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Powerful incoherent laser pulses can propagate in focusing Kerr media much longer distances than can
coherent pulses, due to the fast phase mixing that prevents transverse filamentation. This distance is limited
by 4-wave scattering, which accumulates waves at small transverse wave numbers, where phase mixing is
too slow to retain the incoherence and thus prevent the filamentation. However, we identify how this
theoretical limit can be overcome by countering this accumulation through transverse heating of the pulse
by random fluctuations of the refractive index. Thus, the laser pulse propagation distances are significantly
extended, making feasible, in particular, the generation of unprecedentedly intense and powerful short laser
pulses in a plasma by means of backward Raman amplification in new random laser regimes.
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The propagation of powerful laser pulses in focusing
nonlinear media depends on the competition between
transverse dispersive spreading and focusing nonlinearity
[1–6]. For negligible nonlinearity, the dispersion would
double the cross section of a coherent pulse of transverse
size L⊥ within the Rayleigh length LR ∼ L2⊥=λ, where λ is
the laser wavelength. A strong enough nonlinearity would
noticeably reduce the pulse cross section, or even cause
transverse filamentation, within the length LSF ∼ vg=ωnl,
where ωnl is the nonlinear frequency shift and vg is the
group velocity of the pulse. For LR < LSF, the dispersive
spreading outruns the self-focusing and suppresses it.
We will consider focusing Kerr-like media for which the
nonlinear frequency shift is proportional to the pulse
intensity I, namely, ωnl ¼ −αI with the positive coefficient
α > 0. Then, LR=LSF ∼ Pch=Pcr, where Pch ∼ IL2⊥ is the
coherent pulse power and Pcr ∼ λvg=α is the critical power
of the self-focusing.
A coherent laser pulse of power P much greater than

the critical power, P ≫ Pcr, would experience transverse
filamentation within a propagation length not much exceed-
ing the self-focusing length LSF. In contrast to this,
incoherent laser pulses could traverse focusing Kerr-like
media, remaining statistically uniform in the transverse
directions, at arbitrarily large powers. What actually mat-
ters for the nonfilamentation of incoherent pulses is not
the total power P, but the coherent subpower Pch ∼ IL2⊥
located within the transverse correlation length L⊥.
If this subpower is much smaller than the critical power,
Pch ≪ Pcr, then the Rayleigh length is much shorter than
the self-focusing length, so that nonlinear phase shift
accumulated within the Rayleigh length is small,
ϕnl ∼ ωnlLR=vg ∼ Pch=Pcr ≪ 1.
The small parameter Pch=Pcr ≪ 1 enables a kind of

perturbation theory. Physically, this small parameter
implies that the phase mixing of different waves occurs
much faster than the nonlinear interaction. In the zero-order

approximation, the phases of the different waves are
random. Statistical averaging over nearly random phases
leads to a closed evolution equation for the pair correlation
function of the waves. This equation is usually referred to
as a kinetic equation for the waves. The pair correlation
function of the waves in the Wigner representation is
usually referred to as the wave spectral density. In general,
the kinetic equation for the waves contains terms linear,
quadratic, cubic, etc. in the wave spectral density.
The linear term describes wave propagation with group

velocities and scattering on inhomogeneities of the
medium. For a pulse with negligible spread of group
velocities in a conservative uniform medium, the wave
spectral density does not change in the reference frame
moving with the group velocity of the pulse.
The quadratic term in the kinetic equation for the waves

gives a linear contribution to the wave spectral density
variation rate. This contribution comes from the statistically
averaged nonlinear frequency shift, proportional to the
pulse intensity. The corresponding nonlinear phase shift
can bend phase fronts and cause the self-focusing of
incoherent pulses in a way similar to that of coherent
pulses. The evolution of the transverse size (radius) of an
incoherent laser pulse within such a model was discussed in
many papers (see, for instance, Refs. [7,8]). This approxi-
mation is sufficient for Kerr media in which the nonlinear
frequency shift is proportional to the laser field intensity
integrated over time or space, because such an integration
effectively accomplishes statistical averaging (see, for
instance, Ref. [9]). However, for the Kerr media of interest
here in which the nonlinear frequency shift is proportional
to the laser field intensity itself, higher order nonlinear
processes can be important.
In fact, the higher order nonlinear processes appear to be

