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Magnetic fields in rotating and radiating astrophysical plasma can be produced due to a radiative interaction
between plasma layers moving relative to each other. The efficiency of current drive, and with it the associated
dynamo effect, is considered in a number of limits. It is shown here, however, that predictions for these generated
magnetic fields can be significantly higher when kinetic effects, previously neglected, are taken into account.

DOI: 10.1103/PhysRevE.95.013205

I. INTRODUCTION

Cosmic magnetism is usually explained by magnetohy-
drodynamic dynamo theory [1], which is, however, only an
amplification mechanism that still requires some initial seed
field. There have been many speculations about the origin
of the seed field, but consensus is still lacking [2,3]. One
possible mechanism is a radiation induced drag force on
electrons in rotating astrophysical objects. This idea was
evidently first proposed by Cattani and Sacchi [4] and later
has been applied to different astrophysical conditions and
objects [5–17]. However, none of these studies took into
account kinetic effects. It is shown here that predictions for
these generated magnetic fields can be significantly higher
when kinetic effects are taken into account. In the presence of
existing magnetic fields, these kinetic effects can enhance the
generated magnetic fields by orders of magnitude.

A rotating astrophysical object is subject to asymmetric
incoming radiation, which exerts the Poynting-Robertson drag
force on electrons in the (toroidal) rotation direction that
leads to the poloidal magnetic field. Within a fluid framework,
this can be modeled by including an additional term into the
equation for the magnetic field dynamics:

∂B
∂t

= −c

e
∇ × frad. (1)

There are two ways in which kinetic effects modify the
effective radiation force. First, the Poynting-Robertson force
on an individual electron depends on the absorbed power,
which is, generally speaking, different for the electrons of
different energies; usually the more energetic electrons absorb
more power. Thus, to get the effective radiation force on
the electron fluid, one needs to average the force for each
electron over the absorbed power. Second, toroidal current can
be driven even without toroidal momentum injection just by
asymmetrically heating electrons. Indeed, by heating electrons
we increase their energy and since the collision frequency in
plasma is energy dependent (∝v−3) the toroidal drag force due
to Coulomb collisions is going to be asymmetric resulting in
the total toroidal current [18].

To simplify the problem and underscore the influence of
the kinetic effects, we consider a slab geometry, where the
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parallel direction corresponds to the toroidal direction of the
original rotating object (see Fig. 1). Namely, we consider two
parallel and possibly magnetized (in the parallel direction)
plasma slabs that move relative to each other with velocity β̄

(velocities are measured in the units of c). We label the upper
slab slab 1 and the lower slab slab 2.

The paper is organized as follows: In Sec. II we derive
the efficiency of current generation through the Poynting-
Robertson effect. In Sec. III, using kinetic rather than fluid
theory, we show how the efficiency of the current generation
through radiation effects can be much enhanced when there
is a seed magnetic field already present and when kinetic
effects are considered. We consider, in Sec. III A, the case of
blackbody emission and cyclotron absorption. In Sec. III B,
we consider the case of cyclotron emission and cyclotron
absorption, where not only can the currents driven be driven
much more effectively, but there is even the curious effect
that the current in adjacent differentially moving plasma can
be either in the same direction or in opposite directions. In
Sec. IV we summarize and discuss our findings.

II. THE POYNTING-ROBERTSON EFFECT

Consider an electron that moves with velocity β‖ and emits
isotropic radiation in its own reference frame. Imagine that this
electron also absorbs external radiation, which is isotropic in its
own reference frame moving with parallel velocity βs = −β̄.
Conservation of energy and momentum then gives

mc(γ β̇‖ + γ̇ β‖) + ṗems
‖ = ṗabs

‖ , (2)

mc2γ̇ = P abs − P ems, (3)

where P abs is the absorbed power, pabs
‖ is the absorbed parallel

momentum, P ems is the emitted power, and pems
‖ is the emitted

parallel momentum.
The time derivative of the wave momentum is determined

by the power delivered by the wave ṗwave = (k/ω)P wave.
Using the Lorentz transformation we can express it as ṗems =
(β‖/c)P ems,ṗabs = (βs/c)P abs. Inserting these expressions
into the energy-momentum equations we find that electron
parallel velocity satisfies

β̇‖ = − P abs

γmc2
(β‖ − βs). (4)
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FIG. 1. Parallel radiating and absorbing slabs of plasma, im-
mersed in different magnetic fields at different temperatures, in
relative parallel motion.

