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We describe a quantitative model for heat separation in a fluid due to motion along a pressure gradient.
The physical model involved is relevant to one explanation for the temperature separation in a vortex
tube. This effect has a point of saturation in which the fluid’s temperature and pressure are related at
its boundaries by an adiabatic law. Vortex tube models sometimes assume that this saturation is achieved
in physical devices. We conclude that this is likely to be a safe assumption much of the time, but we
describe circumstances in which saturation might not be achieved. We propose a test of our model of
temperature separation.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

A Ranque–Hilsch vortex tube is a device which separates ini-
tially constant-temperature gas into hot and cold streams. A typi-
cal vortex tube consists of a cylindrical container into which gas is
injected in a direction perpendicular to the cylinder axis. The
injected gas sets up a rapidly rotating flow inside the tube. Gas is
allowed to exit the tube from either end, but the exits of each
end are configured so that one end primarily draws gas from the
outer edge of the cylinder, whereas the other end primarily lets
out gas from the central region. The Ranque–Hilsch vortex tube
is named for Ranque, who invented the device, and Hilsch, who
made important early contributions to its study [1,2]. Vortex tubes
are used in industry for a variety of applications, generally involv-
ing spot cooling.

Since the discovery of vortex tubes, there has been debate and
discussion about the details of how the characteristic temperature
separation comes about. Some early theories suggested that the
effect was caused by friction between concentric annular regions
of the rotating tube [2]. Deissler and Perlmutter performed an anal-
ysis [3] which suggested that turbulent shear work was the most
important cause of the temperature separation. Kurosaka devel-
oped a theory [4] that explained the temperature separation in
terms of acoustic streaming. Stephan et al. suggested [5] that
Görtler vortices on the walls of the tube were an important factor.

One general approach, which has been used by several authors,
seeks to explain the temperature separation effect in terms of
adiabatic heating and cooling. The rotating flow sets up a radial
pressure gradient to balance the centrifugal potential. If some fluid
moves radially back and forth, it will tend to be adiabatically
heated as it moves from the core to the periphery and adiabatically
cooled as it moves from the periphery to the core. Kassner and
Knoernschild [6] introduced the premise that radial motion will
make the temperature distribution follow an adiabatic law, that is,

TðrÞ � pðrÞðc�1Þ=c
: ð1Þ

Their explanation involved an initially irrotational vortex (that
is, with angular velocity that scales with radius like r�2) which con-
verts to a rotational vortex (with constant angular velocity) due to
effects at the outer boundary and the core. They suggest that the
radial motion which brings about this temperature distribution
will be driven by turbulence.

Ahlborn and Groves have reported experimental observations
[7] of a secondary flow in a vortex tube, which includes both axial
and radial motion. Their measurements did not determine whether
this secondary flow was open or closed. Subsequently, Ahlborn and
collaborators suggested a model in which this secondary flow
played a key role [8,9]. In this model, the secondary flow sets up
a refrigeration cycle in the vortex tube.

Computational fluid dynamics work carried out by Behera et al.
[10] confirmed the existence of such a secondary flow for vortex
tubes in which the cold end diameter was small compared to the
diameter of the rest of the tube. However, they reported that it dis-
appears for vortex tubes in which the cold end diameter was less
small. Behera et al. found that the simulations with smaller cold
end diameters more closely matched the model put forth by Ahl-
born et al., but that the simulations with larger cold end diameters
did not closely match that model and had substantially larger tem-
perature separations. In general, computational studies have
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played an important role in vortex tube research, addressing a
wide variety of issues involving vortex tube flow and temperature
separation [11–15].

Liew et al. made a quantitative model using the adiabatic law
given in Eq. (1) and relying on the presence of radial motion within
the vortex tube [16]. In order to predict the temperatures mea-
sured at the two exits of the tube, they also included a term to
account for adiabatic deceleration as the fluid moves axially
toward the hot-stream exit.

In this paper, we explore a simple analytical model of a vortex-
tube-like heat pump relying on adiabatic heating and cooling of
fluid moving along a pressure gradient. We will use this model
to try to address some of the questions and assumptions involved
in existing vortex tube models. In particular, if a subset of a fluid is
moving up and down a pressure gradient, how reasonable is it to
assume that the entire system will attain the temperature distribu-
tion described in Eq. (1)? Furthermore, to what extent does it mat-
ter what the radial flow looks like — that is, if the flow is due to an
open secondary flow, a closed secondary flow, or a more general
kind of radial mixing?
2. The heat pump

To construct a quantitative model for heat transport, suppose a
parcel of gas is being moved up and down a potential gradient. A
schematic of the cycle is shown in Fig. 1. For simplicity, consider
a gravitational potential so that the pressure is higher at smaller
z. In practice, any pressure gradient between z ¼ 0 and z ¼ L pro-
duces the same effect. In a vortex tube, the centrifugal potential
produces the pressure gradient.

