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Centrifugal instability, which stems from a difference between the azimuthal angular drift velocity

of ions and electrons, is studied in the limit of fast rotation for which ions can rotate up to twice as

fast as electrons. As the angular velocity approaches the so-called Brillouin limit, the growth rate for

the centrifugal instability in a collisionless solid-body rotating plasma increases markedly and is pro-

portional to the azimuthal mode number. For large wavenumbers, electron inertia effects set in and

lead to a cut-off. Interestingly, conditions for the onset of this instability appear to overlap with the

operating conditions envisioned for plasma mass separation devices. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4994546]

I. INTRODUCTION

Crossed field or E� B configurations, where an electric

field E exists perpendicularly to the magnetic field B, are

found across a large variety of environments including space

physics,1 tokamak edge region,2 and laboratory plasma sour-

ces.3 A characteristic feature of crossed field configurations is

the associated E� B drift. In laboratory plasmas, this drift

can be exploited to fulfill a particular role by adequately tai-

loring the field topology and strength. For example, the elec-

tron E� B drift is key in the efficiency of Hall thrusters,4,5

Penning plasma sources, and magnetron discharges.3 Another

application of crossed field configurations is plasma rotation

control, where the field orientation is chosen so that charged

particles drift azimuthally. Plasma rotation holds promise for

mass separation applications (see e.g., Refs. 6–12) and has

been shown to yield unusual heat capacity effects.13 In addi-

tion, plasma rotation has recently been suggested to compen-

sate the vertical drift associated with the toroidal magnetic

field in a torus.14 However, experiments often reveal that the

perpendicular transport in crossed field configurations exceeds

significantly classical predictions, which in turn impedes the

performances of these devices. This discrepancy is generally

believed to stem from instabilities and turbulence.15–19

Simon20 and Hoh21 independently demonstrated that a

magnetized plasma with transverse electric field can become

unstable in the presence of ion-neutral collisions. In what is

now known as the Simon-Hoh instability (SHI), both ions

and electrons are magnetized. The SHI stems from a differ-

ence between ions and electrons drift velocity owing to the

larger effect of neutrals on ions. Ions are said to drag behind

electrons. This leads to charge separation and the subsequent

formation of an electric field along the E� B direction. For

certain density profiles, this perturbed electric field can cause

an initial density perturbation to grow. Simon and Hoh

showed that this configuration is unstable if $/ � $n < 0,

where / and n are the equilibrium plasma potential and den-

sity, respectively.

A variation on the SHI has been found to occur in colli-

sionless plasmas where electrons are magnetized but ions are

not.22 Although it stems in this regime from the weak mag-

netization of ions and not from collisions, this configuration

also leads to a difference in drift velocity along the E� B

direction. Similar to the SHI, this configuration is unstable

for $/ � $n < 0.22–24 Strictly speaking, this instability

requires a drift velocity larger than the square of the ion

sound speed divided by four times the electron diamagnetic

velocity.19,25,26 Because it shares the same instability mecha-

nism as the SHI, namely a difference in the drift velocity

between ions and electrons, this instability is referred to as

the modified Simon-Hoh instability (MHSI). Note however

that the notion of drift velocity for ions is here ill defined

since ions are unmagnetised. The MHSI is more generally

referred to as an anti-drift mode19,26,27 because the real fre-

quency of this mode is inversely proportional to the diamag-

netic frequency.

A third mechanism leading to a difference between the

ion and the electron drift velocity is centrifugal forces in a

fully-ionized magnetized plasma column rotating under a

radial electric field. This instability mechanism was first

uncovered by Rosenbluth et al.28 for a slowly rotating plas-

mas and is a particular case of gravitational or flute instabil-

ity.29 Chen then confirmed and extended these results using

a two-fluid model.30 Following these early contributions, the

influence on stability of a variety of parameters including

boundary conditions,31,32 electric field non-uniformity,32–35

and plasma density36 was studied. In contrast, the regime of

fast plasma rotation appears to have received limited atten-

tion. Although Chen considered this question,30 his results

are limited to regimes where j-ij=Xi � 1, with -i the ion

equilibrium angular frequency and Xi the ion cyclotron fre-

quency. Also, we note that centrifugal instabilities with

j-j=Xi � Oð1Þ were more recently studied in a rotating vac-

uum arc centrifuge,37 but the radial electric field is in that

case negative.38

Since centrifugal instabilities stem from differences in

azimuthal drift velocity, they can occur with both positive

and negative radial electric field.30 Nonetheless, the configu-

ration is asymmetrical since centrifugal forces speed up ion
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rotation for a positive radial electric field, while they slow

down ion rotation for a negative electric field. For a given

electric field amplitude, the ion angular frequency j-ij is

therefore larger in the case of a positive electric field. For this

reason, positive fields appear more promising for applications

where fast rotation is desirable, such as mass separation.

