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The nature of the magnetic structure arising from ion specular reflection in shock compression studies is
examined by means of 1D particle-in-cell simulations. Propagation speed, field profiles, and supporting
currents for this magnetic structure are shown to be consistent with a magnetosonic soliton. Coincidentally,
this structure and its evolution are typical of foot structures observed in perpendicular shock reformation.
To reconcile these two observations, we propose, for the first time, that shock reformation can be explained
as the result of the formation, growth, and subsequent transition to a supercritical shock of a magnetosonic
soliton. This argument is further supported by the remarkable agreement found between the period of the
soliton evolution cycle and classical reformation results. This new result suggests that the unique properties
of solitons can be used to shed new light on the long-standing issue of shock nonstationarity and its role

on particle acceleration.
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Introduction.—Collisionless shocks have been inten-
sively studied since the late 1950s by virtue of the role
they are believed to play in plasma heating and charged
particle acceleration (see, e.g., Refs. [1-7] and references
therein). One of the most important features in high-Mach-
number shocks is the specular reflection of upstream ions,
which serves as an energy dissipation mechanism [8] to
satisfy to shock conservation equations: ion specular
reflection is paramount to both ion acceleration and shock
structure.

Further to its role in ion acceleration, ion specular
reflection is responsible for the nonstationarity of quasi-
perpendicular shocks. This temporal variability has been
demonstrated through numerical simulations (see, e.g.,
Refs. [9-13]), observations [14—17], and experiments
[18]. Although four different nonstationarity mechanisms
have been suggested in full generality [5], the most likely
candidate for explaining shock reformation in a 1D exactly
perpendicular shock (8 = 90°, with @ the angle between
the upstream magnetic field and the shock normal) is the
so-called self-reformation mechanism (see, e.g., Ref. [7]).
This self-reformation cycle can be summarized as follows.
First, ions reflected by the shock form a foot ahead of the
ramp. Because of the gyromotion, these reflected ions pile
up upstream of the foot at a distance slightly smaller than an
ion gyroradius ahead of the shock ramp, and create local
magnetic field and density maxima there. Through a
feedback mechanism, this foot then grows until it becomes
as large as the initial shock ramp, effectively becoming the
new ramp. Finally, this new ramp reflects incoming ions
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and the process repeats, with the shock advancing in a
stepwise fashion. Numerical simulations suggest that the
onset of this nonstationary reformation process is condi-
tioned by a large-enough Mach number [19-22] and
fraction of incoming ions reflected by the shock [19],
and low-enough ratios of plasma to magnetic pressure /3
[19-22] and ion thermal velocity to shock velocity [20].

When nonstationarity conditions are met, the shock
features change markedly over the course of a reformation
cycle. Shock potential and shock ramp width display
oscillations with a period of roughly 0.2-0.3 times the
upstream ion gyroperiod [4,23,24]. Consistent with these
field oscillations, a complex and nonstationary ion dynamic
is observed [25-29].

Studying the interaction of an exploding plasma propa-
gating through a background plasma, Yamauchi and
Ohsawa [30] showed that the magnetic deflection of an
ion beam can lead to the formation of a magnetosonic pulse
or soliton. Identifying the strong similarities existing
between this pulse and the magnetic bump formed over
the course of the magnetic shock compression of a plasma
channel [31], Ohsawa conjectured [32] that the magnetic
bump observed in compression simulation results is in fact
a magnetosonic pulse.

Solitons are one of the two kinds of stationary solutions
to the Korteweg—de Vries (KdV) equation which can
describe the propagation of weakly dispersive nonlinear
waves [33]. In particular, magnetosonic solitons are soliton
solutions for the KdV equation derived for magnetosonic
waves [34,35]. A remarkable property of solitons is their
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FIG. 1. (a) Normalized magnetic field contours. The upper left

corner (left of the black dotted line) is the vacuum region. The
lower right corner is the upstream plasma. The magnetic bump,
visible as a narrow peak to the right of the shock front, grows with
time. (b) Mach number vs time. M increases almost linearly from
1.8 to 3.5 for 0.95 <7 < 2.4. Past 7 ~ 2.4, M begins to plateau.

stability with respect to interactions: they preserve their
shape and speed after collision [36], behaving in some ways
like particles. Beyond these unique physical properties, the
concept of solitons enabled major theoretical developments
in nonlinear wave physics.