Broadly speaking, our model involves parcels of gas whose
motion along a pressure gradient causes them to be adiabatically
cooled and heated. While they are cooled (or heated), they do work
on the surrounding medium (or the other way around), which
facilitates energy transfer between the parcel and its surroundings.
However, this is not enough to establish a temperature gradient in
the surrounding fluid. If the work associated with adiabatic heating
and cooling were the only source of energy transfer, then the work
done during the cooling step would exactly cancel with the work
received in the heating step, and no net energy would be
exchanged between the moving parcels and the surrounding fluid.
For this reason, we include steps after each adiabatic heating or
cooling step during which the moving parcel is allowed to
exchange heat with its surroundings, either by conduction or by
mixing.

The parcel of gas starts at some position z ¼ L and internal tem-
perature T1 then moves to a new position z ¼ 0. Suppose the back-
Fig. 1. This diagram shows the heat transfer cycle used in our model.
ground medium has some pressure distribution pðzÞ with p0 � pð0Þ
and pL � pðLÞ. Then we can define a dimensionless constant

a � p0

pL

� �ðc�1Þ=c
: ð2Þ

c denotes the specific heat ratio cp=cv . We will assume that the
moving parcel is always in pressure equilibrium with its surround-
ings (the pressure equilibration time should be much shorter than
the temperature equilibration time). If the motion of the fluid parcel
is adiabatic, then the new temperature will be T2 ¼ aT1. Then sup-
pose the fluid element remains at z ¼ 0 for some period of time,
during which it exchanges heat with the surrounding medium. If
the surrounding medium has some temperature T0 at z ¼ 0, then
the temperature of the gas in the parcel during this time will satisfy
the heat transfer equation

dT
dt

¼ �Ah
cpNp

T2 � T0
� �

: ð3Þ

Here A is the area of the interface between the parcel of gas and
the environment, h is the heat transfer coefficient, cp is the
constant-pressure heat capacity, and Np is the number of particles
in the parcel. We will assume that the temperature inside the par-
cel is homogeneous. After heat has been exchanged for an interval
se, we get a new temperature. If the heat exchange is entirely due
to heat conduction, that new temperature will be

T3 ¼ T0 þ T2 � T0
� �

exp
�Ahse
cpNp

� �
: ð4Þ

If the fluid parcel then adiabatically rises back to z ¼ L, the new
temperature will be T4 ¼ T3=a. Finally, if the parcel once again
exchanges heat isobarically with the surrounding environment
before the cycle begins again, and if the background medium has
temperature TL at z ¼ L, we have

T1 ¼ TL þ ðT4 � TLÞ exp �Ahse
cpNp

� �
: ð5Þ

We will assume for the sake of simplicity that the exponential
factor �Ahse=cpNp is the same for both points in the cycle where
the parcel undergoes isobaric heat exchange (realistically, several
of those terms might vary, but the overall behavior of the system
should not change too much). We will define this factor by

r � exp
�Ahse
cpNp

� �
: ð6Þ

If r ¼ 1, then there is no transfer of energy during these steps of
the cycle and the adiabatic compression and expansion steps will
cancel each other out. If r ¼ 0, then the parcel of moving gas
achieves full thermal equilibrium with its surroundings during
the heat conduction steps.

If the parcel returns to the same temperature T1 with each
cycle, then it follows that T1, T2, T3, and T4 can each be expressed
in terms of the temperature of the background fluid. For instance,

T1 ¼ aTL þ rT0

að1þ rÞ : ð7Þ

We can use this information to solve for the total heat trans-
ferred between the parcel and the surrounding fluid during the
second and fourth steps. They are

Qbot ¼
cvNpð1� rÞ

1þ r
aTL � T0ð Þ ð8Þ

Q top ¼ � cvNpð1� rÞ
að1þ rÞ aTL � T0ð Þ: ð9Þ
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Since total heat must be conserved and Qbot þ Q top – 0, there
must be some work, not taken into account yet, required for the
compression and decompression of the parcel of gas. During an
adiabatic process, the parcel’s temperature satisfies

