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The generation of the plasma current resulting from Bremsstrahlung absorption is considered. It is shown that
the electric current is higher than the naive estimates assuming that electrons absorb only the photon momentum
and using the Spitzer conductivity would suggest. The current enhancement is in part because electrons get the
recoil momentum from the Coulomb field of ions during the absorption and in part because the electromagnetic
power is absorbed asymmetrically within the electron velocity distribution space.
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I. INTRODUCTION

In the presence of external electromagnetic field, colliding
electrons and ions absorb the incoming radiation through the
process known as inverse Bremsstrahlung. In Bremsstrahlung
absorption, the electron receives additional recoil momentum
from the ion besides the momentum of the photon. Therefore,
plasma electrons absorb more than just the photon momentum
from the incoming radiation. The generated current is then
larger than one would get by assuming that electrons absorb
just the photon momentum. It was shown in [1] that this
increase in current is equal to 8/5.

However, the recoil is not the only mechanism that will
increase the current. Plasma electrons absorb the radiation
asymmetrically in velocity space; specifically, electrons co-
moving with the incoming photons will absorb slightly more
power than electrons going in the opposite direction. Even
in the absence of net momentum absorption, this asymmetric
absorption in power can lead to current drive. This is because
the collision frequency in plasma is speed dependent. Thus,
upon absorbing energy, electrons going in the direction of
the incoming radiation will experience less resistance from
the plasma than electrons going in the opposite direction,
resulting in current. This is called the asymmetric resistivity
current drive effect and is mostly known with respect to
cyclotron absorption used to drive toroidal current in tokamaks
[2,3]. Moreover, even without the asymmetric resistivity effect
the fluid approximation is less precise in considering current
generation as opposed to momentum input, because it assumes
that all electrons get equal push in the same direction, which is
not the case for Bremsstrahlung absorption. In fact, the ability
of electrons to retain current is sensitive to both its location in
velocity space and the direction in which it is being pushed.

In this paper we rederive the result for the momentum
absorption rate and calculate the additional increase in current
due to the current drive effect. To derive the current drive effect,
it will be necessary to consider in detail how exactly the mo-
mentum is absorbed within the electron velocity space. To do
this, we use the formalism developed by Tsytovich et al. [4–6].

II. PROBABILITY OF BREMSSTRAHLUNG

Consider Bremsstrahlung absorption for particles α (elec-
trons) due to the Coulomb collisions with much heavier
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particles β (ions). To satisfy the conservation laws of momen-
tum and energy, in each act of the Bremsstrahlung absorption
some recoil momentum must be transferred from the electron
to the ions. We can write the momentum balance during inverse
Bremsstrahlung as

p′
α = pα + h̄k − h̄q, (1)

p′
β = pβ + h̄q, (2)

where the primed values correspond to the quantities after the
absorption, k is the wave vector of the photon, and q is the
recoil wave vector transferred from the electron to the ion.
The conservation of energy is

εα
pα

+ εβ
pβ

+ h̄ωk = εα
pα+h̄k−h̄q + ε

β
pβ+h̄q. (3)

Here, we will use the diffusion approximation, when h̄k,
h̄q are small in comparison with the particle momentum
(h̄k, h̄q ≪ pα). In this approximation, the energy conservation
is simplified to

ωk = (k − q)vα + qvβ . (4)

Now consider the direct process of spontaneous
Bremsstrahlung emission. The momentum balance can be
written as

p′
α = pα − h̄k + h̄q, (5)

p′
β = pβ − h̄q. (6)

With such a definition of the recoil momentum q (notice dif-
ferent signs in the definition of q for emission and absorption),
the energy conservation yields the same relationship between
velocities of the particles and parameters of the photon as for
the inverse process [Eq. (4)].