In this Letter, we report on the use of particle-in-cell
(PIC) simulations to expose, for the first time, the role
of magnetosonic solitons in the well-known shock self-
reformation process in perpendicular shocks. We analyze
the properties of the magnetic foot formed as a result of ion
specular reflection at the shock front, confirming Ohsawa’s
conjecture [32] and demonstrating that this foot actually
evolves into a magnetosonic soliton. We also show that the
growth of this soliton eventually leads to the formation of a
supercritical shock, revealing the key role of this soliton in
the shock reformation mechanism. Finally, we discuss the
implications of these new findings.

Numerical model.—Simulations are carried out using the
parallel fully electromagnetic relativistic PIC code EPOCH
[37]. A quarter-sine magnetic compression ramp is gen-
erated at the left boundary of the 1D domain and propagates
towards a premagnetized plasma slab, similar to what was
done in Ref. [31]. However, as opposed to this previous
study, there is no symmetrical compression ramp generated
at the right boundary in the simulation results presented in
this Letter. When the compression ramp reaches the plasma
slab, a shock wave develops and propagates to the right as
illustrated in Fig. 1. The computational domain is made of
2.5 x 107 cells along x, with a spatial resolution Ax of one
cell per Debye length. The initial number of particles per
cell per species is 20. Both the upstream magnetic field By,
and the bias magnetic field associated with the compression
ramp are along z. The physical mass ratio m,/m, = €2~
1/1836 is used. The time step is Ax/c, with ¢ the speed of

TABLE I.  Upstream dimensionless plasma parameters: thermal
speed, Debye length, gyrofrequency, plasma frequency, and
Larmor radius.

Parameter Electrons Protons
Vth 2.43 0.057
}D 0.0088 0.0088
Q, 1.84 x 103 1

@), 1.18 x 10* 2.75 x 10?
De 0.057 2.43

light. Dimensionless quantities are indicated by a tilde ~,
with time, length, speed, and magnetic field normalized by
the inverse of the upstream ion cyclotron frequency ., ~',
the upstream electron skin depth d, = ¢/w,,., the upstream
Alfvén velocity v4, and the upstream magnetic field B,
respectively. The premagnetized plasma slab parameters,
listed in Table I, correspond to the upstream plasma
parameters.

Foot formation and growth.—Figure 2 shows the onset
and growth of the magnetic bump ahead of the shock ramp.
Consistent with theory [38,39], phase-space distribution
confirmed that the formation of this bump results from the
specular reflection of upstream ions by the shock [31]. For
At~ 0.7 (t ~ 1.5) after upstream ions began being specu-
larly reflected by the shock, local magnetic field and
density maxima are observed at the edge of the foot region.
At this instant, the length of the foot is 1~ 30. Introducing
Py, the upstream gyroradius of an ion specularly reflected
with a velocity Mw,, the foot length writes elM™! Py
Although the distance between the magnetic bump maxi-
mum and the shock ramp remains roughly equal to 30d,

500 550 600 650 700

FIG. 2. Normalized magnetic field profiles at various times
showing the onset and growth of a magnetic structure ahead of
the shock front.
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FIG. 3. Time evolution of the pulse’s parameters. Red open

circles show the renormalized abscissa of the magnetic pulse
maximum (lower horizontal axis), with 6x = ¥ — X( = 1.485).
Grey crosses indicate the pulse amplitude Bm (upper horizontal
axis). The black dash-dotted curve s = 7 + ¢ has a slope equal to
1, typical of magnetosonic solitons.

for 1.5 <7 <2.2, the length of the foot grows to reach
1~ 60 for 7 ~ 2.2. For the M ~ 2 shock found at the onset

of specular reflection [see Fig. 1(a)], 1~ 60is equivalent to
0.7pys, which is in remarkable agreement with the 0.68p,,
obtained from theory [39] and observation [40] for a
supercritical perpendicular shock.