We see that the electron experience drag by absorbing the
external radiation. This effect is called the Poynting Robertson
effect. It is a relativistic effect by its very nature, although it
does not require that the relative velocity between absorber and
emitter be relativistic. In the reference frame of an electron, this
drag force can be simply interpreted as a momentum transfer
from asymmetric external radiation to an electron. However, in
the reference frame of the external radiation source, there is no
parallel momentum injection; there is only an energy increase,
which makes the electron heavier relativistically. Since the
total parallel momentum must be conserved, the electron must
slow down. Notice that, without external radiation, there would
be no radiation drag force (if we define force as the cause of
velocity change rather than momentum), which is consistent
with the well-known fact that isotropically radiating charge
conserves its parallel velocity [19]. It should be emphasized
that here, by absorption, we mean a generalized process of
wave-particle interaction; for example, it can denote Thomson
scattering. While electrons experience radiation drag, ions
are almost unaffected by radiation and hence current is
generated.

Let us estimate crudely the current drive efficiency in this
case. Assume that the parallel velocity is randomized during
the inverse collision time ν−1 and use the effective electron-
electron and electron-proton Coulomb collision frequency ν =
�/6β3 (see Refs. [20–22]), where � = ω4

p ln Λ/4πnc3. Then,
after averaging over the Maxwell distribution, we find

j‖
P abs

V

= 〈β3〉
15

β̄ ≈ 0.43β3
thβ̄. (5)

Here and later the current drive efficiency is expressed in
the units of e/�mc except for Eq. (6).

III. KINETIC FORMULATION

The kinetic theory of current drive by external radiation is
well developed and experimentally demonstrated [23]. This
theory has been advanced to accommodate the need for
efficient noninductive toroidal current generation required for
the successful operation of commercial tokamaks. The theory
formulates the efficiency of current generation as the ratio of
the driven current density to the absorbed power density [22]:

j‖
P abs

V

= − e

mc

[
n‖
ν

+ β‖
β

∂

∂β

(
1

ν

)]
. (6)

The first term in Eq. (6) can be associated with the Poynting-
Robertson drag, while the second is due to asymmetric heating.
The second term arises because the collision frequency ν

depends sensitively on the electron energy. It leads to the
electron cyclotron current drive effect in tokamaks [18]. The
radiative transfer dynamo effect in astrophysical contexts is
not much different from the situation described above. The
major difference is that the radiation driving current is set up
naturally rather than controlled.

Equation (6) gives the nonrelativistic efficiency of the
current driven by a very narrow radiation band that affects only
a small region in velocity space. To calculate the efficiency for
arbitrary incoming radiation average Eq. (6) over the power
density absorbed per frequency per solid angle per d3β. The
absorbed power density is given by

P abs
V =

∫∫
dω d
αω
Iω
, (7)

where Iω
 is the incoming electromagnetic energy flux density
per unit frequency per solid angle and αω
 is the absorption
coefficient (true absorption plus stimulated emission). Due to
the principle of detailed balance the absorption coefficient can
be expressed through the emissivity of an individual electron
ηω
(p) [24,25]:

αω
 = −8π3c2

n2
rω

2

∫
d3pηω
(p)

(
∂f

∂ε
+ n‖

c

∂f

∂p‖

)
, (8)

where nr is the ray refractive index, we will use approximation
of tenuous plasma and assume nr ≈ 1; n‖ is the wave parallel
refractive index, which we take to be just n‖ = cos θ .

Thus, we can calculate the current drive efficiency for a
specific type of the absorption mechanism determined by
ηω
(p) and for a given external radiation spectrum Iω
.
Although, in both emitting and absorbing radiation, the two
slabs form a coupled system, to get the efficiency linear in
power transferred, note that each slab may be considered to
see fixed radiation from the other slab.