A schematic diagram of the two processes is shown in
Fig. 1. Essentially, inverse Bremsstrahlung can be considered
as Compton scattering, by the incoming electron, of the
incoming photon k into the virtual photon of the Coulomb
field q [see Fig. 1(a)], while the Bremsstrahlung emission can
be considered as Compton scattering of the virtual photons of
the Coulomb field on the incoming electron [see Fig. 1(b)].

It is clear, that due to time-reversal symmetry, the transition
probability of the inverse and direct processes are related to
each other:

wIBr
pα ,pβ

(k,q) = wBr
pα+h̄k−h̄q,pβ+h̄q(k,q). (7)
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FIG. 1. Schematic diagram of Bremsstrahlung absorption (a) and
emission (b).

Here wBr
pα ,pβ

(k,q) and wIBr
pα ,pβ

(k,q) are the probabili-
ties of spontaneous Bremsstrahlung emission and inverse
Bremsstrahlung per unit time within dkdq. Note that these
probabilities must contain condition (4) as the argument of the
δ function.

One must remember that, in the presence of external
radiation, the true absorption due to inverse Bremsstrahlung
is always accompanied by the process of stimulated emis-
sion. For example, for electromagnetic waves (ω = kc) and
infinitely massive ions (vβ = 0), condition (4) implies that for
inverse Bremsstrahlung the change in the parallel momentum
of the electron is approximately h̄ω/v, while for stimu-
lated Bremsstrahlung emission this change is approximately
−h̄ω/v. However, these two processes do not completely
compensate each other because their probabilities are slightly
different.

More generally, the evolution of the distribution function
f α

pα
due to the processes of inverse Bremsstrahlung and

stimulated Bremsstrahlung emission is described by [4]

∂f α
pα

∂t
= −

∫
wIBr

pα ,pβ
(k,q)f α

pα
f β

pβ
nkdkdqdpβ

+
∫

wIBr
pα−h̄k+h̄q,pβ−h̄q(k,q)f α

pα−h̄k+h̄qf
β
pβ−h̄qnkdkdqdpβ

−
∫

wBr
pα ,pβ

(k,q)f α
pα

f β
pβ

nkdkdqdpβ

+
∫

wBr
pα+h̄k−h̄q,pβ+h̄q(k,q)f α

pα+h̄k−h̄qf
β
pβ+h̄qnkdkdqdpβ .

(8)

Following Tsytovich [4–6], after Taylor expansion for
h̄k, h̄q ≪ pα we get the Fokker-Planck equation for the
evolution of f α

pα
,

∂f α
pα

∂t
= ∂

∂pα

· Spα
= ∂

∂pα

·
(

D̂α

∂f α
pα

∂pα

+ Fαf α
pα

)
, (9)

where

D̂α =
∫

h̄2(k − q)(k − q)wBr
pα ,pβ

nkf
β
pβ

dkdqdpβ , (10)

Fα =
∫

h̄2(k − q)

(

q ·
∂f

β
pβ

∂pβ

)

wBr
pα ,pβ

nkdkdqdpβ . (11)

The normalization is such that the density of particles is
nα =

∫
f α

pα
dpα =

∫
f α

vα
dvα, the total number of photons per

volume is Nph =
∫

nkdk, and nk is the number of photons
within dk.

The probability of spontaneous Bremsstrahlung emission
for electromagnetic waves (ω = kc) keeping terms of the order
of kv/ω ∼ v/c is given by [6]

wBr
pα ,pβ

(k,q) =
2e4

αe2
βδ[ωk − (k − q)vα − qvβ]

h̄π2m2
αq4(ωk − kvα)2 ∂(εω2)

∂ω

∣∣
ω=ωk

ε2
q,qvβ

×
∣∣∣∣[ek × q] + kq

ωk − kvα

[ek × v]
∣∣∣∣
2

. (12)

