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Three-wave scattering in magnetized plasmas: From cold fluid to quantized Lagrangian
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Large amplitude waves in magnetized plasmas, generated either by external pumps or internal instabilities,
can scatter via three-wave interactions. While three-wave scattering is well known in collimated geometry, what
happens when waves propagate at angles with one another in magnetized plasmas remains largely unknown,
mainly due to the analytical difficulty of this problem. In this paper, we overcome this analytical difficulty and
find a convenient formula for three-wave coupling coefficient in cold, uniform, magnetized, and collisionless
plasmas in the most general geometry. This is achieved by systematically solving the fluid-Maxwell model to
second order using a multiscale perturbative expansion. The general formula for the coupling coefficient becomes
transparent when we reformulate it as the scattering matrix element of a quantized Lagrangian. Using the quantized
Lagrangian, it is possible to bypass the perturbative solution and directly obtain the nonlinear coupling coefficient
from the linear response of the plasma. To illustrate how to evaluate the cold coupling coefficient, we give a set
of examples where the participating waves are either quasitransverse or quasilongitudinal. In these examples, we
determine the angular dependence of three-wave scattering, and demonstrate that backscattering is not necessarily
the strongest scattering channel in magnetized plasmas, in contrast to what happens in unmagnetized plasmas.
Our approach gives a more complete picture, beyond the simple collimated geometry, of how injected waves can
decay in magnetic confinement devices, as well as how lasers can be scattered in magnetized plasma targets.
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I. INTRODUCTION

Coherent three-wave scattering is perhaps the simplest and
the most common type of nonlinear interaction in plasmas.
It happens, for example, in magnetic confinement devices,
where waves injected by antenna arrays decay to other waves
[1,2]. In the case where the wave is injected to drive current
in a tokamak [3,4], there is a possibility that the lower hybrid
current drive is affected by unwanted decays near the tokamak
periphery [5,6]. Even more importantly, three-wave scattering
also happens, for example, in laser implosion experiments
[7], where high intensity lasers interact with plasmas. During
magnetized implosions, where the magnetic field is imposed
to enhance particle confinement [8–10], multiple laser beams
may scatter and reflect one another via magnetic resonances. In
fact, the magnetic resonances can be utilized to mediate energy
transfer between laser beams to achieve pulse amplification
[11], where three-wave scattering plays an essential role.

Despite its importance, coherent three-wave scattering,
well studied in unmagnetized plasma [12,13], remains poorly
understood when plasmas become magnetized. This situation
is mostly due to the analytical difficulty when external
magnetic field is present. Such difficulty deserves to be
overcome in the midst of recent developments in strong
magnetic field technologies [14–16]. Using these technologies,
magnetic fields on the order of mega-Gauss or even giga-Gauss
can be produced. Such strong magnetic field makes electron
gyrofrequency comparable to the plasma frequency in laser
implosion experiments, in which the anisotropy introduced by
the magnetic field can play a prominent role. Since multiple
laser beams usually propagate at angles to one another and
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with the magnetic field during laser-driven implosions, un-
derstanding the angular dependence of three-wave scattering
in magnetized plasma becomes indispensable for making a
knowledgeable choice of the experimental setups to optimize
laser-plasma coupling.

By far, most theoretical work on laser scattering in magne-
tized plasmas is focused on the simple collimated geometry.
In this simple geometry, three kinds of theories have been
developed. The first kind is coupled mode theory, which
searches for normal modes of the nonlinear equations [17,18].
Although normal modes satisfy formally simple equations, the
complexity of the nonlinear problem is hidden inside obscure
coupling coefficients, from which little physical meaning has
been extracted. The second kind is nonlinear current theory,
which describes three-wave parametric interaction by adding
a nonlinear source term into the Maxwell’s equations. Using
fluid models for nonlinear sources, parametric growth rates
have been obtained for extraordinary wave pump [19–21],
lower-hybrid wave pump [22], as well as the right- and
left-circularly polarized wave pumps [23]. To capture thermal
effects, a simple treatment retains only thermal corrections
to the dielectric tensor [24]. A more complete treatment
also includes thermal corrections to the coupling tensor
[25,26]. However, beyond the simple collimated geometry,
such treatment becomes so cumbersome that decades of efforts
have been spent on just simplifying the expressions [27–29],
with very little extractable physical results [30,31]. Aside from
the coupled mode theory and the nonlinear current theory,
the third kind of theory uses Lagrangian formulation. In
this more systematic approach, the interaction Lagrangian
is obtained either from the Low’s Lagrangian [32,33], or
the oscillation-center Lagrangian [34] by expanding plasma
response to the third order. Even with such transparent
formalism, three-wave interactions in magnetized plasma,
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where the waves are not collimated, remains to be analyzed
systematically, in generality, and in detail.