The slow Brillouin mode,39,40 which describes the colli-

sionless rigid-rotor equilibrium solution of a plasma rotating

under a positive radial electric field, indicates that -=Xi ¼
Oð1Þ for sufficiently large radial electric field. For the

Brillouin limit, which corresponds to the maximum electric

field for which ions are still radially confined, one finds

-i ¼ 2-e ¼ �Xi=2. Such angular frequencies are well

beyond the rotation speed regimes studied by Chen.30 To the

extent that centrifugal instability stems from a difference in

the equilibrium azimuthal velocity, and that this difference

grows rapidly as the rotation gets faster and approaches the

Brillouin limit, fast rotation is expected to alter the character-

istics of this instability.

In this paper, we study the stability of a magnetized

plasma column rotating under a positive radial electric field

with an eye on the fast rotation regime. In this study, fast

rotation is defined as j-i � -ej=Xi � Oð1Þ, that is to say,

when the slow Brillouin solution differs significantly from

the massless limit. In Sec. II, the equilibrium rotation profiles

are derived using a two-fluid formalism, and the differences

between Simon-Hoh and centrifugal instabilities are

highlighted. In the process, the Brillouin modes modified by

collisions are recovered. In Sec. III, the dispersion relation

for the centrifugal instability in cylindrical geometry is pre-

sented and discussed. In Sec. IV, theoretical findings are

used to highlight experiments where this instability might be

found. In Sec. V, the main findings are summarized.

II. EQUILIBRIUM PROFILES

Consider a radially bounded plasma in axisymmetric

geometry immersed in an axial magnetic field B ¼ B0ẑ. Let

us assume the magnetic field constant across the plasma

radius. Furthermore, the density and potential depend only

on the radial coordinate r. Adopting a two-fluid formalism,

the governing equations are the momentum equation for ions

mini
@vi

@t
þ vi �$vi

� �
¼ eni �$/þ vi�Bð Þ �mini�ivi; (1)

the momentum equation for electrons

0 ¼ �eneð�$/þ ve � BÞ � kbTe$ne � mene�eve; (2)

and the continuity equation for each species

@nj

@t
þ $ � njvjð Þ ¼ 0: (3)

Here j ¼ i; e denotes either ions or electrons, and �e and �i

are the electron-neutral and ion-neutral collision frequencies,

respectively. Ions are assumed to be cold (Ti¼ 0), electron-

neutral and ion-neutral collisions are supposed to dominate

over Coulomb collisions, and electron inertia is neglected.

In the small azimuthal velocity limit, the convection

term in the ion momentum equation can be neglected, and

one recovers the classic formula

vih ¼
1

1þ �2
i

X2
i

/0

B0

; (4)

where a prime denotes @=@r, and Xi ¼ eB0=mi is the ion

cyclotron frequency. A similar expression is obtained for the

electrons when neglecting the diamagnetic drift velocity

resulting from the electron pressure term. In this limit, the

classical Simon-Hoh20,21 instability arises when /0 � n0 < 0,

granted that the collisionality is such that Xe=�e � 1 and

Xi=�i � 1. This instability stems from the larger azimuthal

velocity of electrons, veh � /0=B0, as compared to the one of

the ions defined in Eq. (4).

For large ion velocities, the convection term can no lon-

ger be neglected, and plugging the h component into the r
component of Eq. (1) gives the following equation for the

azimuthal ion velocity:

v2
ih
þ vihrXi 1þ �i

Xi

� �2 1

1þ vih

rXi
þ

v0ih
Xi

� �i

Xi

� �2
0
BBB@

vih

rXi

� �2

þ
v0ih
Xi

1þ
v0ih
Xi

� �
�

vihv
00
ih

X2
i

1þ vih

rXi
þ

v0ih
Xi

� �3

1
CCCA� rXi

/0

B0

¼ 0: (5)

In Eq. (5), the second and third terms inside the parentheses

are the collision term and the vri
v0ri

component of the convec-

tive derivative, respectively. Bringing these terms together,

Eq. (5) can be rewritten in a more compact form

v2
ih
þ vihrXi 1þ �i

Xi

� �2 1þ
v0ih
Xi
þ vih

rXi
2þ 2

v0ih
Xi
þ

rv00ih
Xi

� �

1þ vih

rXi
þ

v0ih
Xi

� �3

0
BBB@

1
CCCA

� rXi
/0

B0

¼ 0: (6)

For low ion collisionality regimes (�i=Xi � 1), Eq. (6)

reduces to a second order equation for vih . Its solutions are

the slow and fast Brillouin modes39

vih ¼ �r
Xi

2
17

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

/0

rXiB0

s0
@

1
A: (7)

Introducing p ¼ �4/0=ðrXiB0Þ, the slow mode rotation

speedup is

ii ¼
vih

/0=B0

¼ 2

p
1�

ffiffiffiffiffiffiffiffiffiffiffi
1� p

p� �
; (8)

and ii ¼ 2 for the Brillouin limit p¼ 1.
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When collisionality is not negligible, Eq. (6) can be fur-

ther simplified if assuming solid body rotation, that is to say

vih ¼ -ir; (9a)

-0i ¼ -00i ¼ 0: (9b)

For this simple rotation profile, Eq. (6) becomes

-2
i þ -iXi 1þ �i

Xi

� �2 1þ -i=Xi

1þ 2-i=Xið Þ2

 !
� Xi

/0

rB0

¼ 0;