This expression is only correct for Bremsstrahlung ig-
noring the polarization effects. By polarization effects we
mean that the plasma environment in which the electron
finds itself is influenced by the presence of the electron.
This approximation is good for dilute plasma. In gen-
eral, the probability of Bremsstrahlung is proportional to
|[ek × (Mα + Mβ + Mαβ)]|2, where Mα is the emission due
to oscillation of α particles in the screened field of β charges,
Mβ is the emission due to oscillation of β particles in the
screened field of α charges, and Mαβ is the emission due to
oscillation of the polarization clouds around particles α and β.
While Mβ is small due to the high ion mass, the term Mαβ can
be comparable with Mα . Moreover, polarization effects may
make electron-electron and ion-ion collisions important as
well. The polarization effects are especially important for
longitudinal waves and must be almost always taken into
account for them (we consider only transverse electromagnetic
waves here) [4–6]. In Eq. (12) the polarization effects are
ignored, and only the Mα term is retained; this requires the
plasma to be tenuous enough. Another approximation used
in Eq. (12) is nonrelativistic velocities. In all subsequent
calculations, we also take a unity dielectric function (ε ≈ 1),
which is a good approximation for tenuous plasma. We will
also ignore plasma dispersive effects, take ωk = ω = kc, and
assume an infinite ion mass and set vβ = 0, vα = v.

III. MOMENTUM CHANGE

In this section let us calculate the rate of momentum change
for electrons during Bremsstrahlung absorption.

From Eq. (9) we can calculate the rate of momentum
absorption due to Bremsstrahlung as

dpα
V

dt
= −

∫
Spα

dpα, (13)

so −Spα
has the meaning of the rate of momentum absorption

per dpα by electrons with momentum between pα and pα +
dpα .

For plasma with a spherically symmetric distribution
function and infinitely massive ions (vβ = 0) we can take
advantage of condition (4) and write

dpα
V

dt
=

∫
h̄(k − q)

h̄ωk

vα

∂f α
pα

∂pα

wBr
pα ,pβ

f β
pβ

nkdkdqdpβdpα.

(14)
This suggests that the probability of the total absorp-

tion (inverse Bremsstrahlung plus stimulated Bremsstrahlung
emission) in plasma with a spherically symmetric
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distribution function is proportional to the probabil-
ity of spontaneous Bremsstrahlung emission and is
(h̄ωk/vα)(∂ ln f α

pα
/∂pα)wBr

pα ,pβ
(k,q). For plasma near equi-

librium with Maxwell distribution function, which for
convenience we will consider, this probability becomes
(h̄ωk/T )wBr

pα ,pβ
(k,q) and is actually correct even for the finite

ion mass.
Consider the incoming electromagnetic radiation that con-

sists of photons with k = kez and of the total intensity
I = c

∫
h̄ωnkdk. Because of the condition (4) the recoil mo-

mentum can be divided into the parts parallel and perpendicular
to the velocity component:

q = −ω − kv
v2

v + q⊥. (15)

Then the rate of momentum absorption directed along the
z axis can be written as

dpα
V,z

dt
=

∫
h̄

(
k + ω

v

vz

v
− kv

v

vz

v
− q⊥z

)

× h̄ω

T
wBr

pα ,pβ
f α

pα
f β

pβ
nkdkdqdpβdpα. (16)

To calculate the probability of Bremsstrahlung (12), we
express

∣∣∣∣[ek × q] + kq
ω − kv

[ek × v]
∣∣∣∣
2

=
∣∣∣∣[ez × q⊥] +

(
− ω

v2
+ kq⊥

ω − kv

)
[ez × v]

∣∣∣∣
2

= q2
⊥ − q2

⊥z
+ ω2

v2

v2
⊥

v2
+ 2

ω

v2
q⊥z

(vz − v⊥β⊥) − 2q2
⊥z

βz,

(17)

where we introduced β = v/c, used the expression for the
scalar quadruple product [ez × q⊥] · [ez × v] = −q⊥z

vz, and
kept only the first-order terms.