In this paper, we overcome the analytical difficulty in fluid
theory and obtain angular dependence of three-wave scattering
in collisionless, cold, uniform, magnetized plasmas in the most
general geometry. This is achieved by systematically solving
the fluid-Maxwell system to second order in the perturbation
series, where secular terms are removed using a multiscale
expansion. Using this technique, we manage to obtain an
expression for the coupling coefficient that is not only explicit,
but also convenient, from which illuminating physical results
can be extracted. Moreover, we show that the formula for the
coupling coefficient naturally arises as the scattering matrix
(S matrix) element of a quantized Lagrangian. This refreshing
perspective, emerging from detailed cold fluid calculations,
offers a high-level methodology, through which three-wave
coupling can be easily computed. The cold fluid results are
applicable when the wavelengths of participating waves are
much longer than both the Debye length and the typical
gyroradius. Within the applicable range of the fluid model,
our nonrelativistic perturbative treatment is valid when the
amplitudes of waves are not too large, so that the linear
eigenmode structures are preserved, and spectrum broadening
is limited. Our cold fluid results are useful for verification of
numerical codes, as well as development of reduced models.

This paper is organized as follows. In Sec. II, we solve
the fluid-Maxwell system to second order using a multiscale
expansion. In Sec. III, we simplify the general equation in
the simple case where there are only three linear waves
participating in the interaction. In Sec. IV, we distill the
classical theory into a quantized Lagrangian, where the
formula for three-wave coupling becomes transparent. In
Sec. V, we illustrate the general cold fluid results using a set of
examples. Conclusion and discussion are given in Sec. VI, and
supplementary information is provided in the Appendixes.

II. PERTURBATIVE SOLUTION
OF FLUID-MAXWELL SYSTEM

In the fluid regime, where both the Debye length and the
typical gyroradius are much smaller than the shortest wave-
length, charged particles in the plasma respond collectively
to perturbations. In this regime, the plasma system is well
described by the fluid-Maxwell equations

∂tns = −∇ · (nsvs), (1)

∂tvs = −vs · ∇vs + es

ms

(E + vs × B), (2)

∂tB = −∇ × E, (3)

∂tE = c2∇ × B − 1

ε0

∑
s

esnsvs . (4)

The continuity equation [Eq. (1)] describes the conservation
of particles of species s, whose density is ns and average
velocity is vs . The momentum equation [Eq. (2)] governs how
the velocity field vs change due to both the advection and the
Lorentz force, where es and ms are the charge and mass of
individual particles of species s. Finally, the magnetic field

B evolves according to the Faraday’s law [Eq. (3)], and the
electric field E evolves according to the Maxwell-Ampère’s
law [Eq. (4)], where the current density is contributed by all
charged species in the system.

The fluid-Maxwell equations [Eqs. (1)–(4)] are a system of
nonlinear hyperbolic partial differential equations. Such a sys-
tem of equations are in general difficult to solve. Nevertheless,
when fluctuation near equilibrium is small, nonlinearities may
be regarded as perturbations, and the equations may be solved
perturbatively. To see when nonlinearities may be regarded
as perturbations, we can normalize equations such that all
quantities become dimensionless numbers. For example, we
may normalize time to the plasma frequency ωp and distance
to the skin depth c/ωp. We may further normalize mass to
electron mass me, charge to elementary charge e, density
to unperturbed density ns0, and velocity to the speed of
light c. Finally, we can normalize electric field to mecωp/e

and normalize magnetic field to meωp/e. With the above
normalizations, the fluid-Maxwell equation can be written in
dimensionless form. In this form, nonlinearities are products
of small numbers and are therefore even smaller, provided that
the perturbations are small.

In the absence of nonlinearities, the general solution to
the fluid-Maxwell system is a spectrum of linear waves
with constant amplitudes. Now imagine we can ramp up
nonlinearities adiabatically, then waves will start to scatter
one another. Due to weak scattering, amplitudes of waves
will evolve slowly in space and time. This physical picture
may be translated into a formal mathematical procedure.
Formally, to solve the fluid-Maxwell equations peturbatively,
it is helpful to keep track of terms by inserting an auxiliary
small parameter λ � 1 in the perturbation series, and let the
adiabatic parameter λ → 1 in the end, mimicking the adiabatic
ramping up of nonlinearities. The electric field, magnetic field,
density, and velocity can be expanded using asymptotic series

E = E0 + λE1 + λ2E2 + · · · , (5)

B = B0 + λB1 + λ2B2 + · · · , (6)

ns = ns0 + λns1 + λ2ns2 + · · · , (7)

vs = vs0 + λvs1 + λ2vs2 + · · · , (8)

where a self-consistent equilibrium is given by E0 = 0 and
vs0 = 0, while the background magnetic field B0 and density
ns0 are some constants. It is well known that if we only expand
field amplitudes, the naive asymptotic solution will contain
secular terms for nonlinear problems. To remove the secular
terms, we also need to do a multiscale expansion [35] in both
space and time

xi = xi
(0) + 1

λ
xi

(1) + 1

λ2
xi

(2) + · · · , (9)

t = t(0) + 1

λ
t(1) + 1

λ2
t(2) + · · · , (10)

where xi is the ith component of vector x. In the above
expansion, xi

(0) is the shortest spatial scale. In comparison,
one unit of xi

(1) is 1/λ times longer that one unit of xi
(0), and so

on. Similarly, t(0) is the fastest time scale, and one unit of t(n) is
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1/λn times longer that one unit of t(0). In the above multiscale
expansion, different spatial and temporal scales are regarded
as independent

∂
(a)
i x

j

(b) = δ
j

i δ
(a)
(b) , (11)

∂
(a)
t t(b) = δ

(a)
(b) , (12)

and by chain rule, the total spatial and temporal derivatives are

∂i = ∂
(0)
i + λ∂

(1)
i + λ2∂

(2)
i + · · · , (13)

∂t = ∂t(0) + λ∂t(1) + λ2∂t(2) + · · · . (14)

Using the multiscale expansion (11) and (12), together with
expansion in field amplitudes (5)–(8), secular terms can be
removed and the perturbative solution is well behaved. In
Appendix A, we demonstrate how the multiscale expansion
can be successively applied to a hyperbolic system of ordinary
differential equations.