(10)

and an exact solution for H ¼ -i=Xi can be found in the

form of the roots of the fourth order polynomial equation

4H4 þ 8H3 þH2 5þ �i

Xi

� �2

� 4
/0

rXiB0

" #

þH 1þ �i

Xi

� �2

� 4
/0

rXiB0

" #
� /0

rB0Xi
¼ 0: (11)

Using the change of variable a ¼ �ð1þ 2HÞXi=�i, one

recovers the quartic equation40

a4 þ 1� Xi

�i

� �2

� 4
/0Xi

r�2
i B0

" #
a2 � Xi

�i

� �2

¼ 0: (12)

The solution H ¼ vih=ðrXiÞ is plotted in Fig. 1 as a function

of the radial electric field (/0 < 0) for various �i=Xi values.

Although collisions slow down the angular frequency of the

slow rotation mode, jvih j remains larger than j/0=B0j as long

as �i=Xi 	 0:3.

Looking now at electrons, one gets j/0=ðrXeB0Þj � 1

since mi=me � 1836. Centrifugal effects are therefore

negligible in first approximation. As a matter of fact, for

4/0=ðrXiB0Þ � �1, i.e., the maximum value for ion confine-

ment in a noncollisional plasma, one gets �/0=ðrXeB0Þ
	 1:5 10�4. Eq. (2) then yields

veh ¼
1

1þ �e

Xe

� �2

/0

B0

� kBTe

eB0

n0e
ne

� �

� /0

B0

� kBTe

eB0

n0e
ne
¼ vE�B þ v?; (13)

where we have used the ordering �e=Xe � 1. Here vE�B and

v? are, respectively, the E�B drift velocity and the electron

diamagnetic drift velocity.

Neglecting in the first approximation the effects of elec-

tron pressure and collisions, electrons and ions display dif-

ferent azimuthal velocities as a result of the larger effect of

centrifugal forces on ions. Quantitatively, vih 	 veh 	 0, and

vih � veh

rXi
¼ � 1

2
1� p

2
�

ffiffiffiffiffiffiffiffiffiffiffi
1� p

p� �
: (14)

In Eq. (14), jvE�Bj � jv?j has been assumed, and collisions

have been neglected. For p! 0

vih � veh

rXi
� � veh

rXi

� �2

� 1; (15)

which is the regime considered by Chen.30 In contrast, for

the Brillouin limit p¼ 1, one gets

vih � veh

Xir
¼ veh

Xir
¼ � 1

4
; (16)

so that the ion azimuthal velocity is twice as large as the

electron azimuthal velocity.

As opposed to the classical Simon-Hoh instability (see

Table I), charged particles orbit here in the clockwise direc-

tion, and the amplitude of the ion azimuthal velocity is larger

than the one of the electrons. However, since both the rota-

tion direction and the azimuthal velocity ordering are

reversed, this configuration is also unstable for n0 < 0. The

difference in azimuthal velocities causes a space charge sep-

aration between ion and electron density perturbations in the

azimuthal direction, therefore producing a positive azimuthal

electric field Eh. For n0 < 0, the resulting Eh � B enhances

the density perturbation.

III. PERTURBATION IN CYLINDRICAL GEOMETRY

The dispersion relation for the centrifugal instability

in the fast rotation regime is derived, in cylindrical geome-

try, in Appendix A. In the following, t0 indicates the

FIG. 1. Normalized angular frequencies H ¼ vih=ðrXiÞ of the two rotation

modes for the solid body rotation case as a function of p=4 ¼ �/0=ðrXiB0Þ
for different collisionality regimes: �i=Xi ¼ 0 (black) and �i=Xi ¼ 0:01; 0:1,

and 1 (red). The massless limit (p! 0) vih ¼ /0=B0 is plotted in green.

TABLE I. Comparison of the main features of the classical Simon-Hoh

instability20,21 and of the fast rotation centrifugal instability described in this
study.

Classical Simon-Hoh

instability

Fast rotation centrifugal

instability

/0 Positive Negative

Rotation direction Anti-clockwise Clockwise

Fastest species Electrons Ions

n0 for instability Positive Positive
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equilibrium value of variable t, while ~t denotes the pertur-

bative part of t. Variables used throughout the derivation

are given in Table II. Under the hypotheses that (i) ions are

cold (Ti � 0), so that finite Larmor radius stabilization

effects30,41 are not considered, (ii) collisions are negligible

(�e ¼ �i ¼ 0), (iii) equilibrium rotation profile is not

sheared (-00 ¼ 0), and (iv) kz � 0, the perturbed densities

write:

~ne

n0

¼ v
x?

x� xE
; (17a)

~ni

n0

¼ v
c2

s

r2 x� xBð Þ
m2 x� xBð Þ � m

ffiffiffiffiffiffiffiffiffiffiffi
1� p
p

Xik

x� xBð Þ2 � 1� pð ÞX2
i

: (17b)