We can write the z-axis projection of the perpendicular
to the velocity component of the recoil momentum as q⊥z

=
q⊥ sin θ sin ϕq⊥ , where θ is the angle between velocity and the
z axis, i.e., vz = v cos θ and v⊥ = v sin θ , while ϕq⊥ is the polar
angle of q⊥ in the plane perpendicular to v. We then integrate
over ϕq⊥ from 0 to 2π and over dq∥q⊥dq⊥. When we integrate
over dq⊥, it is necessary to introduce a cutoff to get rid of
a logarithmic divergence. For definiteness, we will use the
quantum mechanical cutoff (qmax = mαv/h̄), which is correct
when the Born approximation can be applied (v ≫ e2/h̄). In
the opposite classical limit (v ≪ e2/h̄) the proper cutoff is
qmax = mαv2/eαeβ , and the conclusions of the paper should
remain true, but all logarithmic factors should be replaced with
ln (mαv3/ωeαeβ).

Keeping only the leading logarithmic terms, the probability
of Bremsstrahlung integrated over dq is then

∫
wBr

pα ,pβ
(k,q)dq

≈
e4
αe2

β

π h̄m2
αω3v

(
1 +

v2
z

v2
+ 4βz

v2
z

v2

)
ln

(
mαv2

h̄ω

)
, (18)

which determines the absorbed power, and
∫

q⊥z
wBr

pα ,pβ
(k,q)dq

≈ ω

c

e4
αe2

β

π h̄m2
αω3v

2
v2

⊥
v2

(
cvz

v2
+ 2

v2
z

v2
− v2

⊥
v2

)
ln

(
mαv2

h̄ω

)
,

(19)

which determines the amount of momentum change in the
direction perpendicular to the velocity. This is needed to
calculate the current. Note that while it is not necessary to
retain the first-order terms in Eq. (18) to calculate the absorbed
power, one needs to keep them while calculating current. Note
also in Eq. (18) that electrons moving in the direction of the
photon (βz > 0) are more likely to absorb energy than electrons
moving in the opposite direction (βz < 0). This is consistent
with the picture that an electron moving in the direction of the
photon can absorb its energy through a smaller angle scatter
than would an electron moving in the opposite direction.

From Eqs. (18) and (19) we can write the rate of momentum
absorption as

dpα
V,z

dt
=

∫
h̄ω

c

(
1 + cvz

v2
−

v2
z

v2

)
h̄ω

T

×
nβe4

αe2
β

π h̄m2
αω3v

(
1+

v2
z

v2
+4βz

v2
z

v2

)
ln

(
mαv2

h̄ω

)
f α

p dpnkdk

−
∫

h̄ω

c

h̄ω

T

nβe4
αe2

β

π h̄m2
αω3v

× 2
v2

⊥
v2

(
cvz

v2
+ 2

v2
z

v2
− v2

⊥
v2

)
ln

(
mαv2

h̄ω

)
f α

p dpnkdk.

(20)

Integrating over angle θ , we get

dpα
V,z

dt
= 32

15

∫
h̄ω

T

nβe4
αe2

β

πcm2
αω2v

ln
(

mαv2

h̄ω

)
f α

v dvnkdk. (21)

Therefore,

dpα
V,z

dt
= 8

5
αI

c
. (22)

Here α is the effective absorption coefficient,

α ≈ 4
3

√
2
π

nαnβe4
αe2

β

πcm3
αω2v3

th

ln
(

2T

h̄ω

)
, (23)

where v2
th = T/mα . This absorption coefficient determines the

total absorbed power density: P abs
V = αI .

If we ignored the recoil momentum and assumed that
electrons absorb just the incoming photon momentum h̄k, then
the rate of momentum change would be

dpk
V,z

dt
=

∫
h̄k

h̄ω

T
wα,β

pα ,pβ
f α

pα
f β

pβ
nkdkdqdpβdpα = αI

c
.

