles in simple potentials which were moti-
vated by another problem (which involved temperature gradients 
that can form in gases as they are compressed in an external po-
tential [18]). This, in turn, was motivated by an investigation into 
the physics of rotating plasmas and gases [19,20].

In fact, our results are somewhat reminiscent of a phenomenon 
from plasma physics: the plasma wave echo [21]. In a plasma echo, 
two waves that damp in a collisionless plasma can reappear (as 
an “echo”) some time after they may seem to be gone. Plasma 
echoes are counterintuitive because we would ordinarily expect 
phase space mixing to wash out the initial characteristics of the 
system, but it does not do so completely. The result in this paper 
is similar; we have described a projection of phase space as a func-
tion of time which does not reach a smooth, statistically averaged 
final state in the way that we might expect.

The system that we studied contained no inter-particle interac-
tions. For the purposes of translating these results to a practically 
realizable system, this is a drawback. Simple numerical simula-
tions do suggest that for sufficiently weak inter-particle interac-
tions and over sufficiently short timescales, these density wave 
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structures can still be prominent. However, if (for a given model of 
inter-particle interactions and over a given timescale) these den-
sity waves are important, it is in spite of these interactions rather 
than because of them.

In our view, the lack of inter-particle interactions is a large part 
of what makes this density wave effect interesting. These saw-
toothed structures look very much like some kind of collective 
effect, but each individual particle’s dynamics are completely inde-
pendent of the rest. This happens in an almost superlatively simple 
physical system, and without the need for any kind of fine-tuned 
initial density distribution.

7. Conclusions

Using a very simple system of bouncing particles and com-
pletely smooth initial conditions, we have shown the emergence 
of a surprisingly complex pattern of infinitely sharp density waves. 
The most important factor that contributes to this effect is the 
reflecting lower boundary. In fact, we find similar density wave 
structures for a variety of different choices of potential (although 
the details of the behavior of these waves do change with dif-
ferent potentials; for instance, it is possible to choose poten-
tials so that the waves propagate from high x to low x rather 
than the other way around, or even so that the waves propa-
gate in one direction in some regions and in the other in other 
regions).

If we could construct a physical system with the general char-
acteristics described by this model, these density waves could be 
used to measure the strength of the underlying potential. There 
are a couple of different possible ways of doing this, with different 
advantages and disadvantages, but the most basic version of the 
system is notable in that it is robust against uncertainty in time
measurements and in that it does not require any minimal sam-
pling rate.
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