Tðzþ dzÞ ¼ TðzÞ pðzþ dzÞ
pðzÞ

� �ðc�1Þ=c
: ð10Þ

As such, the work deposited at a given height when the parcels
moves a small (signed) distance dz is given by

dW ¼ �cvNpTðzÞ c� 1
c

p0ðzÞ
pðzÞ dz: ð11Þ

For a particle being compressed on its way from z ¼ L to z ¼ 0,
we can write this expression in terms of the surrounding fluid tem-
perature TðzÞ rather than the parcel temperature TðzÞ by using Eq.
(7) and the usual expression for temperature during adiabatic com-
pression to get

dW12 ¼ �cvNpT1
c� 1
c

pðzÞ
pL

� �ðc�1Þ=c p0ðzÞ
pðzÞ dz ð12Þ

dW12

dz
¼ �cvNp

aTL þ rT0

að1þ rÞ
d
dz

pðzÞ
pL

� �ðc�1Þ=c
: ð13Þ

An analogous argument for the decompression as the parcel
goes from z ¼ 0 to z ¼ L gives

dW34

dz
¼ �cvNp

raTL þ T0

1þ r
d
dz

pðzÞ
p0

� �ðc�1Þ=c
: ð14Þ

Combining Eqs. (13) and (14), and keeping in mind the fact that
the parcel is moving in opposite directions during the compression
and decompression steps, we can compute a total profile for the
change in energy of the background fluid due to the compression
and decompression steps:

dW
dz

¼ cvNp
1� r
1þ r

aTL � T0ð Þ d
dz

pðzÞ
p0

� �ðc�1Þ=c
: ð15Þ

Eqs. (8), (9), and (15) provide a complete description of the
energy deposition profile due to this heat pump. The heat pump
moves around energy but (so long as we don’t account for what-
ever force is actually moving the parcel of gas back and forth) it
does conserve energy:

Qbot þ Q top þ
Z L

0

dW
dz

dz ¼ 0: ð16Þ

These calculations are for the total heat deposited at a given
value of z per cycle of a heat pump including Np circulating parti-
cles. Let np be the three-dimensional volumetric density of circu-
lating particles and let sf be the total time it takes the flow to
complete one cycle from z ¼ L to z ¼ 0 and back. For a given one-
dimensional subset of a three-dimensional system (i.e. a choice
of x and y), the rate of heat deposition per unit length will be given
by

_qðzÞ ¼ cvnpL
sf

1� r
1þ r

aTL � T0ð Þ

� d
dz

pðzÞ
p0

� �1=cp

þ dðzÞ � dðz� LÞ
a

( )
: ð17Þ

As we have derived them, these equations describe a closed
cycle in which the circulating parcels of fluid are always separate
from the surrounding fluid. In a real system, the distinction
between circulating fluid and background fluid might not be so
clear.

We can recover the behavior of a more general flow — albeit
somewhat crudely — by varying the parameter r. When fluid is
exchanged between the parcel and the background at the top
and bottom of the system, that is equivalent to a closed circulation
which exchanges heat more efficiently during the isobaric steps of
the cycle. In fact, for r ¼ 0, there is no reason why the upward-
moving and downward-moving fluids have to contain any of the
same material at all, so long as the net upward and downward
fluxes are equal.

Note that, so far, our treatment of this model makes no assump-
tions about the source of the pressure gradient that compresses
and decompresses the circulating parcels. To make the system
intuitive, we associate lower values of z with higher pressures
(so that one could imagine a pressure profile resulting from a grav-
itational field) but the physics would work identically if we consid-
ered a centrifugal potential with high pressure at larger radial
positions.

3. Forced equilibrium: analytical solutions

The full, time-dependent dynamics of a system with this kind of
heat pump could be quite complicated. However, if instead we
solve for static (forced) equilibria of the system, we can reduce
the problem to three coupled differential equations:

pðzÞ ¼ nðzÞTðzÞ ðequation of stateÞ ð18Þ
@p
@z

þ nðzÞr/ðzÞ ¼ 0 ðmomentum balanceÞ ð19Þ
@

@z
j
@T
@z

� �
þ _qðzÞ ¼ 0 ðheat balanceÞ ð20Þ

Here /ðzÞ is a potential energy (for instance, mgz in a constant
gravitational field). We will assume that, for some constant j0,
the conductivity j of a gas takes the form [17]