We first argue that it is the current drive efficiency that
determines large-scale magnetic field generation in optically
thick plasma, for which the effect is maximized. For optically
thick plasma, the incoming radiation flux I = ∫∫

dω d
Iω
 is
absorbed over the characteristic distance R = α−1, where α =
P abs

V /I is the characteristic absorption coefficient. Ampere’s
law gives B · 2πr ≈ (4π/c)j‖Rh, where h is the height of the
plasma disk, so the large-scale equilibrium magnetic field at
distance r outside the plasma is proportional to the current
drive efficiency:

B ≈ 2

c

h

r

(
j‖

P abs
V

)
I. (9)

Kinetic effects change the current drive efficiency and thus
the equilibrium field, but they do not affect much the time
to reach equilibrium teq, which is the so-called “L/R time.”
That time is still determined by the Spitzer conductivity,
since the full distribution function is equally pushed by an
electric field [26]. The time to reach equilibrium teq greatly
exceeds the age of the universe, and so the actual value of
the magnetic seed is determined at some characteristic time
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FIG. 2. Schematic picture of the magnetic field growth. Magnetic
field grows approximately linearly with time until it saturates at
equilibrium value Beq. Kinetic effects increase Beq to the same extent
as they increase the current drive efficiency, but they hardly change the
time to reach equilibrium teq. The actual value of the magnetic seed
is determined at some characteristic time tseed � teq, and it increases
to the same extent as the efficiency increases.

tseed � teq, and it increases to the same extent as the efficiency
increases (see Fig. 2).

A. Blackbody incoming radiation and cyclotron absorption

To take one example, let us assume that the incoming
radiation from the first slab is blackbody:

Iω
 = ω2

8π3c2

T1

γ̄ (1 + β̄ cos θ )
. (10)

If the plasma were already immersed in a parallel magnetic
field, then one of the absorption mechanisms would be syn-
chrotron absorption. In the nonrelativistic case, it is determined
by the emissivity [27]:

ηω
(β) = e2β2
⊥ω2

4πc
(1 + cos2 θ )δ[ωc2 − ω(1 − β‖ cos θ )].

(11)

After some algebra it is easy to show that the current drive
efficiency in this case is

j‖
P abs

V

= −〈β2
⊥β3I2(β‖)〉 + 3〈β2

⊥ββ‖I1(β‖)〉
6〈β2

⊥I1(β‖)〉 , (12)

where the averaging is over the initial distribution that is
taken to be a Maxwellian, and the following integrals are
introduced:

I1(β‖) =
∫ 1

−1
dx

1 + x2

(1 − β‖x)3(1 + β̄x)
, (13)

I2(β‖) =
∫ 1

−1
dx

x(1 + x2)

(1 − β‖x)3(1 + β̄x)
. (14)

Keeping only the terms of the order O(β2
‖ ),O(β̄2), O(β‖β̄) we

find

j‖
P abs

V

= 〈β2
⊥β3〉 + 9〈β2

⊥ββ2
‖ 〉

15〈β2
⊥〉 β̄ ≈ 2.4β3

thβ̄. (15)

If we ignored the second term in the numerator of Eq. (15)
and also did not account for β2

⊥ in the absorption, then
the efficiency would be given by Eq. (5), i.e., correspond
to the case of Thomson scattering analyzed through fluid
theory.

From comparison of Eq. (15) and Eq. (5), we see that for
cyclotron absorption the inclusion of the kinetic effects boosts
the generated current by a factor of 6. This is not a huge
change, though it is not insignificant either. For reference,
the fluid estimates for the galactic magnetic field are about
10−19 G [2], while the estimates for the required lower bound
on the seed galactic field is about 10−14 G [28].

Cyclotron absorption mechanism needs some parallel
(toroidal) magnetic field to be already present to work.
However, we see that the efficiency (15) is independent of
the magnetic field, so it seems that we can get poloidal
magnetic field from a very small toroidal field, generated,
for example, by the Biermann battery effect [29]. This works
only when all the incoming radiation is absorbed within the
plasma, so that the effective absorption length is less than
the characteristic size of the system. For blackbody incoming
radiation flux and cyclotron absorption the effective absorption
coefficient is

α = 4

3π

k4
B

c3σSBT 3
1

ω2
p2ω

2
c2, (16)

or α ≈ 10−20+n+2b−3k cm−1 for T1/kB = 10k K, n2 =
10n cm−3, and B2 = 10b G. If we take typical protogalac-
tic values T1/kB = 104 K and n = 1 cm−3, then for B2 =
10−20 G that realistically can be produced by the Biermann
battery the effective absorption length becomes R ∼ 1071 cm,
which is much larger than characteristic size of the system.
Thus, the cyclotron absorption mechanism cannot be respon-
sible for the generation of the galactic seed field. However,
it might be a very effective mechanism of poloidal magnetic
field generation in already highly magnetized objects such as
neutron stars.