A. First order equations

Although the first order equations and their solutions are
well known [36], here let us briefly review some important
results, in order to introduce some notations that will be used in
the next subsection. To obtain first order equations, we expand
fields, space, and time in fluid-Maxwell equations, and collect
all the O(λ) terms

∂t(0)B1 = −∇(0) × E1, (15)

∂t(0)vs1 = es

ms

(E1 + vs1 × B0), (16)

∂t(0)ns1 = −ns0∇(0) · vs1, (17)

�(0)
ij E

j

1 = − 1

ε0

∑
s

esns0∂t(0)v
i
s1. (18)

Here, we have written the equations in the order that we are go-
ing to use them. The electric field equation (18) is obtained by
substituting the Faraday’s law (3) into the Maxwell-Ampère’s
equation (4), and then making the multiscale expansion. This
procedure introduces the zeroth order differential operator

�(0)
ij := (∂2

t(0) − c2∇2
(0)

)
δij + c2∂

(0)
i ∂

(0)
j . (19)

This operator is the d’Alembert wave operator projected in the
transverse direction.

Since the first order equations are linear, the general solution
is a superposition of plane waves. Let us write the electric field
in the form

E1 = 1

2

∑
k∈K1

E (1)
k eiθk , (20)

where E (1)
k (t(1),x(1); t(2),x(2); . . . ) is the slowly varying complex

wave amplitude, and θk = k · x(0) − ωkt(0) is the fast varying
wave phase. The summation of wave vector k is over a
discrete spectrum K1. In order for E1 ∈ R3 to be a real vector,
whenever k ∈ K1 is in the spectrum, then −k must also be
in the spectrum. Moreover, the amplitude E (1)

k must satisfy

the reality condition E (1)
−k = E (1)∗

k . Therefore, it is natural to
introduce notations

z−k = z∗
k, (21)

α−k = −αk, (22)

for any complex vector z ∈ C3 and real scalar α ∈ R that
are labeled by subscript k. For example, the complex vector
E−k = E∗

k , and the real scalar θ−k = −θk. Using the above
notations, the reality condition is conveniently built into the
symbols. In spectral expansion (20), it is tempting to write
the summation over discrete wave vector k as an integral over
some continuous spectrum. However, such a treatment will
be very cumbersome due to double counting because wave
amplitude Ek, which can vary on slow spatial and temporal
scales, already has a spectral width.

The first order magnetic field B1, velocity field vs1, and
density field ns1 can be expressed in terms of the first order
electric field E1. Substituting expression (20) for the electric
field into the first order fluid-Maxwell equations (15)–(17), we
immediately find

B1 = 1

2

∑
k∈K1

k × E (1)
k

ωk
eiθk , (23)

vs1 = ies

2ms

∑
k∈K1

Fs,kE (1)
k

ωk
eiθk , (24)

ns1 = iesns0

2ms

∑
k∈K1

k · Fs,kE (1)
k

ω2
k

eiθk . (25)

Here, we introduce the forcing operator Fs,k : C3 → C3,
acting on any complex vector z ∈ C3 by

Fs,kz := γ 2
s,k

[
z + iβs,kz × b − β2

s,k(z · b)b
]
. (26)

In the above definition, b is the unit vector in the B0

direction, γ 2
s,k := 1/(1 − β2

s,k) is the magnetization factor,
βs,k := �s/ωk is the magnetization ratio, and �s = esB0/ms

is the gyrofrequency of species s. It is clear from Eq. (24)
that the forcing operator Fs,k is related to the linear electric
susceptibility χs,k by

χs,k = −ω2
ps

ω2
k

Fs,k, (27)

where ω2
ps = e2

s ns0/ε0ms is the plasma frequency of species s.
While the susceptibility χs,k is typically used in linear theories,
the forcing operator Fs,k will be much more convenient when
we discuss nonlinear effects. Note that in the limit B0 → 0,
the forcing operator Fs,k → I becomes the identity operator,
and χs becomes the cold unmagnetized susceptibility.