j ¼ j0

ffiffiffi
T

p
: ð21Þ

Anywhere away from z ¼ 0 and z ¼ L, we can make use of the
fact that _qðzÞ is a total derivative and integrate Eq. (20) to get

j
@T
@z

¼ C � cvnpL
sf

1� r
1þ r

aTL � T0ð Þ pðzÞ
p0

� �1=cp

: ð22Þ

Our system will have a ceiling at z ¼ L and a floor at z ¼ 0. We
can solve for the constant C by using the boundary conditions. If
the temperature at z ¼ 0 is at steady-state, then using Eq. (17),

j
@T
@z

����
z¼0

¼ � cvnpL
sf

1� r
1þ r

aTL � T0ð Þ: ð23Þ

To satisfy both Eqs. (22) and (23), it must be true that the inte-
gration constant C ¼ 0. The boundary condition at z ¼ L reduces to
the same constraint.

In general, the effective potential / for a vortex tube may not be
simple. The angular velocity of the flow may not be constant over
the whole system [18]. As such, we will pick the simplest possible
form for / that still captures the essential behavior of the system: a
linear potential / ¼ mgz. With this choice of potential, the system
turns out to be directly integrable. First, we invoke Eqs. (18) and
(19) and divide both sides by T:

j
T
@T
@z

¼ cvnpLð1� rÞðaTL � T0Þ
mgsf ð1þ rÞ � pðzÞ

p0

� �1=cp p0ðzÞ
pðzÞ : ð24Þ

Define the parameters n and w by

n � cvcpnpLð1� rÞ
2j0mgsf ð1þ rÞ ðaTL � T0Þ ð25Þ

� wðaTL � T0Þ: ð26Þ
In terms of these parameters,
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@
ffiffiffi
T

p

@z
¼ n

@

@z
pðzÞ
p0

� �1=cp

ð27Þ

)
ffiffiffiffiffiffiffiffiffi
TðzÞ

p
¼

ffiffiffiffiffi
T0

p
þ n

pðzÞ
p0

� �1=cp

� n: ð28Þ

Combining Eqs. (18), (19), and (28), the momentum balance
equation becomes the following:

ffiffiffiffiffi
T0

p
� n

� 	2
þ 2n

ffiffiffiffiffi
T0

p
� n

� 	 pðzÞ
p0

� �1=cp

þ n2
pðzÞ
p0

� �2=cp
( )

p0ðzÞ
pðzÞ

¼ �mg ð29Þ
This can be integrated directly to get

ffiffiffiffiffi
T0

p
� n

� 	2
log

pðzÞ
p0

� �
þ 2cpn

ffiffiffiffiffi
T0

p
� n

� 	 pðzÞ
p0

� �1=cp

� 1

( )

þ cpn
2

2
pðzÞ
p0

� �2=cp

� 1

( )
¼ �mgz: ð30Þ

In principle, Eqs. (28) and (30), together with energy conserva-
tion and conservation of particle number, are enough to determine
the allowed equilibria. In particular, note that the pressure distri-
bution always appears in these equations in the combination
pðzÞ=p0, so we can easily conserve particle number by picking p0.
The relationship between TðzÞ and T0 is a little more complicated,
but we can get energy conservation in a similar way.

To make further sense of Eqs. (28) and (30), it is helpful to
rewrite them with z ¼ L:

a
ffiffiffiffiffi
T0

p
�

ffiffiffiffiffi
TL

p� 	
¼ wða� 1ÞðaTL � T0Þ ð31Þ
ffiffiffiffiffi
T0

p
� n

� 	2
logaþ 2

ffiffiffiffiffi
T0

p � n
� �

nða� 1Þ
a

þ ða2 � 1Þn2
2a2 ¼ mgL

cp
: ð32Þ

These equations become somewhat simpler in terms of the fol-
lowing dimensionless parameters:

W � w
ffiffiffiffiffi
T0

p
ð33Þ

N � nffiffiffiffiffi
T0

p ¼ W
aTL

T0
� 1

� �
ð34Þ

C � mgL
cpT0

ð35Þ

Then Eqs. (31) and (32) become

TL

T0
¼ �aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 4Waða� 1Þða�Wþ aWÞ

p
2Waða� 1Þ

 !2

ð36Þ
1� Nð Þ2 logaþ 2ðN� N2Þða� 1Þ
a

þ ða2 � 1ÞN2

2a2 ¼ C: ð37Þ

Note that getting Eq. (36) did involve picking a branch of a
quadratic solution; the other branch gives unphysical results in,
for instance, the limit a ! 1.