Here cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBTe=mi

p
is the ion sound speed, v ¼ e~/=ðkBTeÞ

is the normalized perturbed potential, k ¼ rjn00=n0j is the

dimensionless density gradient scale-length, and p ¼ �4/00=
ðrXiB0Þ is the Brillouin parameter. Invoking quasi-neutrality

(~ne ¼ ~ni), one gets a cubic equation �x3 þ a2 �x2 þ a1 �x þ
a0 ¼ 0 for the normalized complex frequency �x ¼ x=Xi

¼ �xr þ i�c, where the coefficients are real and equal to

a2 ¼ mð3kf� 2Þ=ð2kÞ; (18a)

a1 ¼ f 4kð1� fÞ þ m2ð3kfþ f� 4Þ
	 


=ð4kÞ; (18b)

a0 ¼ mf2 2kð1� fÞ þ m2ðfkþ f� 2Þ
	 


=ð8kÞ; (18c)

with �x? ¼ x?=Xi and f ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffi
1� p
p

. Stability is deter-

mined by the positiveness of the discriminant

D ¼ f2

16k4
64 f� 1ð Þ3fk4 þ m6f2 1� f2k

� �h
þ2m4 f� 1ð Þk 8þ f 3fk 2f� 3ð Þ � 4½ 
ð Þ

�m2 f� 1ð Þ2k2 3fk f 9kþ 16ð Þ � 24½ 
 � 16ð Þ
i

(19)

of this cubic equation. Stable and unstable regions obtained

based on this criteria are plotted in Fig. 2 as a function of a

function of the Brillouin parameter p and the dimensionless

density gradient scale-length k.

A. Asymptotic regimes

Various asymptotic regimes can be identified for Eq.

(18). For p¼ 0, xB ¼ xE ¼ 0, quasi-neutrality reduces to

x? ¼ c2
s

r2

m2x� mkXi

x2 � X2
i

; (20)

which corresponds to the stable anti-drift mode27

x ¼ m2c2
s

r2x?
: (21)

Therefore, no instability exists for p¼ 0. Expanding now the

solutions of Eq. (18) to the first order in p, the two complex

conjugate roots write

�x ¼ � m2 � kð Þ6i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � kð Þk

ph i
p

4m
þO p2

� �
; (22)

which is unstable for m2 > k granted that p> 0, as seen in

Fig. 2. The growth rate in the slow rotation limit (p� 1)

TABLE II. Main dimensional and dimensionless variables used.

Variable Notation Definition

Ion gyro-frequency Xi eB0=mi

Ion angular velocity -i vih=r

Ion sound speed cs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBTe=mi

p
Electron diamagnetic angular

frequency

x? �ðm=rÞðn00=n0ÞðkBTeÞðeB0Þ

Brillouin angular frequency xB m-i

E� B angular frequency xE ðm=rÞð/00=B0Þ
Perturbation frequency xr <ðxÞ
Perturbation growth-rate c =ðxÞ
Perturbation azimuthal mode number m khr

Brillouin parameter p �4/00=ðrXiB0Þ
Normalized ion angular velocity f 1�

ffiffiffiffiffiffiffiffiffiffiffi
1� p
p

Normalized perturbed potential v e~/=ðkBTeÞ
Normalized density gradient

scale-length

k rjn00=n0j

FIG. 2. Stability diagram as a function of the Brillouin parameter

p ¼ �4/00=ðrXiB0Þ and the dimensionless density gradient scale-length

k ¼ rjn00=n0j (see Table II). The green shaded region is the stable region.

The dashed blue curve depicts the small p, m� k limit given by Eq. (27).

The dashed red curve depicts the mð�x � �xBÞ � k limit given by Eq. (33).

082102-4 Gueroult, Rax, and Fisch Phys. Plasmas 24, 082102 (2017)



�c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � kð Þk

p
4m

p !
m2�k

ffiffiffi
k
p

4
p (23)

is therefore proportional to p and independent of the mode

number m for m2 � k. In contrast, the real frequency is pro-

portional to both m and p, and writes

xr ¼ xB þ
X2

i

4k2
hc2

s

x?p: (24)

Although the first order expansion suggests an instability

for p> 0, Taylor expanding the discriminant in Eq. (19) for

small p

D ¼ D2p2 þD3p3 þD4p4 þOðp5Þ; (25)

with

D2 ¼ �m2ðm2 � kÞ=ð4k3Þ; (26a)

D3 ¼ 3m4 � 8k3 þ m2kð9k� 2Þ
	 


=ð16k3Þ; (26b)

D4 ¼ ðm6 þ 96k4 þ 2m4kð9kþ 2Þ
þm2k2 4� 3kð9kþ 52Þ½ 
Þ=ð256k4Þ; (26c)

reveals that the instability ceases for p > ps, with

ps !
m�k

8
ffiffiffi
k
p

m
1� 3

ffiffiffi
k
p

m

� �
: (27)

The solution of Eq. (27) is plotted in the dashed blue in Fig.

2. For m¼ 10 and k¼ 1, this gives ps � 0:56, which is close

to p¼ 0.52 for which the transition is observed in Fig. 2(e).