The forcing operator Fs,k will be extremely useful later on
when we solve the second order equations. Therefore, let us
observe a number of important properties of this operator. For
brevity, we will suppress the subscripts s,k, with the implied
understanding that all quantities have the same subscripts.
First, the operator satisfies the vector identity

Fz = z + iβ(Fz) × b. (28)
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This identity guarantees that the velocity field vs1, given by
Eq. (24), satisfies the first order momentum equation (16).
Second, F is a self-adjoint operator with respect to the inner
product 〈w,z〉 := w†z,

w†Fz = (Fw)†z, (29)

for all complex vectors z,w ∈ C3. Using this property, we
can move F from acting on one vector to acting on the other
vector in an inner product pair. Third, it is a straightforward
calculation to show that

F2 = F − ω
∂F

∂ω
, (30)

where the dependence of F on ω comes from β and γ in
definition (26). Indeed, using its definition, F satisfies an
obvious identity

F(−ω) = F∗(ω), (31)

which can also be written as F−k = F∗
k. Lastly, when two

frequencies ω1 and ω2 are involved, we have a nontrivial
quadratic identity

(β1 − β2)F1F2 = β1F1 − β2F2, (32)

which can be shown by straightforward calculation. Using this
identity, we can reduce higher powers of the forcing operators
to their linear combinations. Combining with property (31), the
above identity can generate a number of other similar identi-
ties. Properties (28)–(32) will enable important simplifications
when we solve the second order equations.

Having expressed other first order perturbations in terms
of E1, the electric field equation (18) constrains the relations
between the wave amplitude E (1)

k , the wave frequency ωk, and
the wave vector k. Substituting the expression (16) for vs1 into
the electric field equation, we obtain the first order electric
field equation in the momentum space

ω2
kE

(1)
k + c2k × (k × E (1)

k

) =
∑

s

ω2
psFs,kE (1)

k , (33)

which must be satisfied for individual wave vector k in the
spectrum. The above equation can be written in a matrix form
DkE (1)

k = 0, where the dispersion tensor

Dij

k := (ω2
k − c2k2

)
δij + c2kikj −

∑
s

ω2
psF

ij

s,k. (34)

The matrix equation has nontrivial solutions when the wave
vector k and wave frequency ωk are such that the linear
dispersion relation detD(k,ωk) = 0 is satisfied. When the
dispersion relation is indeed satisfied, solving the matrix
equation gives wave polarizations. It is well known that in
magnetized plasmas, the eigenmodes are two mostly electro-
magnetic waves and a number of mostly electrostatic hybrid
waves. In Appendix B, we review the dispersion relations and
wave polarizations when waves propagate at arbitrary angles
with respect to the background magnetic field.

Finally, to introduce one more operator that will be useful
for solving the second order equations, let us calculate the
wave energy. The average energy carried by linear waves can
be found by summing up average energy carried by fields and
particles. For a single linear wave with wave vector k, after

averaging on t(0) and x(0) scale, the wave energy

Uk = ε0

2

〈
E2

1

〉
(0) + 1

2μ0

〈
B2

1

〉
(0) + 1

2

∑
s

ns0ms

〈
v2

s1

〉
(0)

= ε0

4
E (1)∗

k · HkE (1)
k , (35)

where we introduce the normalized wave energy operator

Hk := 2I −
∑

s

ω2
ps

ωk

∂Fs,k

∂ωk
= 1

ωk

∂
(
ω2

kεk
)

∂ωk
. (36)

Here, εk = I +∑s χs,k is the dielectric tensor, and we have
used Eq. (27), which relates the forcing operator to the
susceptibility. When evaluating 〈B2

1〉, we have used expression
(23) for B1, followed by simplification using the momentum
space electric field equation (33). This term is then combined
with 〈v2

s1〉, calculated using Eq. (24) for vs1. The final result
is simplified using identity (30) for the forcing operator Fs,k.
Now that we have introduced the wave energy operatorHk, the
momentum space electric field equation (33) can be converted
into a form that is closely related to the wave energy

∂ωk

∂kl

ωkH
ij

k E
(1)j
k = c2(2klδij − kiδjl − kj δil)E (1)j

k . (37)

This form of the first order electric field equation is obtained by
taking ∂/∂kl derivative on both sides of Eq. (33). Notice that
although E (1)

k is labeled by k, it does not explicitly depend on
k. This alternative form of the first order electric field equation
will be useful when we solve the second order equations.

B. Second order equations

To obtain the second order equations, we collect all the
O(λ2) terms in the asymptotic expansions. The resultant
second order equations are

∂t(0)B2 = −∂t(1)B1 − ∇(1) × E1 − ∇(0) × E2, (38)

∂t(0)vs2 = −∂t(1)vs1 − vs1 · ∇(0)vs1

+ es

ms

(vs1 × B1 + E2 + vs2 × B0), (39)

∂t(0)ns2 = −∂t(1)ns1 − ∇(0) · (ns1vs1)

− ns0(∇(1) · vs1 + ∇(0) · vs2), (40)

�(0)
ij E

j

2 = −�(1)
ij E

j

1 − 1

ε0

∑
s

es

[
ns0∂t(1)v

i
s1

+ ∂t(0)
(
ns1v

i
s1

)+ ns0∂t(0)v
i
s2

]
. (41)

Again, the electric field equation (41) is obtained by substi-
tuting Faraday’s law into the Maxwell-Ampère’s equation. In
doing so, we introduce the first order differential operator

�(1)
ij : = 2

(
∂t(0)∂t(1) − c2∂

(0)
l ∂

(1)
l

)
δij

+ c2
(
∂

(0)
i ∂

(1)
j + ∂

(1)
i ∂

(0)
j

)
. (42)