(24)

Thus, due to the recoil, electrons get 8/5 times more
momentum than they would have got absorbing only the
photon momentum, which is consistent with the result obtained
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in [1]. This conclusion is true for any spherically symmetric
distribution function, not just a Maxwellian. This additional
momentum absorbed by electrons (as a whole) is in the
direction of the incoming radiation. The ions (as a whole),
on the other hand, absorb momentum in the direction opposite
to the incoming radiation, such that the total rate of momentum
absorption for plasma is equal to the rate of photon momentum
absorption:

dpα
V,z

dt
+

dpβ
V,z

dt
= 8

5
αI

c
− 3

5
αI

c
=

dpk
V,z

dt

= h̄k
dN abs

ph

dt
= αI

c
. (25)

It is curious that, after averaging for spherically symmetric
distribution functions, the last two terms in Eq. (16) cancel each
other, and the rate of momentum absorption becomes just

dpα
V,z

dt
=

∫
h̄
(
k + ω

v

vz

v

)

× h̄ω

T
wBr

pα ,pβ
f α

pα
f β

pβ
nkdkdqdpβdpα, (26)

where integration of wBr
pα ,pβ

(k,q) over dq can be done
independently to get (18).

∫
wBr

pα ,pβ
(k,q)dq has a zero-order

term, which is even in vz, and a first-order term O(βz), which is
odd in vz. In Eq. (26) the first term k = ω/c is the momentum
of the absorbed photon, and it is much smaller than the
momentum coming from the recoil (ω/v)(vz/v). However,
the photon term k = ω/c is the same for all electrons and is
multiplied by the zero-order term in

∫
wBr

pα ,pβ
(k,q)dq, while the

recoil term, which depends on the velocity projection vz, has
contribution only from the first-order term in

∫
wBr

pα ,pβ
(k,q)dq,

because the zero-order term is the same for oppositely going
electrons and so gives zero contribution after averaging over
the distribution function. Thus, after multiplication by the
probability both terms give contributions of equal order. The
coefficient next to the first-order term in

∫
wBr

pα ,pβ
(k,q)dq

is positive, which comes from the fact that Bremsstrahlung
emission is the most pronounced in the direction of the electron
velocity [7]. Since also the recoil term is proportional to vz, we
can immediately conclude that the averaged momentum gained
by electrons due to the recoil is in the positive z-axis direction.

IV. INVERSE BREMSSTRAHLUNG CURRENT

The time evolution of the current density can be put as

dj
dt

= − e

me

dpe
V

dt
− νSpj. (27)

This is a fluid approach, since it takes into account only
how much momentum is absorbed by electrons, not which
electrons absorb the momentum.

The collision frequency νSp in Eq. (27) corresponds to the
Spitzer conductivity and can be approximated by the following

empirical formula [8],

νSp = Z

3

√
2
π

(
0.295 + 0.39

0.85 + Z

)
+

v3
th

, (28)

where + = ω4
p ln ,/4πn and Z is the ion charge. From

Eq. (27) the stationary current density is

jfluid = − e

me

ν−1
Sp

dpe
V

dt
. (29)

Since the current density in the fluid approximation is
proportional to the rate of momentum absorption, the current
corrected for the recoil is 8/5 times higher than the simple
fluid estimate ignoring the recoil and is equal to

jfluid = −8
5

e

me

αI

c
ν−1

Sp = − 20.4

Z
(
1 + 1.32

0.85+Z

)
ev3

th

me+

αI

c
. (30)

However, the Spitzer conductivity is strictly applicable only
to the current produced by a dc electric field, when all electrons
get equal acceleration in the same direction. The current
generation due to inverse Bremsstrahlung is not equivalent
to the action of a dc electric field because different electrons
absorb different amounts of power and are pushed in different
directions.