On the other hand, for fast rotation at the Brillouin limit,

i. e. p¼ 1, quasi-neutrality writes

x?

x� xE
¼ m2c2

s

x� xBð Þ2
; (28)

and

x1;2 ¼ xB þ
c2

s k2
h

2x?
6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4

c2
s k2

h

x?

� �2

þ c2
s k2

h

x?
xB � xEð Þ

s
; (29)

or, equivalently

�x1;2 ¼
m

2k
1� kð Þ 16

ffiffiffiffiffiffiffiffiffiffiffi
1

1� k

r" #
: (30)

Here we have used the relation �xB ¼ 2�xE ¼ �m=2, which

is valid for p¼ 1. In this limit, an instability is therefore

found for any mode number m as long as k > 1, or

xB � xE < �
c2

s k2
h

4x?
; (31)

and the growth rate is

�c ¼ m

2

ffiffiffiffiffiffiffiffiffiffiffi
k� 1

k2

r
!
k�1

m

2
ffiffiffi
k
p : (32)

For fast rotation but p 6¼ 1, a more general result can be

obtained for k� mjð�x � �xBÞj. In this limit, the complex

frequency is the solution of the equation �x2 þ b1 �x þ b0 ¼ 0

(see Appendix A), with

b1 ¼ mðf� k�1Þ; (33a)

b0 ¼ m2fðfkþ f� 2Þ=ð4kÞ � ðf� 1Þ2: (33b)

The instability threshold obtained from this asymptotic

regime is plotted in the dashed red in Fig. 2 and agrees well,

as expected, with the general solution for large p and m� k
(i. e. kh � kne). In this limit, the growth rate is

�c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 1� ffiffi

s
p� �2

k� 1

h i
� 4sk2

r
2k

!
k�1

m

2
ffiffiffi
k
p 1�

ffiffi
s
p� �

;

(34)

where s ¼ 1� p, which is consistent with Eq. (32). In con-

trast with the slow rotation limit given by Eq. (23), the

growth rate for fast rotation is proportional to the azimuthal

mode number m.

B. General solution

The general stability picture obtained from the full solu-

tion is depicted in Fig. 2. For low azimuthal mode number

m, stability is only found for large enough p for k < 1, and

small enough p for large k [see Figs. 2(a)–2(c)]. For larger

m, a stable region forms for intermediate p [see Figs.

2(d)–2(f)], between the slow and fast asymptotic regimes

given by Eqs. (27) and (33), respectively.

Figure 3 shows the normalized real frequency �xr and

the growth-rate �c as obtained by solving numerically the

cubic equation defined by Eq. (18). Although instability is

found over a large fraction of the ðp; kÞ parameter space

studied, the growth-rate c of this instability varies greatly

over this region. Overall, the growth rate is found to grow

with p. This is particularly true for large mode numbers [see

e.g., Fig. 3(f)] where a strong increase of the growth-rate is

observed as p approaches 1. This feature is consistent with

the 1�
ffiffiffiffiffiffiffiffiffiffiffi
1� p
p

scaling found for the fast rotation asymptotic

regime given in Eq. (34) and is particularly visible in Fig. 4

for m � 3 and p � 0:9. Intuitively, the increase of c with p is

consistent with the greater difference between electrons and

ions equilibrium azimuthal velocities veh and vih , as shown

by Eq. (14). In addition, Fig. 4 confirms that the growth rate

at low p is independent of m, whereas it scales with m at

large p to reach �c ¼ 0:25 m for p¼ 1. These results are con-

sistent with the slow and fast rotation asymptotic solutions

given, respectively, by Eqs. (23) and (32).

For completeness, the growth rate c is plotted as a func-

tion of the mode number m ¼ khr in Fig. 5. For a weak den-

sity gradient, for example k ¼ 0:5 as depicted in Fig. 5(a),

the growth rate is small and decreases rapidly with m. The

threshold mode number past which a decrease of c is

observed decreases with p. For a stronger density gradient,

for example, k¼ 3 shown in Fig. 5(b), the growth rate for

low m is significantly larger. Furthermore, the difference
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between fast and slow rotation regimes is clearly visible in

Fig. 5. Two different behaviours are observed depending on

the value of p compared to the instability threshold obtained

in Eq. (33) for mð�x � �xBÞ � k. As shown in the dashed red

in Fig. 2, this threshold is about 0.82 for k¼ 3. For p smaller

than 0.82, c is found to decrease with m, and a cut-off is found

at large m. On the other hand, for p larger than 0.82, c grows

linearly with m, and the slope grows with p. This dependency

is once again consistent with the limit given by Eq. (34).

Although c appears to grow indefinitely with m in Fig.

5(b), accounting for electron inertia leads to a cut-off of

these modes at high m. As a matter of fact, for large m the

frequency is sufficiently large to invalidate the zero electron

inertia assumption used up until now. In this case, Eq. (17a)

has to be replaced by

~ne

n0

¼ v
x? þ k2

hq
2
e x� xEð Þ

x� xE
(35)

with qe ¼ mec2
s=ðmiX

2
i Þ the electron Larmor radius.