dominant for sufficiently powerful incoherent laser pulses
statistically nearly uniform in the transverse directions
over many correlation lengths L⊥. For statistically uniform
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pulses, the averaged nonlinear frequency shift does not vary
in the transverse directions, so that there is no bending of
the phase fronts, and the quadratic term in the kinetic
equation for the waves is zero. The dominant nonlinear
term in the kinetic equation for the waves is then the
cubic term.
More accurately, the cubic term in the kinetic equation

for the waves, which gives the quadratic contribution to
the wave spectral density variation rate, contains the small
factorP2

ch=P
2
cr. The quadratic term in the kinetic equation for

the waves, which gives the linear contribution to the wave
spectral density variation rate, contains the small factor
fIPch=Pcr, where fI is the small relative variation of the
wave spectral densitywithin the transverse correlation length
L⊥. For a smooth wave spectral density nonmodulated in
the transverse directions, the typical fI is about the ratio of
L⊥ to the pulse aperture, fI ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Pch=P

p
. The cubic process is

much faster than the quadratic process for P ≫ P2
cr=Pch. Of

interest here are pulses of very high powers P, perhaps
exceeding the critical power Pcr by a factor of 106, while, to
secure the pulse incoherence, the ratio Pcr=Pch needs to be
just somewhat larger than 1. The effect of the quadratic term
in the kinetic equation for the waves on the propagation of
such powerful pulses is then negligible.
The cubic term in the kinetic equation for the waves

is associated with the 4-wave scattering. The evolution
of the wave spectral density due to the 4-wave scattering
was the subject of a longstanding theoretical controversy, as
recounted and resolved analytically in Ref. [10]. That
analytical resolution was recently supported numerically
[11]. Being the same for focusing and defocusing Kerr
nonlinearities, the 4-wave kinetic equation cannot produce
self-focusing effects directly. However, it tends to accu-
mulate waves at small transverse wave numbers, where the
phase mixing is too slow to retain the incoherence.
Therefore, the input pulse randomization (which might be
arranged, say, by techniques of the type in Refs. [12–14]) is
not sufficient to achieve pulse propagation over distances
much exceeding the 4-wave scattering length.
Here, we propose to use an ongoing randomization to

prevent wave accumulation at small transverse wave
numbers, thus extending the propagation of powerful laser
pulses in focusing Kerr media much beyond the known
theoretical limit [10]. The ongoing randomization can be
accomplished through natural ray diffusion in media with
random fluctuations of the refractive index. The substan-
tially extended propagation lengths could make feasible a
new class of random lasers [15–17], based on backward
Raman amplification [18–22] and capable of reaching
relativistic nonfocused intensities in plasmas. This would
exploit the random density fluctuations inherently present
in plasmas and hitherto considered harmful to backward
Raman amplification.
Since the wave spectral density variation rate, associated

with the 4-wave scattering, contains the small factor

P2
ch=P

2
cr compared to the rate of phase mixing, the inverse

length of 4-wave scattering is

L−1
4w ∼ L−1

R P2
ch=P

2
cr ∼ LR=L2

SF: ð1Þ
The 4-wave scattering of two waves with transverse wave
numbers k⊥ ∼ 2π=L⊥ into two new waves typically pro-
duces a wave of larger transverse wave number along with a
wave of smaller transverse wave number. Further 4-wave
scattering produces waves of even larger transverse wave
numbers, so that the wave distribution spreads over a circle
of growing radius k⊥M in the k⊥ plane. At the same time,
the number of waves with small k⊥ increases. For smaller
k⊥, the 4-wave scattering is faster L−1

4w ∝ LR ∝ L2⊥ ∝ k−2⊥ ,
and it tends to establish the wave spectral density close
to the equilibrium Rayleigh-Jeans distribution inside the
circle k⊥ ≲ k⊥M:

Nk⊥ ≈
TðΛk⊥Þ

k2⊥ þ k2⊥m
; Λk⊥ ¼ ln

�
1þ k2⊥

k2⊥m

�
: ð2Þ

Here, k2⊥m is the “chemical potential” and TðΛk⊥Þ is the
“local temperature,” which can logarithmically slowly
depend on k⊥ to provide nonzero fluxes across the
spectrum. This multiscale distribution has roughly Λk⊥M

different populated scales, each of which carries just a small
fraction of total pulse intensity I. Such an optical turbulence
does not satisfy the classical Kolmogorov hypothesis of
spectral locality of interactions. There is, however, a more
general kind of locality [10] that enables expressing k⊥
integrals in the 4-wave kinetic equation by explicit
formulas local in k⊥, so that Eq. (1) is modified for the
multiscale spectrum as follows:

L−1
4wk⊥ ∼ f0ðΛk⊥ÞfðΛk⊥ÞLRk⊥=L

2
SF;

fðΛk⊥Þ ¼
Z

ξ≲Λk⊥
TðξÞdξ=

Z

ξ≲Λk⊥M

TðξÞdξ: ð3Þ

Here, fðΛk⊥Þ is the fraction of the pulse intensity carried by
waves with transverse wave numbers not exceeding k⊥.
A simplified explanation of the factor f0f entering here is
that, being quadratic in wave intensity, the rate of 4-wave
scattering contains the product of two wave intensities;
one of the contributing waves has a wave number about k⊥,
and thus carries the intensity ∼f0ðΛk⊥ÞI, while the second
wave may have any wave number smaller than k⊥, and
thus carries the intensity ∼fðΛk⊥ÞI. Therefore, the rate of
4-wave scattering is modified by the factor ∼f0f. The
4-wave scattering inverse length L−1

4wk⊥ relates to its initial
value L−1

40 as

L40

L4wk⊥
∼
I2

I20

k2⊥0

k2⊥
f0ðΛk⊥ÞfðΛk⊥Þ; L40 ∼

L2
SF0

LRk⊥0

: ð4Þ

The applicability condition of the random phase approxi-
mation, L−1

4wk⊥ < L−1
Rk⊥ , is most restrictive at k⊥ ∼ k⊥m.
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There, fðΛk⊥m
Þ ∼ f0ðΛk⊥m

Þ and L−1
4wk⊥m

∼ f02ðΛk⊥m
ÞLRk⊥m

=
L2
SF, so that the applicability condition reduces to

f0ðΛk⊥m
ÞLRk⊥m

=LSF < 1. It simply means that the
Rayleigh length of the waves with k⊥ ∼ k⊥m must be
shorter than the self-focusing length of these waves
themselves, regardless of the other parts of the spectrum.
This can be rewritten in the form

f0ðΛk⊥m
Þðk2⊥0=k

2⊥mÞðI=I0Þ < Pcr=Pch0: ð5Þ
The growth of k2⊥M is described by the equation

dk2⊥M

dz
∼

k2⊥M

L4wk⊥M

∼
I2

I20

k2⊥0

L40

f0ðΛk⊥MÞ: ð6Þ

As long as other effects do not cause fluxes, the 4-wave
scattering establishes nearly the same local temperature
across the spectrum, TðΛk⊥Þ ≈ TðΛk⊥M

Þ ¼ T. It follows
then that f0ðΛk⊥Þ ≈ 1=Λk⊥M

and fðΛk⊥Þ ≈ Λk⊥=Λk⊥M
. The

intensity I may change due to the longitudinal stretching
or contraction, or pumping or damping, of the pulse. Even
absent the group velocity dispersion and pumping or
damping, the short pulse duration may be strongly affected
by small nonparaxial corrections to the longitudinal com-
ponent of the group velocity vg∥. The relative reduction
of vg∥, δvg∥=vg∥ ≈ k2⊥=ð2k2∥Þ, is largest for waves with
k⊥∼k⊥M. It may cause pulse stretching δL∼zk2⊥M=ð2k2∥Þ,
which can be neglected only for pulses of sufficiently large
length L,