This operator mixes fast and slow scales, and will govern how
wave amplitudes vary on the slow scales due to interactions
that happen on the fast scale.
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To solve the second order equations, notice that although
the second order equations are nonlinear in B1, vs1, and ns1,
they are nevertheless linear in E2, B2, vs2, and ns2. Therefore,
we may solve for the second order perturbations from the linear
equations, regarding nonlinearities in first order perturbations
as source terms. The general solution to such a system of linear
equations is again a superposition of plane waves. Let us write
the second order electric field

E2 = 1

2

∑
k∈K2

E (2)
k eiθk . (43)

Similar to the first order expansion (20), in the above ex-
pression, E (2)

k (t(1),x(1); t(2),x(2); . . . ) is the second order slowly
varying complex wave amplitude, θk is the fast wave phase,
and K2 is the spectrum of second order fluctuations, which
contains −k whenever k ∈ K2. The second order spectrum
K2 is highly constrained and will need to be determined from
the second order electric field equation, once the first order
spectrum K1 is given.

Before we can determine K2 and E (2)
k , we need to express

B2 in terms of E2. Plugging in expressions for the first order
fluctuations (20) and (23) into the second order Faraday’s law
(38), the second order magnetic field can be expressed as

B2 = 1

2

∑
k∈K2

k × E (2)
k

ωk
eiθk

+ 1

2

∑
k∈K1

(∇(1) × E (1)
k

iωk
+ k × ∂t(1)E (1)

k

iω2
k

)
eiθk . (44)

The first line has the same structure as B1, except now the
summation is over the second order spectrum K2. The second
line involves slow derivatives of the first order amplitude E (1)

k .
These derivatives, still unknown at this step, will be determined
later from the second order electric field equation.

Similarly, the second order velocity vs2 can be solved from
Eq. (39). One way of solving this equation is by first taking the
Fourier transform on t(0) and x(0) scale. Then, in the Fourier
space, the resultant algebraic equation can be readily solved
using the property (28) of the forcing operator. After taking
the inverse Fourier transform, the second order velocity can be
expressed as

vs2 = ies

2ms

∑
k∈K2

Fs,kE (2)
k

ωk
eiθk

+ es

2ms

∑
k∈K1

F2
s,k∂t(1)E (1)

k

ω2
k

eiθk

− e2
s

4m2
s

∑
q,q′∈K1

Fs,q+q′
(
Ls

q,q′ +Ts
q,q′
)

ωq + ω′
q

eiθq+iθq′ . (45)

The first two lines of the above expression is in analogy to the
expression (44) for B2. The third line comes from beating
of nonlinearities. In particular, the vs1 × B1 nonlinearity
introduces a longitudinal beating

Ls
q,q′ =

(
Fs,qE (1)

q
)× (q′ × E (1)

q′
)

ωqωq′
. (46)

In addition, the Euler derivative vs1 · ∇(0)vs1, which is respon-
sible for generating turbulence in neutral fluids, gives rise to a
turbulent beating

Ts
q,q′ =

(
Fs,qE (1)

q
)(

q · Fs,q′E (1)
q′
)

ωqωq′
. (47)

The third line in Eq. (45) may be simplified using the quadratic
property (32) of the forcing operator. This simplification will
be done later when we discuss interaction of three waves in
the next section.

Using similar method, we can find the expression for the
second order density ns2. Although the expression for ns2 is not
indispensable for studying three-wave scattering, we present it
here because it will become useful when one studies four-wave
or even higher order interactions. The second order density can
be expressed as

ns2 = esns0

2ms

⎡
⎣∑

k∈K2

ik · Fs,kE (2)
k

ω2
k

eiθk

+
∑
k∈K1

(
k·(Fs,k+F2

s,k

)
∂t(1)E (1)

k

ω3
k

+ ∇(1) ·Fs,kE (1)
k

ω2
k

)
eiθk

⎤
⎦

− e2
s ns0

4m2
s

∑
q,q′∈K1

(q + q′) · Rs
q,q′

(ωq + ω′
q)2

eiθq+iθq′ . (48)

The above three lines are in analogy to those for vs2 in Eq. (45).
In the third line, the quadratic response

Rs
q,q′ = Fs,q+q′

(
Ls

q,q′ + Ts
q,q′
)+

(
1 + ωq

ω′
q

)
Cs

q,q′ , (49)

where the longitudinal beating Ls
q,q′ and the turbulent beating

Ts
q,q′ are given by Eqs. (46) and (47). The third term,

proportional to Cs
q,q′ , comes from the divergence of the

nonlinear current ∇(0) · (ns1vs1), which introduces the current
beating

Cs
q,q′ =

(
Fs,qE (1)

q
)(

q′ · Fs,q′E (1)
q′
)

ωqωq′
. (50)

Notice here the inner product is with q′, in contrast to turbulent
beating Ts

q,q′ , in which the inner product is with q instead. This
makes the physics of these two types of beating fundamentally
different.