One example of the kinetic effects is the additional current
due to asymmetric absorption of radiation. Figure 2 shows
the integrated probability of absorption within dθ given by
Eq. (18) for electrons lying on the circle with radius β = 0.08
in velocity space. We see that the electrons going in the
direction of the incoming photons (0 ! θ < π/2) absorb more
radiation than electrons going in the opposite direction (π/2 <
θ ! π ). This asymmetric absorption will create additional
current because the collision frequency in plasma is speed
dependent, and thus electrons going in the direction of the
incoming radiation will experience less resistance from the
plasma than electrons going in the opposite direction, resulting
in more current.

Figure 3 shows, averaged over all possible recoils, the rate
of momentum absorption along the z axis by an electron with
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FIG. 2. The probability of Bremsstrahlung absorption in arbitrary
units versus the angle between the electron velocity and the incoming
photon direction cos θ = vz/v for β = 0.08.
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FIG. 3. The momentum absorption rate per electron as a function
of cos θ = vz/v for β = 0.08: along the z axis taking into account
the recoil (solid blue line), along the z-axis taking into account only
the photon momentum (dashed red line).

β = 0.08 versus cos θ = vz/v. −Sp,z is defined by Eq. (14)
and determines the rate of momentum absorption taking into
account the recoil effect. −Sk,z is defined by Eq. (24) and
determines the rate of momentum absorption assuming that
only the photon momentum is absorbed. We can see that the
recoil effect not only changes the integrated (average) rate
of momentum absorption but radically alters the distribution
of the absorbed momentum in velocity space. For −Sk,z the
momentum absorption rate is always positive, i.e., along the z
axis, and does not strongly depend on cos θ , while for −Sp,z

the momentum absorption rate varies greatly with cos θ in both
magnitude and sign. In considering Bremsstrahlung absorption
by a particular electron, the natural directions are along the
electron velocity and perpendicular to the electron velocity.
When | cos (θ )| is close to 1, the velocity of the electron is
either parallel or antiparallel to the direction of the incoming
photon, and so the change in momentum along the z axis
is determined mostly by the recoil parallel to the velocity,
which is about (h̄ω/v)(vz/v) in each act of the Bremsstrahlung,
as was shown previously. For smaller values of | cos (θ )| the
change in momentum along the z axis is mostly determined by
the recoil perpendicular to the electron velocity. This is why
the absorption rate shown in Fig. 3 changes sign.

In general, the distribution function will evolve both under
the influence of Bremsstrahlung absorption and under the
influence of collisions,

∂f e
p

∂t
=

(
∂f e

p

∂t

)

Br
+

(
∂f e

p

∂t

)

coll
, (31)

and the time evolution of the current should be described more
completely than Eq. (27) does by

dj
dt

= −e

∫
v
∂f e

p

∂t
dp. (32)

Following [3] we can write the current density at time t
as the rate of pushing electrons times the ensemble-averaged

current difference:

jcd(t) =
∑

v,△v

∫ t

0
dτ

PV (τ,v,△v)
△ε

×⟨qevz(t − τ,v + △v) − qevz(t − τ,v)⟩

=
△v→0

∑

v,△v

∫ t

0
dτ

PV (τ,v,△v)
△ε

△v · ∂⟨qvz(t − τ,v)⟩
∂v

.

(33)

If the power is independent of time, we can put integration
inside the ensemble-averaged current and write for a steady-
state current

jcd =
∫ [

− e

me

h̄(k − q) · ∂χ/∂v
h̄ω

]
dPV (v,k,q), (34)

where we expressed infinitesimal changes in energy and veloc-
ity through ω, k, q, changed from summation to integration,
and introduced a Green’s function: χ =

∫ ∞
0 ⟨vz(τ,v)⟩dτ . In

most cases it is possible to express the Green’s function as
χ (v) = vzν

−1(v), where ν−1 can be thought of as an effective
collision frequency [9].