L > zk2⊥M=ð2k2∥Þ: ð7Þ
Consider, first, the regimes with I ∼ I0. Since

I¼ R
dk⊥Nk⊥ ∼TΛk⊥M

, it follows T∼ I0=Λk⊥M
. The 4-wave

scattering itself conserves also the “transverse energy”
E⊥ ¼ R

dk⊥Nk⊥k
2⊥. The major contribution to this integral

comes from waves with k⊥ ∼ k⊥M, so that E⊥ ∼ k2⊥MT∼
I0k2⊥M=Λk⊥M

. As long as E⊥ is conserved, it follows
that Λk⊥M

∼ k2⊥M=k
2⊥0. Equation (6) gives then k4⊥M=k

4⊥0∼
2z=L40, so that

ln ðk2⊥M=k
2⊥mÞ ≈ Λk⊥M

∼ k2⊥M=k
2⊥0 ∼ ð2z=L40Þ1=2: ð8Þ

The applicability condition (5) takes now the form

Λk⊥M
< Λ�; expðΛ�Þ=Λ2� ∼ Pcr=Pch0: ð9Þ

It can be satisfied only up to z not much exceeding L40,
namely z < z� ∼ L40Λ2�=2. To overcome this previous
theoretical limit [10], the ray diffusion on the medium
inhomogeneities should stop the exponential decrease of
k⊥m before condition (9) is violated. The diffusion spreads
the ray transverse wave vectors according to ðδk⊥Þ2 ¼ Dz.
It starts affecting the previous regime when ðδk⊥Þ matches
k⊥m. This occurs at Λk⊥M

¼ ΛD, such that ΛD expðΛDÞ∼
2k2⊥0L

−1
40 =D. The applicability condition (9) is satisfied for

D > D� ∼ 2k2⊥0L
−1
40Λ

−1� expð−Λ�Þ: ð10Þ
For such D, a condensate does not form; rather, k2⊥m passes
the minimum DzD at zD ∼ L40Λ2

D=2 < z�, and then grows
at z > zD according to

k2⊥m ∼Dz: ð11Þ
This increases the local temperature at k⊥ ∼ k⊥m, but the
increase is quickly saturated by the faster 4-wave scatter-
ing, which produces a flux of waves towards larger k⊥ up to
k⊥M. As a result, a fixed profile of the local temperature
TðΛk⊥Þ sets up across the spectrum. The entire spectrum
evolves then in a self-similar way, as a function of just
k⊥=k⊥m ∝ k⊥=

ffiffiffi
z

p
, rather than k⊥ and z separately. It

implies L4wk⊥ ∼ z ∝ k2⊥ across the spectrum, which,
according to Eq. (4), means f0ðΛk⊥ÞfðΛk⊥Þ ¼ const. The
solution of this equation is

fðΛk⊥Þ ≈ Λ1=2
k⊥ Λ−1=2

k⊥M
: ð12Þ

Integration of Eq. (6) gives

k2⊥M=k
2⊥0 ∼ Λ−1

k⊥M
z=L40; Λk⊥M

≈ ΛD: ð13Þ
This regime extends until the applicability condition (7) is
violated and the longitudinal stretching of the pulse
becomes important. At larger z, the pulse intensity
decreases due to the longitudinal stretching, but the fluence
w ¼ IL does not change, absent pumping or damping. The
stretching is described by the equation

dL=dz ∼ k2⊥M=ð2k2∥Þ: ð14Þ
Though the stretching is mainly due to the waves with
k⊥ ∼ k⊥M trailing, the 4-wave scattering quickly sets up
nearly the same transverse spectrum at all cross sections
within the pulse length. Therefore, formula (12) remains
valid. The variation of k2⊥M is described by Eq. (6). For a
fixed fluence w, the relative variation of k2⊥M is small, so
that the stretching proceeds linearly L ∝ z. For a fixed
pumping, the fluence grows linearly, w ∝ z, which gives
L ∝ z4=3 and k2⊥M ∝ z1=3. Waves with k⊥ ∼ k⊥M are not
directly affected by the ray diffusion, so that the spectrum
remains dominated by the 4-wave scattering and multi-
scale, as long as k2⊥M > Dz. When this condition is
violated, the 4-wave scattering becomes relatively small
and the propagation regime becomes nearly linear.
Consider now the calculation of the ray diffusion