Assuming quasi-neutrality, the complex frequency x is then

a solution of a fourth-order equation with real coefficients.

Solving this equation shows that an electron inertia results in

a cut-off of the instability at high m values, as illustrated in

Fig. 6. Nevertheless, there exist a range of azimuthal mode

numbers for which the growth rate can be, in the limit of fast

rotation, as large as a few ion cyclotron frequencies. This is

expected to be particularly true for heavy ions since electron

inertia effects will set in for a comparatively larger mode

number.

In light of these results, it appears that the fastest grow-

ing instability is found for p larger than the threshold value

depicted by the dashed red in Fig. 2. In this regime, the

growth-rate is shown to be as large as a few ion cyclotron

frequencies and to grow with both p and m until xr is large

enough for electron inertia to become important.

IV. CONFIGURATIONS SUITABLE FOR THIS
INSTABILITY

Although a full literature review is beyond the scope of

this study, it is informative to highlight which operating con-

ditions are likely to favor the onset of this instability. A brief

survey of the literature relevant to plasma mass separation

suggests that the fast centrifugal instability might develop in

these devices.

Table III summarizes the operating parameters for three

specific experiments. The first experiment42 is a low pressure

(0.16 mTorr), large helicon device operating in pure argon or

pure xenon. The second experiment43 is a smaller helicon

device operating mainly in argon (with a small fraction of

krypton) at slightly higher pressure (�5 mTorr). The third

one44 is an ECR plasma operating in argon at 5 10�2 mTorr.

FIG. 3. Normalized frequency �x ¼ x=Xi [(a), (c), and (e)] and growth-rate
�c ¼ c=Xi [(b), (d), and (f)] as a function of the Brillouin parameter

p ¼ �4/00=ðrXiB0Þ and the dimensionless density gradient scale-length

k ¼ rjn00=n0j (see Table II) for three mode numbers. Only the domain where
�c > 0 is plotted.

FIG. 4. Normalized growth rate �c=m ¼ c=ðmXiÞ as a function of the

Brillouin parameter p ¼ �4/00=ðrXiB0Þ for various mode numbers. The nor-

malized density gradient used here is k¼ 2.
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All three devices are linear machines biased by means of

concentric electrodes positioned at one or both ends of the

device. Note however that the conditions listed in Table III

are not necessarily found at the same spatial location, for

example, maximum density and potential gradient are not

necessarily collocated.

For all three experiments, the ion-neutral collision fre-

quency is small compared to the ion gyro-frequency, and the

ion temperature is negligible compared to the electron tem-

perature. Consequently, the model derived in this study is

expected to be valid, and centrifugal forces are expected to

lead to different azimuthal velocities for electron and ions

[see Eq. (14)], granted �/00=ðrB0XiÞ ¼ p=4 is nonnegligible.

On the basis of the equilibrium density and potential

profiles, the equivalent ðp; kÞ parameters are computed for a

set of representative biases for each experiment. The corre-

sponding results are plotted in Fig. 7, along with the instabil-

ity threshold derived for the m� k regime and given by Eq.

(33). One immediately notices that some local operating con-

ditions in the ðp; kÞ domain exceed the threshold for instabil-

ity. This is particularly true for the two biased helicon

experiments (plus signs and open triangle symbols). Even for

the ECR experiment (open circle symbols), operating condi-

tions are locally found to approach the instability threshold.

FIG. 6. Growth rate as a function of m for a dimensionless density gradient

scale-length k ¼ rjn00=n0j ¼ 3 and various values of the Brillouin parameter

p ¼ �4/00=ðrXiB0Þ. Dashed lines represent the solution accounting for elec-

tron inertia, while solid lines are from the cubic equation defined by Eq.

(18). mi=me ¼ 1836.

FIG. 5. Growth rate for as a function of m for a dimensionless density gradi-

ent scale-length k ¼ rjn00=n0j ¼ 0:5 [(a) and k ¼ 3 (b)] and different values

of the Brillouin parameter p ¼ �4/00=ðrXiB0Þ. Differences between the

slow (blue and red) and fast rotation (yellow and purple) regimes are clearly

visible through the evolution at large m.

TABLE III. Relevant parameters for three experiments of interest.

Large Helicon device42 PMFX43 ECR plasma44

�i=Xi 3 10�4 10�2 10�4

maxjn00=n0j (m�1) 60 60 60

maxj/00j (V m�1) 1500 500 300

B0 (kG) 1.2 	 1 1–3

mi (amu) 40� 131 40 40

Te (eV) 3 3 5

Typical bias applied (V) up to 250 20 20

Discharge radius (cm) 20 10 10

FIG. 7. Inferred ðp; kÞ operating conditions for three biasing experiments:

large helicon42 (open triangles), smaller helicon in gas mixture43 (plus

signs), and ECR44 (open circles). The various colors depict different biasing

conditions. The dashed red line represents the instability threshold derived

in the m� k regime as given by Eq. (33). The largest growth rates are found

to the right of this line. Abscissa is normalized by the ion atomic mass.
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Although the proximity of the operating conditions to

the instability threshold in these three experiments might

appear surprising at first, fluctuations have actually been

reported in the ECR experiment,44,45 and also in unbiased

helicon discharges.46 Interestingly, the amplitude of the fluc-

tuations in the ECR experiment increases with the strength

of the positive radial electric field imposed at the electro-

des,45 which is consistent with the fact that the negative

potential gradient case (blue open circles) appears, on aver-

age, closer to the instability threshold than both the zero and

negative gradient cases (green and purple open circles,

respectively) in Fig. 7.