In view of the good agreement identified between
simulation results and classical attributes of the magnetic
foot which is commonly found in front of supercritical
shocks, we further analyze the properties of this magnetic
bump with the goal of shedding new light on the structure
of supercritical perpendicular shocks.

Magnetosonic soliton.—We first look at the phase
velocity of the magnetic structure. Fig. 3 shows the time
evolution of the position of the pulse maximum, along
with the amplitude Bm of the pulse. Here the maximum’s
abscissa is rescaled, with s=2(1+ B,) e and
86X = X — x(t = 1.485). In the (s,7) coordinates used in
Fig. 3, we notice that the pulse displacement can be well
fitted by a linear function of slope 1 for 1.8 <7 <2.2. In
other words, the pulse’s propagation speed is proportional
to (1+ B,,) over this period, while B,, grows from 1.8 to
roughly 3. This scaling is characteristic of magnetosonic
solitary pulses or solitons, which have a phase velocity
vy = va(l + B,,)/2 [34,41-43]. Note that this is also the
propagation velocity for the transverse electric field,
density, and electric potential as the maxima of these
different quantities in the pulse are collocated.

We now turn our attention to the profiles of normalized
electric potential ep = eq/(2m,v,*), density n = n/ny,
transverse electric field E~y = E,/(vsBy), and transverse
current densities }V First-order expansion for the solutions of
the KdV equation derived for perpendicular magnetosonic
waves [34,35] indicate analogous profiles for B - 1,n—1,
Ey, and ¢. These quantities are plotted in Figs. 4(a), 4(c),
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FIG. 4. Field profiles at three different instants during the
magnetosonic pulse growth: [(a),(b)] 7 = 1.58, [(c),(d)] 7 = 1.87,
and [(e),(f)] 7 = 2.16. [(a), (c), and (e)] Normalized magnetic field
(black), transverse electric field (green), electric potential (blue),
and density (red) and [(b), (d), and (f)] normalized electron (blue),
ion (red) and total (black) transverse current densities.

and 4(e) for three different instants during the pulse growth
(f=1.58, 1.87, and 2.16, shown by the horizontal grey
dotted lines in Fig. 3). Looking at Fig. 4, we indeed note
a strong correlation between B-1, n— 1, Ey, and @,
confirming the similarities with the field structure of a
magnetosonic soliton. The density follows very closely
the evolution of the magnetic field at all times, so that
B/n is nearly constant. The transverse electric field (plotted
against the right vertical axis) scales roughly as 3.3(§ -1)
for 1.8 <7 <2.2. Finally, the amplitude of the potential
jump fits quite well to the theoretical value ¢, =
2m,v,2(M,, —1)/e, with M, = (1+ B,,)/2 the Mach
number of the pulse (here M, ~1.25,1.6, and 2 for
t = 1.58, 1.87, and 2.16), obtained for a nonlinear magneto-
sonic pulse [6,42,44].

The evolution of transverse current densities, plotted in
Figs. 4(b), 4(d), and 4(f) indicates that the current structure
supporting the magnetic field bump is essentially an
electron current, that is to say j, ~ j, . The small negative
ion transverse current density }y,- is consistent with the
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FIG. 5. (a) Magnetic field profile and [(b),(c)] ion phase space
distribution after the magnetosonic pulse became supercritical
(f =2.59).

magnetic deflection of specularly reflected ions. On the
other hand, the electron current density ]y exhibits peaks of
opposite signs on either side of the magnetic field structure.
This becomes particularly marked when the pulse is well
formed (7 = 2.16). This feature is typical of perpendicular
magnetosonic solitons, of which the structure is determined
by transverse electron currents under the hypothesis of
charge neutrality (p. 156 of Ref. [6]).