coefficient D for a medium with statistically uniform
random inhomogeneities of the refractive index having a
typical relative amplitude of fluctuations fr, a transverse
correlation length L⊥r, and a longitudinal correlation length
L∥r. Let the group and phase velocities of the laser pulse be
comparable. Then, according to the Hamilton equations for
the rays, the transverse wave number typically changes,
during the ray passing a single fluctuation, by
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δk⊥ ∼ k∥frL∥r=L⊥r, for not too small an aspect ratio
L⊥r=L∥r ≳ k⊥=k∥. The respective diffusion coefficient is

D ∼ δk2⊥=L∥r ∼ k2∥f
2
rL∥r=L2⊥r: ð15Þ

To prevent Bose-Einstein condensation, this diffusion
coefficient should exceed the threshold D�. The fluctuation
amplitude needed is then

fr > fr� ∼
L⊥rk⊥0

ffiffiffi
2

p
expð−Λ�=2Þ

k∥
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L∥rL40Λ�

p : ð16Þ

In particular, for a plasma with fluctuations of the electron
concentration δn and a plasma-to-laser frequency ratio
fe ¼ ωe=ω ¼ λ=λe ≪ 1 (where λe ¼ 2πc=ωe), the refrac-
tive index fluctuation amplitude is fr ¼ f2eδn=ð2n0Þ. The
fluctuations δn needed to prevent Bose-Einstein condensate
formation is then

δn
n0

>
δn�
n0

∼
L⊥rλ

2
eð2Λ�Þ3=2 expð−3Λ�=2Þ

ðL∥rλÞ1=2L2⊥0

: ð17Þ

Introducing such fluctuations is key to extending the
laser propagation in a plasma, making possible the ampli-
fication of short laser pulses to unprecedented fluences.
Pulses of durations too short to noticeably move ions, or to
heat the plasma, can be amplified to ultrahigh intensities,
since the ponderomotive and thermal nonlinearities, lead-
ing to self-focusing and filamentation, do not develop.
What limits the propagation and amplification of such short
pulses in the plasma is the relativistic electron nonlinearity,
which comes from the electron mass dependence
of the electron quiver velocity, me ¼ m=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2=c2

p
≈

mð1þ 0.5v2=c2Þ. The normalized quiver energy, averaged

over the laser period, v2=c2 can be expressed in terms of the

laser intensity I as v2=c2 ¼ 4πe2I=ðm2c3ω2Þ. The laser
frequency shift due to the relativistic electron nonlinearity

is ωnl ≈ −v2ω2
e=ð4c2ωÞ ¼ −αI, α ¼ πe2ω2

e=ðm2c3ω3Þ ¼
e2λ3=ð2m2c4λ2eÞ. The critical self-focusing power is then

Pcr ∼ λvg=α ≈ Pλ2e=λ2; P ¼ 2m2c5=e2 ≈ 17 GW;

ð18Þ
which well agrees with the standard value of Pcr for
axisymmetric laser pulses in a plasma [23–25].
The relativistic electron nonlinearity limits the classical

π-pulse regime of backward Raman amplification in a
plasma [20,21,26–29], during which the pulse amplitude
grows proportionally to z and the pulse length contracts
inversely. This ends when the self-focusing length, decreas-
ing in the π-pulse regime like z−2, matches z. Then, the
leading spike growth saturates and the transverse filamen-
tation instability becomes dangerous. High-quality coher-
ent pulses may propagate somewhat further without the
filamentation, but no more than a few times this distance,

until the filamentation instability makes enough exponen-
tiations to grow from small initial imperfections of the wave
fronts. Such a modestly extended propagation allows us to
amplify coherent pulses to higher fluences if not intensities
[28]. However, incoherent pulses can propagate much
longer distances, remaining statistically uniform in the
transverse directions. Since the wave fronts of incoherent
pulses are not smooth at all, the filamentation instability
must be suppressed even before the leading amplified spike
saturates at the intensity [27]