Additionally, various explanations can be given to jus-

tify the fact that centrifugal instabilities might not be

observed experimentally even if local operating conditions

in the ðp; kÞ space exceed the instability threshold derived in

this work. First, the derivation proposed in this paper relies

on local approximation, whereas ions will have a finite radial

excursion in the experiments discussed in this section. For

this reason, a refined instability threshold taking into consid-

eration these non-local effects would have to be derived to

properly assert the stability of these configurations. Second,

as stated earlier, the experimental ðp; kÞ operating conditions

used in Fig. 7 are not necessary collocated, so that the fast

rotation might be found in the weak density gradient region

and vice-versa. Finally, the rotation in these devices displays

shear, that is to say, @-=@r 6¼ 0. Sheared rotation can lead to

a different kind of instability, namely Kelvin-Helmholtz

instability,35,46,47 which could then compete with and possi-

bly mask the fast rotation instability discussed in this paper.

V. SUMMARY AND CONCLUSIONS

In this paper, the centrifugal instability resulting from

a difference between the azimuthal drift velocity of ions

and electrons is considered in the limit of fast rotation. In

this study, fast rotation means that the difference between

the ion and electron equilibrium angular velocity is not

negligible compared to the electron equilibrium angular

velocity.

By deriving the appropriate dispersion relation in cylin-

drical geometry, the stability of a collisionless solid body

rotating plasma with cold ions is studied as a function of the

density gradient length k�1
ne and the Brillouin parameter p,

which is defined as four times the ratio between the E� B

angular drift velocity and the ion cyclotron frequency Xi.

The growth rate for this instability is found to be maximum

when approaching the Brillouin limit p¼ 1, which corre-

sponds to the maximum difference between the ion and

electron angular frequency. For these conditions and

kh � kne, the growth rate c is proportional to the azimuthal

mode number m and to 1�
ffiffiffiffiffiffiffiffiffiffiffi
1� p
p

, and c=ðmXiÞ
¼ Oð1Þ for p¼ 1. For large wavenumbers, electron inertia

is shown to lead to a cut-off. However, the growth rate of a

few ion cyclotron frequencies is observed before electron

inertia sets in.

A brief survey of the literature, in particular of the typi-

cal operating conditions in experiments relevant to plasma

mass separation, reveals that this instability is likely to

develop in these devices. However, detailed instability char-

acterization will require extending the model derived here to

account for non-local effects. In addition, to the extent that

rotating plasmas often features shear, Kelvin-Helmholtz

instability could compete in these devices with the fast cen-

trifugal instability studied here.

Since centrifugal effects and Brillouin modes depend

strongly on particle mass, an interesting extension of this

work will consist in asserting whether this instability mecha-

nism could be used to produce differential transport proper-

ties in a multi-ion species plasma.
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APPENDIX: DISPERSION RELATION FOR THE FAST
CENTRIFUGAL INSTABILITY

Introducing

xB ¼ k � vi0 ¼
m

r
vih ¼ m-0; (A1a)

x? ¼ k � v? ¼ �m

r

kBTe

eB0

n0e
ne
¼ �m

r
kne

kBTe

eB0

; (A1b)

xE ¼ k � vE�B ¼
m

r

/00
B0

; (A1c)

where subscript 0 indicates equilibrium quantities, and look-

ing for a perturbation of the form

~/ ¼ /1ðrÞ exp mhþ kzz� xt½ 
;
~vi ¼ vi1ðrÞ exp mhþ kzz� xt½ 
;
~ni ¼ n0ðrÞgiðrÞ mhþ kzz� xt½ 
; (A2)

the linearized ion momentum equation writes

�i x� xBð Þ~vir � 2-0 þ Xið Þ~vih ¼ �Xi

~/
0

B0

; (A3a)

Xþ 2-0 þ r-00
� �

~vir � i x� xBð Þ~vih ¼ �iXi
m

r

~/
B0

; (A3b)

�i x� xBð Þ~viz ¼ �iXikz

~/
B0

; (A3c)

where 0 denotes @=@r. The linearized ion continuity equation

yields

�ixgi þ ~v0ir þ
~vir

r
þ i

m

r
~vih ;

þikz~vizþ~vir

n00
n0

þ i
m

r
vihgi ¼ 0: (A4)