From these three characteristics (propagation speed,
self-similarities between B—1, n—1, E,, and ¢, and
transverse currents), we conclude that the foot structure
observed as a result of ion specular reflection by the shock
ramp is a magnetosonic soliton.

Supercritical _transition and reformation—When the
pulse reaches B,, ~3 (for 1 ~2.2), a relatively sudden
transition occurs, with the pulse amplitude growing rapidly
to reach a value close to the one found downstream of
the shock. This rapid growth takes place at the rear of the
magnetic foot structure, as illustrated in Fig. 5(a). Concurrent
ion specular reflection by this new shock front is observed.
This process is clearly visible in the form of a fast ion
population (2, ~ 5 in the lab frame) in front of the pulse at
t = 2.59 in Figs. 5(b) and 5(c). The overgrown pulse then
acts as the new shock front, quite similar to the stepwise
advance commonly described in reforming shocks.

The fact that this transition and associated onset of
specular reflection by the pulse are observed for B,, ~3
provides further evidence for the formation of a magneto-
sonic soliton. As a matter of fact, the measured Mach

number at the transition M,, = (1 4+ B,,)/2 ~2 is exactly

the critical Mach number obtained for a magnetosonic
soliton with vanishing resistivity [2,41,42,45].

Finally, we notice (not shown here) that a new foot
structure with a local maximum is formed for 7 ~ 3.44 as a
result of ion specular reflection by the pulse. By identi-
fication with the foot structure observed in front of the
initial shock for 7 ~ 1.65, and although only one cycle is
simulated here, we infer a periodicity A7~ 1.8, or
At~ 0.3 x 27/Q,;. Inasmuch as this value is in remarkable
agreement with the period of a collisionless shock refor-
mation cycle [4,23,24], we surmise that shock reformation
is here mediated by the formation and subsequent growth
beyond the critical Mach number of a magnetosonic soliton.

Conclusions.—We studied the formation of a magnetic
pulse in fast compression experiments using 1D PIC
simulations. We showed that this magnetic pulse, formed
through ion specular reflection at the shock ramp, exhibits
attributes common to the magnetic foot structure which is
typically found in perpendicular collisionless shocks.

Through a detailed analysis of the properties of this
pulse, in particular its propagation speed, its profile, and its
supporting current structure, we inferred that it is actually a
magnetosonic soliton. This soliton grows as it propagates
upstream of the shock ramp and eventually reaches the
critical Mach number M ~ 2, whereupon it transitions to a
supercritical shock. Thenceforth the overgrown pulse
begins to reflect incoming ions, and serves as the new
shock ramp. Finally, we showed that the period for this
shock front step propagation through the formation and
subsequent growth of a soliton is in remarkable agreement
with the period of the well-known self-reformation cycle in
collisionless shocks.

In view of the strong similarities found between this
mechanism and the self-reformation process, we surmise
that our simulations reveal, for the first time, the mediating
role of magnetosonic solitons in quasiperpendicular shock
reformation.

In showing that a large-amplitude pulse can create a new
soliton due to kinetic and fluid effects, the present Letter
brings to light novel facets of the evolution of magneto-
sonic pulses and of the creation of shock waves in
astrophysical plasmas. In particular, these results pave
the way for applying the large existing body of work on
solitons to shed new light on the long-standing issue of
shock nonstationarity and its role on particle acceleration.
Incidentally, these results open new and promising per-
spectives for the use of fast magnetic compression in order
to mitigate electron dephasing in plasma-based particle
accelerators [46]: plasma density profile near the beam axis
could, in principle, be tailored from hollow to peaked on
axis by taking advantage of the colliding properties of the
counterpropagating solitons formed ahead of the shock.

This work was supported, in part, by the U.S. National
Nuclear Security Administration (NNSA) under Grant
No. DE-NA0002948.
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