I0 ≈
P
λeλ

�
Ip0
Ibr

�
2=3

; Ibr ¼
πPλ
32λ3e

: ð19Þ

Here, Ip0 is the incident pump pulse intensity, and Ibr is its
value at which wave breaking occurs of the resonant
Langmuir wave, mediating energy transfer from the pump
to the amplified pulse; it is assumed Ibr > Ip0, because the
energy transfer efficiency significantly drops at Ibr ≪ Ip0
[20,26,30,31]. As seen from Eq. (19), the energy com-
pression ratio is I0=Ip0 ≈ 10ðIbr=Ip0Þ1=3λ2e=λ2 > 1000, for
λe=λ > 10. This is also the ratio of the consumed pump
length 2z0 to the compressed pulse length L0 ∼ λe.
Within the propagation length z0, the pulse longitudinal
stretching due to the finite angular spread is δL0∼
z0λ2=ð2L2⊥0Þ. Since z0 ∼ L0I0=Ip0 and L−2⊥0 ∼ I0=Pch0, it
follows that δL0=L0∼5Pcrλ=ð2Pch0λeÞðIp0=IbrÞ1=3. For
Pch0=Pcr > 5λ=ð2λeÞðIp0=IbrÞ1=3, this stretching is small,
so that the π-pulse stage is not much affected by the
finite angular spread. Substitution of L−2⊥0∼Ip0=Pch0∼
λλ−3e ðIp0=IbrÞ2=3Pcr=Pch0 into Eq, (17), and using Eq. (9)
to express Pcr=Pch0 in terms of Λ� gives

δn
n0

>
δn�
n0

∼
23=2 expð−Λ�=2ÞL⊥rλ

1=2

Λ1=2
� L1=2

∥r λe

�
Ip0
Ibr

�
2=3

: ð20Þ

If, for example, L∥r ¼ L⊥r ¼ λe ¼ 25λ, and Ip0 ∼ Ibr, then
δn�=n0 ∼ 15% for Λ� ¼ 2, δn�=n0 ∼ 4% for Λ� ¼ 4, and
δn�=n0 ∼ 1% for Λ� ¼ 6. For λ ¼ 0.3 μm, the intensity I0
is I0 ≈ 0.8 × 1018 W=cm2, and the plasma concentration is
n0 ¼ πmc2ðeλeÞ−2 ≈ 2 × 1019 cm−3. Such a plasma might
be produced by the ionization of dense aerosols with the
droplets as small as a few microns [32,33].
With the filamentation instability suppressed by the

pulse incoherence, backward Raman amplification can
proceed over much larger distances and produce pulses
of much higher fluences, if not intensities, than thought
earlier. The high-energy output can be converted into an
unprecedentedly intense and well-focused coherent laser
pulse by means of backward Raman amplification in a thin
dense plasma layer, as described in the two-step scheme
[22]. The first step output is used as the pump at the second
step. The transverse filamentation instability of the coher-
ent amplified pulse does not pose a serious problem at the
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second step, because of the plasma’s short length and high
density.
In summary, the key findings here are as follows:

(a) Powerful laser pulse scattering on random fluctuations
of the refractive index suppresses the transverse filamenta-
tion instability and enables propagation distances signifi-
cantly exceeding the previous theoretical limit in focusing
Kerr media, and (b) This scattering may now be used
to overcome the transverse filamentation instability, the
hitherto key limitation to producing laser pulses of unprec-
edented high intensities and powers through backward
Raman amplification in a plasma.

This work was supported by DTRA HDTRA1-11-1-
0037, by NSF PHY-1202162, and by the NNSA SSAA
Program under Grant No. DENA0002948.

[1] R. Y. Chiao, E. Garmire, and C. H. Townes, Self-Trapping
of Optical Beams, Phys. Rev. Lett. 13, 479 (1964).

[2] V. I. Talanov, On self-focusing of electromagnetic waves in
nonlinear mediums, Izvestiya Vuzov. Radiofizika 7, 564
(1964).

[3] P. L. Kelley, Self-Focusing of Optical Beams, Phys. Rev.
Lett. 15, 1005 (1965).

[4] V. I. Bespalov and V. I. Talanov, Filamentary structure of
light beams in nonlinear liquids, JETP Lett. 3, 307 (1966).