Plugging Eq. (36) into Eq. (34), and plugging that into Eq. (37),
we have one equation relating W, C, and a. W can be thought of
as a measure of the strength of the heat pump. C is a normalized
potential strength. a contains information about the size of the
pressure drop across the system.

So far, this analysis has assumed that aTL is not exactly equal to
T0. In fact, there are equilibria in which aTL becomes arbitrarily
close to T0. However, it turns out that we cannot satisfy the heat
equation in the interior of the system and at the boundaries if
aTL ¼ T0 and a > 1. As such, our earlier derivations are safe.
4. Forced equilibrium: numerical solutions

The equilibria are governed by Eqs. (36) and (37), but interpret-
ing implicit equations of this kind can be difficult. It is useful to
look at numerically-computed pictures of the surface in parameter
space that is defined by these equations. Two such pictures are
shown in Fig. 2.

It is possible to reconstruct different aspects of the numerical
solution analytically though various series solutions and limiting
cases. We’ll make just a few observations here. First, the edge of
the solution-surface for very small W can be recovered by taking
the limit as W ! 0 in Eqs. (36) and (37). In this limit, TðzÞ becomes
constant and Eq. (37) yields a ¼ eC, which is equivalent to
pL ¼ p0e�mgL=T0 . This is the simple solution that we would expect
without any heat pump, and we can easily see the corresponding
exponential curve on the right-hand side of the surface.

Another notable feature of the surface is the vertical structure
roughly parallel to the a-W plane. Naïvely, for a fixed W one might
expect that it should always be possible to increase the strength of
the potential and get out a larger pressure gradient (that is,
increase C and see an equilibriumwith a larger value of a). Instead,
there appears to be an upper limit for any given W on how large C
is allowed to be, and the large-a solutions form this vertical struc-
ture instead of corresponding to very large values of C. Further-
more, there are some choices of C and W (always with C > 0:5)
for which there appear to be two allowed values of a that produce
equilibrium.

A full stability analysis of this system, taking into account the
reaction of the system to any possible perturbation of the density,
temperature, and velocity profiles, is beyond the scope of this
paper. However, in the regions where there are two possible equi-
libria with the same C and W, there are reasons to believe that one
equilibrium is stable and the other is unstable.

The time-dependent dynamics of an ideal fluid with heat con-
duction (but, for the sake of simplicity, without any viscous effects)
are given by [19]

@n
@t

þ @ðnuÞ
@z

¼ 0 ð38Þ

mn
@u
@t

þ u
@u
@z

� �
þmng þ @ðnTÞ

@z
¼ 0 ð39Þ

@

@t
nmu2

2
þ cvnT

� �
þ @

@z
nu

mu2

2
þ cpT

� �
� j

@T
@z


 �
¼ _q: ð40Þ

Here uðzÞ is the fluid velocity at z.
Consider the system’s response to a small perturbation in the

gravitational parameter g and the heat pump parameter np, so that
g ! g þ dg and np ! np þ npdg=g. Then, as per Eqs. (25) and (35), C
will be perturbed but W will remain unchanged.

If the system was initially in equilibrium, and if dg > 0, then the
initial effect of the perturbation will be to make @u=@t < 0 for all z,
@p=@t > 0 for z ¼ 0, and @p=@t < 0 for z – 0. The effect on @p=@t
comes from the relationship between np and _q; see Eq. (17). Once
uðzÞ < 0, we can see from Eqs. (38) and (40) that the density and
pressure will increase at the bottom of the system and decrease
at the top, at least initially. On the other hand, if dg < 0, the initial
effect of the perturbation will be reversed: @u=@t will be positive
for all z and the perturbation to np will decrease @p=@t at z ¼ 0
but increase it for all other z. Therefore, if we perform this pertur-
bation, then we know that a will initially increase if dg > 0 and
decrease if dg < 0.

Of course, we aren’t primarily interested in the response of the
system to perturbations in g or np. For the purposes of understand-
ing stability, we mostly care about perturbations in the profiles
uðzÞ, nðzÞ, and TðzÞ. But consider the equilibrium profiles for some
choice of C and W as an infinitesimal perturbation of the equilib-



Fig. 2. These images show the same numerically generated equilibrium surface in terms of (W, C, a) coordinates. The plot on the right shows a larger range of parameter
values.