The expression in square brackets in Eq. (34) can be un-
derstood as incremental current drive efficiency. Thus, to find
the generated current, one needs to average the incremental
current drive efficiency over the power density absorbed:

jcd =
∫ (

δjz

δPV

)
dPV

= e

me

∫
(k − q) · ∂χ/∂v

ω

mev
2

2

× ∂

∂v
· h̄(k − q)

h̄ω

meT
wBr

pα ,pβ
f α

pα
f β

pβ
nkdkdqdpβdpα

= e

me

∫ [
ν−1

ω
(kz − qz) + ∂ν−1

∂v

vz

v

]
mev

2

2

× ∂

∂v
· h̄(k − q)

h̄ω

meT
wBr

pα ,pβ
f α

pα
f β

pβ
nkdkdqdpβdpα.

(35)

The first term in square brackets of Eq. (35), which is pro-
portional to kz − qz, is the usual current due to momentum in-
jection along the z axis, while the second term, which is propor-
tional to ∂ν−1/∂v, is the current due to asymmetric absorption.

One might want to calculate the generated current by
summing the incremental currents instead,

jcd,res =
∫

δjz = − e

m

∫
h̄(k − q) · ∂χ

∂v

× h̄ω

T
wBr

pα ,pβ
f α

pα
f β

pβ
nkdkdqdpβdpα

= e

∫
Sv · ∂χ

∂v
dv, (36)

where we used the wave induced flux in velocity space
Sv = m2

eSp. Equation (36) follows from Eq. (33) if the
power absorbed is localized around certain velocity. Therefore,
Eqs. (35) and (36) are identical when the absorption is
localized in the velocity space, but they produce different
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results otherwise. In the present problem all electrons are
pushed by the incoming electromagnetic field, and Eq. (36)
miscalculates the generated current density.

After integration by parts, Eq. (35) can be written as

jcd = − e

2

∫ ∂
(
v ∂ν−1

∂v

)

∂v

vz

v
h̄ω

h̄ω

meT
NphnβwBr

pα ,pβ
f e

v dqdv

− e

∫
∂
(
vν−1

)

∂v
h̄(kz − qz)

h̄ω

meT
NphnβwBr

pα ,pβ
f e

v dqdv.

(37)

The Green’s function and the corresponding effective
collision frequency ν, generally speaking, can be found only
numerically. However, the high-velocity approximation exists
[3,10]:

ν−1 = v3

+(5 + Z)
+ 9v2

thv

+(5 + Z)(3 + Z)
. (38)

This expression has two shortcomings. First, it uses the
high-velocity approximation for both electron-electron and
electron-ion collisions. While for electron-ion collisions this
approximation is always good, it is less so for electron-electron
collisions. Since it is mostly thermal electrons that absorb
through Bremsstrahlung, the high-velocity approximation
will noticeably underestimate the current for low-Z plasma.
Second, this expression violates the momentum conservation
in electron-electron collisions. Thus, we expect that Eq. (38)
is a good approximation for high-Z plasma, but for low-Z
plasma the error in the current can be appreciable.

After straightforward calculations using ν defined by
Eq. (38) we obtain from Eq. (35)

jcd = − 34.2
5 + Z

ev3
th

me+

αI

c
− 39.5

(5 + Z)(3 + Z)
ev3

th

me+

αI

c
, (39)

while Eq. (36) would only give factors 12.8 and 24.8,
respectively, in the above formula.

For comparison, in the fluid approximation the current
density corrected for the recoil, which is given by Eq. (30),
can be represented as

jfluid = eν−1
Sp

∫
Sv,zdv. (40)

We can clearly see that Eq. (35) has an additional term that
is responsible for the current due to asymmetric absorption.

Because of the use of the high-velocity and momentum
conservation violating approximation for ν, Eq. (39) under-
estimates the current, especially for small Z. Reckoning that
electron-electron collisions conserve current, to remedy this
problem we propose an alternative hybrid expression, where
the part of the current in Eq. (35) proportional to kz − qz is
substituted by the fluid expression Eq. (30), while the part
proportional to ∂ν−1/∂v is left unchanged:

jhybrid = jfluid − e

me

∫
∂ν−1

∂v

vz

v
dPV (v,k,q)

= jfluid − 19.2
5 + Z

ev3
th

me+

αI

c
− 12.4

(5 + Z)(3 + Z)
ev3

th

me+

αI

c
.