B. Cyclotron incoming radiation and absorption

So far we considered that the incoming radiation is
blackbody. We can expect that if the incoming radiation were
narrower in k‖, then its absorption would be more asymmetric
in parallel velocity of the second slab, which would result in
enhanced efficiency.

To investigate this, consider the case where each of the slabs
is immersed in an axial magnetic field, though the respective
magnetic fields are not not necessarily of the same strength.
Suppose that cyclotron radiation is emitted by an optically
thin surface layer of depth L. The incoming flux is then given
by [27]

Iω
 = n1Le2βth1

4π
√

2πc

ω

| cos θ | (1 + cos2 θ )e
−
(

ω−ωc1
ω cos θ

+β̄

)2

2β2
th1 . (17)
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The current drive efficiency for cyclotron absorption has
the same form as Eq. (12), but with the following definition of
I1, I2:

I1(β‖) =
(∫ −|a|

−∞
dx +

∫ ∞

|a|
dx

)
1

|x|3
(x2 + a2)2

(x − aβ‖)2
e− (x+b)2

2 ,

(18)

I2(β‖) =
(∫ −|a|

−∞
dx +

∫ ∞

|a|
dx

)
a

x4

(x2 + a2)2

(x − aβ‖)2
e− (x+b)2

2 ,

(19)

where a = (ωc2 − ωc1)/ωc2βth1 ≡ ωc/ωc2βth1, and b =
(ωc1/ωc2)(β‖/βth1) + β̄/βth1.

The first term in the denominator of Eq. (12) with I1

and I2 defined above is due to direct parallel momentum
injection and so depends on the sign of ωc, while the
second is due to asymmetric heating. Since now absorption is
localized in velocity space and most of the absorbed power
goes into heating rather than giving a parallel push, the
second term completely dominates, and the efficiency becomes
essentially independent of the sign of ωc. There are two
qualitatively different cases that produce current of different
sign: |a| � 1 (positive current) and |a| � 1 (negative current).
From numerical treatment it appears that for wide range of
parameters the efficiency is approximately given by

|j‖|
P abs

V

∼ 102β2
thβ̄. (20)

This is 102/βth larger efficiency than that for the blackbody
radiation, for T/kB ≈ 104 K is about ∼105. Therefore, at least
in the case when the plasma already possesses some toroidal
magnetic field, one can expect the generated poloidal magnetic
field to be orders of magnitude larger than the previous
estimates based on the fluid theory.

These results can be understood from the following qualita-
tive picture. The nonrelativistic cyclotron resonance condition
for an electron of slab 2 moving with velocity β‖2 to absorb the

FIG. 3. (a) ωc1 � ωc2: electrons of slab 2 with negative velocities
around −β̄ (left blue region) interact with the large number of
electrons of slab 1 (left red region), while symmetric electrons
of slab 2 with positive velocities around β̄ (right blue region)
interact with small number of electrons of slab 1 (right red region).
(b) ωc1 �= ωc2: electrons of slab 2 with negative velocities around
−β̄ (left blue region) has large number of electrons of slab 1 in the
nonabsorption window (left white region) and thus absorb less energy
than symmetric electrons of slab 2 with positive velocities around β̄

(right blue region), which have small number of electrons of slab 1
in the nonabsorption window (right white region).

radiation emitted by an electron of slab 1 moving with velocity
β‖1 is

ωc1 − k‖c(β‖2 − β‖1) = ωc2. (21)

Here we use k‖ corresponding to the reference frame where
the electron of slab 1 is stationary, and velocities β‖1, β‖2 are
measured in the frame where slab 2 is stationary.