E.J. Kolmes et al. / International Journal of Heat and Mass Transfer 107 (2017) 771–777 775
rium profiles for an otherwise identical system in which g and np

differ by dg and npdg=g, respectively.
Looking at the shape of the surfaces shown in Fig. 2, we can see

that the perturbation g ! g þ dg and np ! np þ npdg=g is equiva-
lent to a perturbation that makes a either a little smaller or a little
larger. Because of the shape of the surface, a positive dg will be
associated with a negative da wherever there is a single solution
and on the smaller-a branch in the region where there are multiple
solutions. A negative dg will be associated with a positive da on the
larger-a branch of the multiple-valued part of the surface.

So, at least for this very specific class of perturbation, _a and da
will initially have opposite signs on the lower part of the surface
and the same signs on the upper part of the surface. This suggests
that the upper branch, where the surface curves back on itself, is
unstable, whereas the lower branch is stable. However, it is not a
rigorous proof, both because we have only described the response
of the system for small times and because we have discussed the
response of the system only to a specific class of perturbations.

This behavior is interesting, but it should not be overempha-
sized. As we will see in Section 5, the regimes in which the equilib-
rium a is not a single-valued function of W and C are almost
certainly not relevant to the behavior of actual vortex tubes.
Multiple-valued equilibria don’t start showing up until C > 0:5,
and realistic values for C in a vortex tube are about an order of
magnitude smaller. Furthermore, recall that our heat pump model
involves parcels of fluid moving up to z ¼ L and exchanging heat
with the surrounding medium there. If the density of particles at
the top of the system is depleted, there are physical reasons to
think that our model should break down. As such, we should be
careful about our model’s predictions when a is large.
5. Predicting temperature separation

Once we have some understanding of what the equilibrium sur-
face looks like, we can move to the more practical problem: pre-
dicting the size of the temperature separation due to this kind of
heat pump. The ratio of the boundary temperatures TL=T0 is spec-
ified by a and W. When TL=T0 ! 1=a, the heat pump turns off (or
‘‘saturates”). A surface showing the boundary temperature ratio
TL=T0 as a function ofW and a is shown in Fig. 3, along with the ref-
erence surface TL=T0 ¼ 1=a.

So, what kind of parameters should we be thinking about if we
want to understand the behavior of a physical vortex tube? Vortex
tubes can vary substantially in their geometry and their perfor-
mance [11,14,15], but we would like at least some very rough esti-
mates. a is relatively straightforward to estimate, since it follows
directly from measurements of the radial pressure profile. Experi-
mental studies [20,21] suggest that we should expect a somewhere
around 1.1, if we use static rather than total pressures.

Getting a good estimate for C is a little more complicated. In a
physical vortex tube, an effective centrifugal potentialmv2

h=2 takes
the place of the gravitational potential mgz with which we origi-
nally defined C. We should take C to be the difference in potential
energy between the two boundaries of the system (the core and
the outer radial edge), divided by cpT0. Therefore, estimating C
requires the rotational velocity vh at the edge of a typical vortex
tube. Experimental studies [18,20,21] suggest that a typical veloc-
ity might be on the order of 150 m/s. For a vortex tube filled with
nitrogen, that would suggest C � 0:035.

Perhaps most interesting is the parameter W. According to the
numerical results presented in Fig. 3, TL=T0 converges to 1=a once
W is greater than 10 or 20. If we make the substitution
mgL ! mv2

h=2, then W becomes

W ¼ cvcpnpL
2 ffiffiffiffiffi

T0
p

j0mv2
hsf

1� r
1þ r

: ð41Þ

In the relevant temperature ranges, nitrogen should have a
thermal conductivity of about 2 � 1021 m�1 s�1 [22]. We’ll con-
sider a tube with L � 10 cm. Experimentally measured radial veloc-
ities [18] have been on the order of 15 m/s. If we suppose that a
secondary circulation is roughly circular with a diameter of L and
a mean velocity of 15 m/s, then sf � 0:02 s.

Getting a universally accurate estimate for np, the density of cir-
culating particles, is difficult. One experimental report of a sec-
ondary flow estimated that the flow of mass per second in the
secondary circulation was within about a factor of two of the mass
flow in the primary circulation [7]. From pressure measurements,
we can estimate that the density of the gas in a vortex tube is
within an order of magnitude of atmospheric pressure, so we can
estimate that np is about the number density of gas at sea level,

that is, around 2:7� 1025 m�3. Then, if T0 � 320 degrees Kelvin
and vh � 150 m/s, we find that

W � 105 1� r
1þ r

: ð42Þ



Fig. 3. This surface (displayed from two different angles) shows the dependence of the temperature on W and a. Note that the parameter C is uniquely specified by a and W,
so it is not an independent parameter in these plots.
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Several of the numbers that went into that estimate were very
rough. However, 105 is a large number. If r is not very, very close to
1, then the estimate for W could be quite far off without changing
the fact that we should expect the heat pump to have reached
saturation.