[5] S. A. Akhmanov, A. P. Sukhorukov, and R. V. Khokhlov,
Self focusing and diffraction of light in a nonlinear medium,
Sov. Phys. Usp. 10, 609 (1968).

[6] V. M. Malkin, On the analytical theory for stationary self-
focusing of radiation, Physica D (Amsterdam) 64, 251
(1993).

[7] G. A. Pasmanik, Self-interaction of incoherent light beams,
Zh. Eksp. Teor. Fiz. 66, 490 (1974) [Sov. Phys. JETP 39,
234 (1974)].

[8] V. A. Aleshkevich, G. D. Kozhoridze, and A. N. Matveev,
Self-action of partly coherent laser radiation, Sov. Phys.
Usp. 34, 777 (1991).

[9] O. Bang, D. Edmundson, and W. Królikowski, Collapse
of Incoherent Light Beams in Inertial Bulk Kerr Media,
Phys. Rev. Lett. 83, 5479 (1999).

[10] V. M. Malkin, Kolmogorov and Nonstationary Spectra of
Optical Turbulence, Phys. Rev. Lett. 76, 4524 (1996).

[11] G. Falkovich and N. Vladimirova, Cascades in nonlocal
turbulence, Phys. Rev. E 91, 041201 (2015).

[12] R. H. Lehmberg and S. P. Obenschain, Use of induced
spatial incoherence for uniform illumination of laser fusion
targets, Opt. Commun. 46, 27 (1983).

[13] Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa,
M. Nakatsuka, and C. Yamanaka, Random phasing of high-
power lasers for uniform target acceleration and plasma-
instability suppression, Phys. Rev. Lett. 53, 1057 (1984).

[14] S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S.
Letzring, and J. M. Soures, Improved laser-beam uniformity

using the angular dispersion of frequency-modulated light,
J. Appl. Phys. 66, 3456 (1989).

[15] D. Wiersma, The physics and applications of random lasers,
Nat. Phys. 4, 359 (2008).

[16] S. Turitsyn, S. Babin, A. El-Taher, P. Harper, D. Churkin,
S. Kablukov, J. Ania-Castn, V. Karalekas, and E. Podivilov,
Random distributed feedback fibre laser, Nat. Photonics 4,
231 (2010).

[17] D. Churkin, I. Kolokolov, E. Podivilov, I. Vatnik, M.
Nikulin, S. Vergeles, I. Terekhov, V. Lebedev, G. Falkovich,
S. Babin, and S. Turitsyn, Wave kinetics of random fibre
lasers, Nat. Commun. 2, 6214 (2015).

[18] M. Maier, W. Kaiser, and J. A. Giordmaine, Intense Light
Bursts in the Stimulated Raman Effect, Phys. Rev. Lett. 17,
1275 (1966).

[19] M. Maier, W. Kaiser, and J. A. Giordmaine, Backward
stimulated Raman scattering, Phys. Rev. 177, 580 (1969).

[20] V. M. Malkin, G. Shvets, and N. J. Fisch, Fast Compression
of Laser Beams to Highly Overcritical Powers, Phys. Rev.
Lett. 82, 4448 (1999).

[21] V. M. Malkin, G. Shvets, and N. J. Fisch, Ultra-powerful
compact amplifiers for short laser pulses, Phys. Plasmas 7,
2232 (2000).

[22] V. M. Malkin and N. J. Fisch, Manipulating ultra-intense
laser pulses in plasmas, Phys. Plasmas 12, 044507 (2005).

[23] A. G. Litvak, Finite-amplitude wave beams in a magneto-
active plasma, Zh. Eksp. Teor. Fiz. 57, 629 (1969)
[Sov. Phys. JETP 30, 344 (1970)].

[24] C. Max, J. Arons, and A. B. Langdon, Self-Modulation
and Self-Focusing of Electromagnetic Waves in Plasmas,
Phys. Rev. Lett. 33, 209 (1974).

[25] G.-Z. Sun, E. Ott, Y. C. Lee, and P. Guzdar, Self-focusing of
short intense pulses in plasmas, Phys. Fluids 30, 526 (1987).