Having expressed second order fluctuations in terms of
E2, we can obtain an equation that only involves electric
perturbations. Substituting expressions (24), (25), and (45) into
the second order electric field equation (41), we can eliminate
vs1, ns1, and vs2. The resultant equation can be simplified using
the first order electric field equation (37), as well as property
(30) of the forcing operator. The second order electric field
equation can then be put into a rather simple and intuitive
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form ∑
k∈K2

DkE (2)
k eiθk + i

∑
k∈K1

ωkHkd
k
t(1)E

(1)
k eiθk

= i

2

∑
s,q,q′∈K1

Ss
q,q′e

iθq+iθq′ . (51)

The left-hand side is a modification of the first order spectrum,
as consequences of three-wave scattering on the right-hand
side. In the above equation, the dispersion tensor Dk = D∗

−k
is defined by Eq. (34), the normalized wave energy operator
Hk = H∗

−k is defined by Eq. (36), and dk
t(1) = d−k

t(1) is the
advective derivative

dk
t(1) := ∂t(1) + ∂ωk

∂k
· ∇(1), (52)

which advects the wave envelope at the wave group velocity
vg = ∂ωk/∂k on the slow scale t(1) and x(1). In Eq. (51), the
three-wave scattering strength

Ss
q,q′ = esω

2
ps

2ms

(
Rs

q,q′ + Rs
q′,q
)
, (53)

where the quadratic response Rs
q,q′ is given by Eq. (49).

Notice that the scattering strength Ss
q,q′ is proportional to the

density ns0. This is intuitive because three-wave scattering
cannot happen in vacuum. Hence, all three-wave scatterings
come from charged particle response, which is additive and
therefore proportional to the density. Also notice that Ss

q,q′ is
proportional to the charge-to-mass ratio. This is also intuitive
because es/ms is the coefficient by which charged particles
respond to the electric field.

Let us observe a number of properties of the scattering
strength Ss

q,q′ . First, by construction, the scattering strength is
symmetric with respect to q,q′, namely,

Ss
q,q′ = Ss

q′,q. (54)

In addition, using notations (21) and (22), it is easy to see that
reality condition for Sq,q′ is

Ss∗
q,q′ = −Ss

−q,−q′ . (55)

Moreover, it turns out that the scattering strength Ss
q,q′ satisfies

the important identity

Ss
q,−q = 0. (56)

This identity can be shown by straightforward calculation
using the limiting form F(ω) → bb when ω → 0. Identity
(56) guarantees that no zero-frequency mode with ωk = 0
will arise in the second order electric field equation. Without
this important identity, any change in the wave amplitude
would be faster then the zero-frequency mode, a situation
that would violate the multiscale assumption. Fortunately, due
to identity (56), the multiscale perturbative solution is well
justified.

Now that we have obtained the second order electric field
equation (51), we can use it to constrain the spectrum K2 and
the amplitude E (2)

k . In order to satisfy (51), the coefficient of
each Fourier exponent eiθk must be matched on both sides
of the equation. To match the spectrum on the right-hand
side of Eq. (51), which is generated by beating of first order

perturbations, we can take the second order spectrum to be

K2 = (K0
1

⊕
K0

1

) \ K0
1, (57)

where the set K0
1 := K1

⋃{0}. We define the direct sum of
two sets G1,G2 ⊆ G, where G is an additive group, by
G1
⊕

G2 := {g1 + g2|g1 ∈ G1,g2 ∈ G2}. We can exclude the
zero vector 0 from the second order spectrum K2 using prop-
erty (56) of the scattering strength. We also excluded vectors
that are already contained in the first order spectrum K1, such
that the matrix Dk is invertible for all k ∈ K2. Since the matrix
is invertible, the second order amplitude E (2)

k is determined by

E (2)
k = iD−1

k

∑
s

Ss
q,q′ , (58)

where q,q′ ∈ K1 are such that k = q + q′ ∈ K2. Here, the
factor 1

2 has been removed using the symmetry property
2Ss

q,q′ = Ss
q,q′ + Ss

q′,q. We can put the above abstract notations
in more intuitive language as follows. The first order spectrum
contains all the “on-shell” waves, which satisfy the dispersion
relation detD(k,ωk) = 0 for all k ∈ K1, while the second
order spectrum K2 contains all the “off-shell” waves. These
“off-shell” quasimodes do not satisfy the linear dispersion
relation, and their amplitude is driven by the beating of two
“on-shell” waves.

To illustrate the abstract notations introduced above, let
us consider the simplest example where the spectrum K1

contains only one “on-shell” wave, namely, K1 = {k,−k}. In
this case, the second order spectrum K2 = {2k,−2k} contains
the second harmonic. Matching the Fourier exponents, the
“on-shell” equation is

ωkHkd
k
t(1)E

(1)
k = 0. (59)

The other “on-shell” equation is the complex conjugate of
the above equation. Since Hk enters the wave energy (35),
this matrix is positive definite and therefore nondegenerate.
Hence, the above equation can be written as dk

t(1)E
(1)
k = 0,

which says that the wave amplitude is a constant of advection.
Next, matching coefficients of the other Fourier exponent, we
obtain the “off-shell” equation for the second harmonic

D2kE (2)
2k = i

∑
s

Ss
k,k. (60)

After inverting the matrix D2k, this equation gives the
amplitude of the second harmonic in terms of the amplitude
of the first harmonic. Moreover, since the complex amplitude
E (2)

2k also encodes the phase information, the above equation
also tells how the second harmonic is phase locked with the
fundamental.