What happens, then, if r � 1? A Taylor expansion of Eq. (6) gives
that

W � cvnpL
2T0Ahse

2jmv2
hNpsf

ð43Þ

If Dx is a characteristic thickness of the boundary across which
the temperature transitions between the temperature of the parcel
and the temperature of its surroundings, then the heat transfer
coefficient h is j=Dx. In that case,

W � cvL
2

2Dx
T0

mv2
h

A
V
se
sf

: ð44Þ

If ‘ is a characteristic length of the system and V is the volume
of a typical circulating parcel, then A=V � 1=‘. Dx is probably on the
same order as ‘. The heat exchange time se should not exceed half
of the flow cycle time sf , but they might be on the same order. In
that case,

W � L2

‘2
cvT0

2mv2
h

se
sf

: ð45Þ

In a typical vortex tube, cvT0=2mv2
h is about 10. L2=‘2 will be

greater than one and se=sf will be less than one. In a system that
relies entirely on conduction for heat transfer, it seems very plau-
sible that the heat pump might reach saturation, but not necessar-
ily a forgone conclusion.

Be that as it may, if even a few percent of the parcel (or sec-
ondary flow) is exchanged with fluid from the surrounding med-
ium at each end during each iteration of the cycle, then r will be
much larger and the system will saturate. The flow of fluid up
and down the pressure gradient has to be completely closed if
the system is going to be anywhere other than the saturation limit.
6. Discussion

Our model includes a number of potentially important simplifi-
cations. First, it is a one-dimensional model which does not include
any axial effects. The assumption that the essence of the Ranque–
Hilsch temperature separation effect can be captured without any
axial effects is not an unambiguously safe one. For example, the
refrigeration cycle model presented by Ahlborn et al. involved a
secondary flow that moved axially as well as radially [8,9],
although that model and the one explored here have a number of
qualitative similarities.

The model presented by Liew et al. was largely one-
dimensional, and in fact their predicted temperature separation
between the core and the radial outer edge is identical to our result
in the saturated-heat-pump limit [16]. However, Liew et al. include
an additional term to account for adiabatic deceleration of the fluid
at the edge of the cylinder as it moves toward the hot exit of the
tube. Our model describes the radial temperature separation rather
than the difference between the hot-end and cold-end exit temper-
atures. A term of the kind used by Liew et al. might be necessary in
order to translate from one result to the other.

Furthermore, the results from Sections 3 and 4 are for a radial
slice of the system that is in equilibrium. This may or may not be
a good description of a real vortex tube, especially if the tube is rel-
atively short and the axial flow rate is relatively large. Liew et al.
have suggested [16] that overly short vortex tubes may have worse
performance, essentially for this reason.

We should also keep in mind that although much of the physics
involved turns out the same way for any choice of potential, our
choice to assume a gravitational potential (or, equivalently, a rota-
tion profile with x � r�1=2) does have some real consequences. For
instance, the pressure equilibrium equations would turn out some-
what differently for different potentials. In fact, the rough esti-
mates in the previous section suggest that the experimentally
observed values of C are smaller than Eq. (37) would predict for
the estimated values of a. Our assumption of a linear potential
may explain this.

Despite the simplifications involved in this model, it may pro-
vide some insights into what factors should affect the performance
of a vortex tube. Once the heat transport has saturated, then for a
given radial slice of the tube, the problem of optimizing the radial
temperature separation reduces to the maximization of a. One way
of increasing a would be to increase the radial pressure gradient,
which could be accomplished by increasing the angular velocity
of the spinning gas.

The parameter a also depends on the specific heat capacity cp.
Smaller specific heat capacities result in larger values of a. In par-
ticular, at saturation, and to first order in ða� 1Þ, the equilibria
given by Eqs. (36) and (37) become

a ¼ 1þ C ð46Þ
TL

T0
¼ 1

1þ C
: ð47Þ

Recall that C / 1=cp. One might expect that switching between
gases could improve performance, especially between diatomic
and monatomic gases [23]. However, this is contingent on the rota-
tional energy mv2

h=2 at the edge remaining constant. Some exper-
imental work has already been done concerning the behavior of
different gases and mixtures of gases in vortex tubes [24–26],
but they have not fully resolved whether or not this prediction of
our model is correct.