(41)
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FIG. 4. The generated current density versus the ion charge Z:
fluid approximation with the Spitzer conductivity given by Eq. (30)
(solid blue line), current drive approximation keeping only the first
term in Eq. (39) (dotted red line), current drive approximation keeping
both terms in Eq. (39) (dashed orange line), hybrid current given by
Eq. (41) (dash-dotted green line).

If all electrons were to absorb equal amounts of power,
then the part of the current in Eq. (35) proportional to kz − qz

would be exactly given by the fluid expression Eq. (30). In case
of Bremsstrahlung absorption it is mostly thermal electrons
that absorb radiation and the fluid formula overestimates the
corresponding part of the current. On the other hand, the
second part of Eq. (41) underestimates the current because
of the high-velocity limit for ν. So, all in all, Eq. (41) can
be a decent approximation for the current for all values of Z.

Figure 4 shows the generated current given by the fluid
formula (30), by the current drive formula (39) keeping one and
two terms in Eq. (39), and by the hybrid expression (41) versus
the ion charge Z. We see that for small Z the current drive
formula substantially underestimates current, making it even
lower than the fluid prediction. However, starting already with
Z = 4 the current drive estimate (39) gives higher current. For
higher Z, when electron-electron collisions become negligible,
the ratio of the current drive prediction to the Spitzer becomes
stable and for infinite Z is around 1.7, so that for high Z the
generated current with the recoil and kinetic effects taken into
account is at least 2.7 higher than the naive fluid estimate
without recoil would suggest. The hybrid expression is 1.3
times larger than the fluid estimate even for Z = 1, and for
Z going to infinity the increase is about 2. To get better and
definite results for small Z plasma, it is necessary to use an
estimate of the effective collision frequency ν more accurate
than Eq. (38) or perform computer simulations.

V. SUMMARY

We analytically considered the generation of the plasma
current resulting from electron-ion Bremsstrahlung absorption
using the following approximations: the polarization effects in
Bremsstrahlung are negligible; velocities are nonrelativistic;
recoil and photon momenta are small in comparison with
the electron momentum; ions have infinite mass; waves are
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electromagnetic with the dispersion relation ω = kc; and the
plasma dielectric function is close to one. The laser intensity
is not too high, so the quiver velocity eE/mω is much smaller
than the thermal velocity. We also note that the logarithmic
dependence on velocity has been ignored throughout the paper
and ln (mαv2/h̄ω) has been substituted with ln (2T/h̄ω) in all
the equations.

We investigated how the momentum and energy are
absorbed by electrons within the velocity space and confirmed
the result obtained in [1], namely that the averaged momentum
absorption by electrons with the recoil taken into account is
8/5 times higher than the momentum absorption assuming
that electrons absorb just the photon momentum. In addition,
we demonstrated that for high-Z plasma the actual current
with the kinetic effects taken into account is at least 2.7 times
higher than the naive fluid estimates without recoil would
suggest, both because electrons get the recoil momentum from
the Coulomb field of ions during the absorption and because

electrons absorb power asymmetrically. We also proposed a
hybrid expression of fluid and kinetic descriptions for the
current that can be a good approximation for all values of Z.

The calculation of the current generated from
Bremsstrahlung absorption is a fundamental problem of
the basic plasma physics. Thus, the results here ought to
be of interest in the different areas where radiation-driven
currents and the generated magnetic fields are important.
Areas in which these effects might be important include the
radiation-driven magnetic field in astrophysics [11–13] and
laboratory experiments that use lasers to drive current [14], in
particular for applications to inertial confinement fusion.
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