[26] V. M. Malkin and N. J. Fisch, Key plasma parameters for
resonant backward Raman amplification in plasma,
Eur. Phys. J. Spec. Top. 223, 1157 (2014).

[27] V. M. Malkin, Z. Toroker, and N. J. Fisch, Saturation of
the leading spike growth in backward Raman amplifiers,
Phys. Plasmas 21, 093112 (2014).

[28] V. M. Malkin, Z. Toroker, and N. J. Fisch, Exceeding the
leading spike intensity and fluence limits in backward
Raman amplifiers, Phys. Rev. E 90, 063110 (2014).

[29] I. Barth, Z. Toroker, A. A. Balakin, and N. J. Fisch, Beyond
nonlinear saturation of backward Raman amplifiers,
Phys. Rev. E 93, 063210 (2016).

[30] Z. Toroker, V. M. Malkin, and N. J. Fisch, Backward Raman
amplification in the Langmuir wavebreaking regime,
Phys. Plasmas 21, 113110 (2014).

[31] M. Edwards, Z. Toroker, J. Mikhailova, and N. Fisch, The
efficiency of Raman amplification in the wavebreaking
regime, Phys. Plasmas 22, 074501 (2015).

[32] M. J. Hay, E. J. Valeo, and N. J. Fisch, Geometrical Optics
of Dense Aerosols: Forming Dense Plasma Slabs,
Phys. Rev. Lett. 111, 188301 (2013).

[33] D. Ruiz, L. Gunderson, M. Hay, E. Merino, E. Valeo, S.
Zweben, and N. Fisch, Aerodynamic focusing of high-
density aerosols, J. Aerosol Sci. 76, 115 (2014).

PRL 117, 133901 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

23 SEPTEMBER 2016

133901-5

http://dx.doi.org/10.1103/PhysRevLett.13.479
http://dx.doi.org/10.1103/PhysRevLett.15.1005
http://dx.doi.org/10.1103/PhysRevLett.15.1005
http://dx.doi.org/10.1070/PU1968v010n05ABEH005849
http://dx.doi.org/10.1016/0167-2789(93)90258-3
http://dx.doi.org/10.1016/0167-2789(93)90258-3
http://dx.doi.org/10.1070/PU1991v034n09ABEH002472
http://dx.doi.org/10.1070/PU1991v034n09ABEH002472
http://dx.doi.org/10.1103/PhysRevLett.83.5479
http://dx.doi.org/10.1103/PhysRevLett.76.4524
http://dx.doi.org/10.1103/PhysRevE.91.041201
http://dx.doi.org/10.1016/0030-4018(83)90024-X
http://dx.doi.org/10.1103/PhysRevLett.53.1057
http://dx.doi.org/10.1063/1.344101
http://dx.doi.org/10.1038/nphys971
http://dx.doi.org/10.1038/nphoton.2010.4
http://dx.doi.org/10.1038/nphoton.2010.4
http://dx.doi.org/10.1038/ncomms7214
http://dx.doi.org/10.1103/PhysRevLett.17.1275
http://dx.doi.org/10.1103/PhysRevLett.17.1275
http://dx.doi.org/10.1103/PhysRev.177.580
http://dx.doi.org/10.1103/PhysRevLett.82.4448
http://dx.doi.org/10.1103/PhysRevLett.82.4448
http://dx.doi.org/10.1063/1.874051
http://dx.doi.org/10.1063/1.874051
http://dx.doi.org/10.1063/1.1881533
http://dx.doi.org/10.1103/PhysRevLett.33.209
http://dx.doi.org/10.1063/1.866349
http://dx.doi.org/10.1140/epjst/e2014-02168-0
http://dx.doi.org/10.1063/1.4896347
http://dx.doi.org/10.1103/PhysRevE.90.063110
http://dx.doi.org/10.1103/PhysRevE.93.063210
http://dx.doi.org/10.1063/1.4902362
http://dx.doi.org/10.1063/1.4926514
http://dx.doi.org/10.1103/PhysRevLett.111.188301
http://dx.doi.org/10.1016/j.jaerosci.2014.05.010