Of course, if the heat transport were not saturated, then this
becomes somewhat more complicated. Switching between gases
could modify the flow inside the vortex tube in such a way that
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the parameter W could change and the system could be pushed
toward or away from saturation. Our model does not predict the
dependence of r, se, and sf on factors like the molecular mass of
the gas in the tube. These dependences are also somewhat more
complicated if we want to predict measurements of the hot and
cold exit temperatures rather than predicting the radial tempera-
ture profile at a particular axial location along the tube (the stagna-
tion terms will have their own dependences on the adiabatic index
c and the rotational velocity).

The physics that we describe could potentially be useful for a
variety of applications outside of the world of vortex tubes. For
instance, one might look for astrophysical applications anywhere
there is a fluid with a temperature gradient that is stable to the
convective instability but that still contains some kind of mixing
or other motion along a pressure gradient. In fact, in the context
of rotating astrophysical disks, the ‘‘backwards transport” dis-
cussed by Balbus [27] has a great deal in common with the Ran-
que–Hilsch temperature separation effect. There are also
similarities between our model and the physics of thermoacoustic
heat pumps. These devices use acoustic waves to compress and
decompress parcels of gas in order to move heat up a temperature
gradient. One type of thermoacoustic heat pump can be described
as a Brayton cycle [28], much like our model of Ranque–Hilsch
temperature separation.

Ranque–Hilsch temperature separation is not the only kind of
interesting heat transport effect that can happen in a rotating
gas. For instance, for a quickly compressed rotating gas, the
piezo-thermal effect [29] could set up a temperature gradient such
that the core is heated and the periphery is cooled (it could cool the
core and heat the periphery if a rotating column of gas were
decompressed instead). It would be interesting to see experimental
and theoretical investigations into the behavior of a vortex tube
that is compressed or decompressed during operation, given the
variety of additional physics that might come into play [30,31].
7. What can be done to test this model?

In order to validate this model of Ranque–Hilsch temperature
separation, especially as opposed to the saturation-regime temper-
ature profile described by others [6,16], it would be useful to make
experimental measurements of the temperature separation for a
vortex tube operating outside of the saturation regime. Ideally,
we would want W (and, to a lesser extent, a) to be as small as pos-
sible while still achieving a measurable temperature separation.
This might be achieved by producing relatively low angular veloc-
ities in the tube and radial motion that relies as much as possible
on a closed secondary flow, with minimal turbulence.

One potential difficulty in validating this model comes from the
fact that it describes radial heat transport but does not consider
effects due to axial flow. It would be interesting to see the behavior
of a device with radial flow that mimics what is found in a vortex
tube (likely driven mechanically) but with sealed ends and no axial
flow. If suchadevicewere to achieve temperature separation similar
to what appears in a vortex tube (perhaps up to a stagnation term),
that would suggest that the heat transfer can correctly be described
in terms of the radial behavior of the fluid in a given slice of the
device.
8. Conclusions

One promising possible explanation for the vortex tube heat
separation effect involves a heat pump driven by radial motion.
In this paper, we have presented a simple analytical model
intended to capture the basic behavior of such a heat pump, and
to explore which parameters of the vortex tube flow are likely to
be most important to the heat separation effect.

Our model suggests that, under many circumstances, the heat
pump effect may ‘‘saturate” in such a way that driving a more vig-
orous secondary flow (or turbulence, or whatever is causing fluid to
move radially back and forth within the tube) will not change the
magnitude of the temperature separation. In this case, the temper-
ature separation reduces to a simple relation involving the pres-
sures at the boundaries. This saturation appears to be plausible.

However, this saturation is not inevitable. Depending on the
geometry of the flow, and on the quantity of radially-moving fluid,
a vortex tube might not reach saturation, in which case the tem-
perature separation will take a substantially more complicated
form. The most important factor for a vortex tube not to reach sat-
uration is that the heat exchange between circulating fluid and
background fluid be entirely conductive; if even a few percent of
the circulating fluid mixes with the background on each cycle, then
saturation is almost certain. Although the useful applications of the
vortex tube effect are likely in the regime of saturation, it is pre-
cisely when saturation is not achieved that the details of the phys-
ical processes underlying the model equations developed here may
be most easily explored experimentally, thereby allowing a sys-
tematic evaluation of the model proposed here.
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