If |a| � 1, then essentially ωc1 � ωc2 and the resonance
condition is k‖ = 0 or β‖2 = β‖1. The former condition does
not depend on the velocities and cannot lead to the asymmetry,
the latter condition leads to an asymmetric absorption. Indeed,
the electrons with positive parallel velocity β‖2 ≈ β̄ absorb
less power than the electrons with negative parallel velocity
β‖2 ≈ −β̄, because the latter are in resonance with a much
larger number of electrons in slab 1. Thus the electrons with
negative parallel velocities will experience less Coulomb drag
force than the electrons with positive velocities resulting in
positive current. This situation is shown in Fig. 3(a).

If |a| � 1, then the magnetic fields are different ωc1 �= ωc2

and the resonance condition (21) implies that the electrons
of slab 2 with velocity β‖2 will resonantly interact with the
electrons of slab 1 with parallel velocities satisfying{

β‖1 < β‖2 − |ωc|/ωc1,

β‖1 > β‖2 + |ωc|/ωc1.
(22)

Thus there is a window in the absorption for each electron. The
electrons of slab 2 with negative parallel velocity around −β̄

will have larger number of electrons of slab 1 in this window
and thus will receive less power than the electrons of slab
2 around β̄. The result is negative current. This situation is
shown in Fig. 3(b).

Notice that one gets the same efficiency but with different
sign for the current driven in the first slab. For blackbody
incoming radiation, this current would be always in the
opposite direction, but, interestingly, for cyclotron radiation,
it is possible to have the situation when currents in both
slabs flow in the same direction. Indeed, since the parameter
a depends on temperature it can have different values

FIG. 4. Absorbed power density per electron as a function of
parallel velocity for βth = 0.01, β̄ = 0.05 and different values of a:
a = 0.01 (solid blue), a = 0.1 (dotted red), a = 1.0 (dashed orange),
a = 3.0 (dash-dotted green).
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corresponding to two different regimes (|a| � 1 and |a| � 1)
in each slab. Thus, we reach the surprising result that, for
a differentially rotating plasma disk immersed in a toroidal
magnetic field and with a temperature gradient, it is possible
that a toroidal current will be self-consistently generated in
the same direction throughout the disk.

Figure 4 shows the absorbed power per electron as a
function of the parallel velocity for βth = 0.01, β̄ = 0.05
and four different values of parameter a. We can clearly see
that the absorption is asymmetric. For |a| � 1 the situation
is basically analogous to the case of equal magnetic fields
shown in Fig. 3(a) when the electrons with negative parallel
velocities (around −β̄) absorb more power resulting in positive
current. In contrast, for |a| � 1 there is a dip in the absorption
for the electrons moving with negative velocities resulting
in negative current [see Fig. 3(b)]. We can also see that, as
the difference between magnetic fields of the slabs increases,
i.e., as the parameter |a| increases, the total absorbed power
decreases rapidly. Thus, in the limit |a| � 1, the efficiency
should be viewed as questionable, because the total absorbed
power density is negligible and radiation has to pass through
a very large volume of plasma to be fully absorbed.

IV. CONCLUSION

The generation of cosmic magnetic fields due to radiation
transfer can be significantly larger when one takes into account

kinetic effects rather than simply relying on fluid theory.
In the case where the radiation is from cyclotron radiation,
namely, when there already exists an ambient magnetic field,
an increase in fields perpendicular to the ambient field can be
orders of magnitude larger when kinetic effects are considered.
Curiously, in the case of inhomogeneous field, it is possible
to generate these perpendicular fields such that the current
produced within two differentially traveling, radiating, and
absorbing slabs is in the same direction, an effect that would
not be captured in the fluid theory.

The formalism advanced here shows how to deal with
a radiative process, which is kinetic by its very nature.
It is expected that the formalism advanced here can be
applied to various areas of astrophysics where radiative kinetic
effects might be important, for example, to radiative magnetic
reconnection [30]. It is also hoped that the approach taken here
might help to make more accurate the currently widely used
astrophysical radiative transfer codes, which, to the best of our
knowledge, exist only in the hydrodynamic version (see, for
example, Refs. [31,32]).
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