Plugging in the ion velocity obtained from Eq. (A3), and

making use of the local approximation ~/
00 ¼ ~/

0 ¼ 0 and

~n00 ¼ ~n0 ¼ 0, it rewrites
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gi ¼ v
c2

s

r2 x� xBð Þ
kzrð Þ2

x� xBð Þ
þ

m2 x� xBð Þ þ m r-00 � Xi þ 2-0ð Þk
	 


x� xBð Þ2 � 2-0 þ Xið Þ 2-0 þ r-00 þ Xi

� �
2
64

þ
m Xi þ 2-0ð Þ r-00 5 Xþ 2-0½ 
 þ 2r-00

� �
þ r2-000 Xi þ 2-0ð Þ

	 

x� xBð Þ2 � X2

i � 4-0 Xi þ -0ð Þ � r-00 Xi þ 2-0ð Þ
h i2

3
75; (A5)

with k ¼ rjn00=n0j; c2
s ¼ kBTe=mi, and v ¼ e~/=ðkBTeÞ. For

solid body rotation equilibrium (-000 ¼ -00 ¼ 0), the last term

in the bracket on the right hand side in Eq. (A5) cancels out,

and the ion density–potential relation writes

gi ¼ v
c2

s

r2 x� xBð Þ

� kzrð Þ2

x� xBð Þ
þ

m2 x� xBð Þ � m
ffiffiffiffiffiffiffiffiffiffiffi
1� p
p

Xik

x� xBð Þ2 � 1� pð ÞX2
i Þ

" #
(A6)

with p ¼ �4/00=ðrXiB0Þ. In the small p (p � 0) and

ðx� xBÞ � Xi limit, one recovers the usual expression

gi ¼ v
k2c2

s

x� k � vi0ð Þ2
(A7)

for non-magnetized ions.

Turning now to electrons, and looking similarly for a

perturbation of the form

~ve ¼ ve1
ðrÞ exp mhþ kzz� xt½ 
;

~ne ¼ n0ðrÞgeðrÞ mhþ kzz� xt½ 
; (A8)

the perpendicular components of the linearized electron

momentum equation neglecting inertia and collisions writes

~veh ¼
c2

s

Xi
v0 � g0e
� �

; (A9a)

~ver
¼ i

m

r

c2
s

Xi
ge � vð Þ: (A9b)

In the parallel direction, one gets

~vez
¼ ikz

v2
the

�e
v� geð Þ; (A9c)

with �e the electron collision frequency in the parallel direc-

tion. Plugging Eq. (A9) into the linearized continuity equa-

tion for electrons

�ixge þ ~v0er
þ ~ver

r
þ i

m

r
~veh þ ikz~vez

þ~ver

n00
n0

þ i
m

r
vehge ¼ 0 (A10)

yields

ge ¼ v
x? þ ik2

z

v2
the

�e

x� xE þ ik2
z

v2
the

�e

; (A11)

with x? ¼ �ðmc2
s n00Þ=ðrXin0Þ ¼ mkc2

s=ðr2XiÞ and xE

¼ ðm/00Þ=ðrB0Þ. In the �e � 0 and kz¼ 0 limit, we recover

~ne

n0

¼ v
x?

x� xE
: (A12)

Invoking quasi-neutrality ge ¼ gi for kz � 0 and com-

bining Eqs. (A6) and (A12), the complex frequency x is

found to be the solution of a cubic equation with real

coefficients,

k�1 mð�x þ mf=2Þ � kð1� fÞ½ 


� �x þ mð1� ð1� fÞ2Þ=4

h i
¼ ð�x þ mf=2Þ3 � ð1� fÞ2ð�x þ mf=2Þ; (A13)

with k ¼ rjn00=n0j and f ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffi
1� p
p

, and where frequen-

cies are normalized to the ion cyclotron frequency, e.g.,
�x ¼ x=Xi. The stability criteria is thus equivalent to the

positiveness of the discriminant of this cubic equation. Note

that Eq. (A13) is equivalent to Eq. (38) in Ref. 30 if replac-

ing N by

N ¼ m
w w2 � C2
� �

þ C w� mx2
0

� �
w w� mx2

0

� � ; (A14)

FIG. 8. Instability threshold resulting from fast rotation as a function of the

Brillouin parameter p ¼ �4/00=ðrXiB0Þ and the dimensionless density gra-

dient scale-length k ¼ rjn00=n0j for various mode numbers m. The region to

the left of a given line is stable, while the region to the right of the same line

is unstable.
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which corresponds to the negligible ion temperature

(Ti=Te � 0) and the negligible plasma resistance limit. In

Eq. (A14), the normalized Doppler shifted frequency w, the

normalized equilibrium ion angular frequency x0, and the

constant C are consistent with Chen’s notation.30

In the limit kXi � mjðx� xBÞj, i. e., weak density gra-

dient, Eq. (A13) reduces to a quadratic equation, of which

the roots are

�x1;2 ¼
m k�1 � f
� �

2

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m

k
m

4
k�1 � f2
� �� �

þ 1� fð Þ2
s

: (A15)

We note that the bracketed term under the square root is

equal to c2
s m2=ð4r2x?XiÞ þ ð�xb � �xEÞ. The corresponding

stability region is plotted in Fig. 8. In the limit k� 1, and

since 0 	 f 	 1, this further simplifies to give x¼ 0 or

x ¼ m=k.
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