III. SCATTERING OF THREE RESONANT
ON-SHELL WAVES

In this section, we illustrate the general theory developed
in Sec. II with the simplest nontrivial example where the
spectrum contains exactly three resonant “on-shell” waves.
Without loss of generality, suppose the three waves satisfy the
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resonance conditions

k1 = k2 + k3, (61)

ωk1 = ωk2 + ωk3 , (62)

where all ω’s are positive. The above resonance condition can
also be written more compactly as θk1 = θk2 + θk3 . In this case,
the spectrum K1 = {k1,k2,k3,(k → −k)}. Using Eq. (57),
we find the second order spectrum K2 = {2k1,2k2,2k3,k1 +
k2,k2 − k3,k3 + k1,(k → −k)}. Notice that resonant waves,
such as k1 = k2 + k3, are not contained in the second order
spectrum K2. In this way, we avoid the ambiguous partition
between E (2)

k , and dk
t(1)E

(1)
k . In other words, all perturbative

corrections to the first order amplitude E (1)
k are accounted for

by its slow derivatives.
Using the electric field equation (51), we can extract

the “off-shell” equations by matching coefficients of Fourier
exponents. There are 12 “off-shell” equations, appearing
in 6 conjugate pairs. Among these, three pairs govern the
production of second harmonics 2k1, 2k2, and 2k3. For
example,

D2k1E
(2)
2k1

= i
∑

s

Ss
k1,k1

. (63)

The other three pairs of equations govern to production of
“off-shell” beatings. For example,

Dk1+k2E
(2)
k1+k2

= i
∑

s

Ss
k1,k2

. (64)

Similarly, we have equations governing the k2 − k3 and
k3 + k1 quasimodes. Since the dispersion tensor Dq for any
“off-shell” quasimode is nondegenerate, the second order
amplitudes E (2)

k can be found by simply inverting the above
matrix equations, which give the second order amplitudes in
terms of the first order amplitudes.

Similarly, we can extract the on-shell equations from the
second order electric field equation (51). There are six on-
shell equations, three of which are complex conjugation of the
following three on-shell equations:

ω1H1dtE1 =
∑

s

Ss
2,3, (65)

ω2H2dtE2 =
∑

s

Ss
1,3̄, (66)

ω3H3dtE3 =
∑

s

Ss
1,2̄. (67)

Here, we have suppressed subscripts and superscripts when-
ever sensible, and denoted −j by j̄ for the compactness
of notations. In the above equations, the left-hand sides are
passive advections of wave envelopes at group velocities, while
the right-hand sides govern redistribution of wave action due
to three-wave scattering.

A. Action conservation of on-shell equations

By the conservative nature of the redistribution process, the
on-shell equations (65)–(67) conserve the total wave action
U/ω, as well as the total wave energy U . As will be proven in

the next paragraph, the local conservation laws of wave actions
are

dt

U1

ω1
+ dt

U2

ω2
= 0, (68)

dt

U3

ω3
− dt

U2

ω2
= 0, (69)

where Uj , given by Eq. (35), is the energy of the linear wave
with wave vector kj . The first conservation law (68) implies
that the total number of wave quanta in the incident wave and
the scattered wave is a constant. This is intuitive because, in
the absence of damping, whenever a quanta of the k1 mode
is annihilated, it is consumed to create a quanta of the k2

mode. Analogously, the second conservation law (69) says
that whenever a quanta of the k2 mode is created, a quanta of
the k3 mode must also be created by the three-wave process
(61). As a consequence of wave action conservation, the total
wave energy is also conserved during resonant three-wave
interaction

dtU1 + dtU2 + dtU3 = 0. (70)

This local energy conservation law can be obtained by linearly
combining Eqs. (68) and (69), and use the frequency resonance
condition (62). The conservation of wave energy is also
intuitive because in the absence of damping and other waves,
three-wave scattering can only redistribute energy among the
three waves.

The above conservation laws can be proven by noting the
following properties of the scattering strength Ss

q,q′ . First, using
formula (53) for the scattering strength, together with the
quadratic identity (32) of the forcing operator F, we can obtain
a simple expression for Ss

k2,k3
:

S2,3 = eω2
pω1

2mω2ω3

[
(E3 ·F2E2)(F1k3)+(E2 ·F3E3)(F1k2)

ω1

+ (F3E3)(k1 ·F2E2)−(F1E3)(k3 ·F2E2)

ω2

+ (F2E2)(k1 ·F3E3)−(F1E2)(k2 ·F3E3)

ω3

]
. (71)

The expression for S1,3̄ can be obtained easily from Eq. (71)
using the replacement rule 1 → 2, 2 → 1, 3 → −3, where
the minus sign is interpreted using notations (21) and (22).
Similarly, to obtain the expression for S1,2̄, we can replace
1 → 3, 2 → 1, 3 → −2 in Eq. (71). Second, having obtained
expressions for S2,3, S1,3̄, and S1,2̄, we can use the self-
adjoint property (29) of the forcing operator to show, by
straightforward calculations, that the scattering strength for
three resonant waves satisfies the following identities:

E1 · S∗
2,3

ω2
1

+ E∗
2 · S1,3̄

ω2
2

= 0, (72)

E∗
2 · S1,3̄

ω2
2

− E∗
3 · S1,2̄

ω2
3

= 0. (73)

Then, the action conservation equations (68) and (69), as
well as the energy conservation equation (70), are immediate
consequences of the above identities.
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One may be puzzled by the expression (71) for S2,3. After
all, why S2,3 is given by those six particular combinations of
vectors FqEq′ and Fqq′, weighted by inner products Eq ·Fq′Eq′

and q·Fq′Eq′ , as well as signed frequencies ±1/ω? At first
glance, there seems to be no obvious pattern. However, action
conservation laws, given by Eqs. (72) and (73), clearly indicate
that S2,3, S1,3̄, and S1,2̄ originate from a single term in the
variational principle. In Sec. IV, we will write the Lagrangian
that generates the three on-shell equations (65)–(67). From
the Lagrangian, it will become obvious why Eq. (71) looks the
way it is.

B. Three-wave equations

When one is not concerned with the vector dependence
of the complex wave amplitude Ek, the on-shell equations
(65)–(67) can be written as three scalar equations, called
the three-wave equations. To remove the vector dependence,
let us decompose Ek = ekεk, where ek is the complex unit
vector satisfying e∗

k · ek = 1. This decomposition is not unique
due to the U(1) symmetry ek → eiαek and εk → e−iαεk. By
requiring the scalar amplitude εk ∈ R to be real valued, the
symmetry group of the above decomposition is reduced to
the Z2 symmetry ε → −ε. The convective derivative of the
complex wave amplitude

dtEk = ekdtεk + εkdtek, (74)

can be decomposed into change due to the scalar amplitude
and the change due to the rotation of the complex unit vector.

The left-hand sides of the on-shell equations are closely
related to the energy of the linear waves. Denote the dimen-
sionless wave energy coefficient

uk := 1
2 e†kHkek. (75)

Then, the wave energy Eq. (35) can be written as Uk =
ε0ukε

2
k/2. Notice that the energy coefficient uk > 0 is always

real and positive because the matrix Hk is Hermitian and
positive definite. Taking inner product with e∗

k on both sides
of the on-shell equations and sum the result with its Hermitian
conjugate, we obtain ukdtεk + 1

2εkdtuk =∑s[e
†
kSs

q,q′/ωk +
c.c.]/4. From this expression, we see the combination εku

1/2
k

will be particularly convenient. Let us nondimensionalize the
electric field amplitude by electron mass

ak := eεk

mecωk
u

1/2
k . (76)

Then, the on-shell equations can then be written
in terms of the normalized wave amplitude dtak =
e/(4mecωku

1/2
k )
∑

s(e
†
kSs

q,q′/ωk + c.c.). From this equation,
we see only the real part of e†S affects how the amplitude
changes, while the imaginary part affects how the direction e
rotates on the complex unit sphere.

The right-hand sides of the on-shell equations are originated
from a single scattering term. As can be seen from identities
(72) and (73), there exists some dimensionless scattering
strength �s , such that

esω
2
ps

2msc

ε1ε
∗
2ε

∗
3

ω1ω2ω3
�s := −E1 · S∗

2,3

ω2
1

= E∗
2 · S1,3̄

ω2
2

= E∗
3 · S1,2̄

ω2
3

.

(77)

Using formula (71) for S2,3, we see that the normalized
scattering strength can be written as the summation of strengths
of six scattering channels

�s = �s
1,2̄3̄ + �s

2̄,3̄1 + �s
3̄,12̄ + �s

1,3̄2̄ + �s
2̄,13̄ + �s

3̄,2̄1.

(78)

The normalized scattering strength due to each channel is given
by the simple formula

�s
i,j l = 1

ωj

(cki · fs,j )(ei · fs,l), (79)

where fs,j := Fs,kj
ej . In general, the normalized scattering

strength �s = �s
r + i�s

i contains both real and imaginary
parts. In Sec. IV, we will show that the normalized scattering
strength �s is related to the reduced S matrix element of the
quantized theory, and the six scattering channels correspond
to the six ways of contracting a single interaction vertex.

Having expressed both the left- and the right-hand sides
of the on-shell equations as scalars, we can now write the
three-wave equations

dta1 = − �

ω1
a2a3, (80)

dta2 = �

ω2
a3a1, (81)

dta3 = �

ω3
a1a2, (82)

where � is the coupling coefficient. Notice that due to the
residualZ2 symmetry aj → −aj , the sign of � is insignificant,
as long as Eq. (80) has the opposite sign as Eqs. (81) and (82).
Combining Eqs. (77)–(79), the coupling coefficient is given
by

� =
∑

s

Zsω
2
ps�

s
r

4Ms(u1u2u3)1/2
, (83)

where uj is the wave energy coefficient, Zs := es/e and
Ms := ms/me are the normalized charge and mass of species
s, respectively. As expected, only the real part �s

r of the
normalized scattering strength affects the wave amplitude.
Also notice when density ns0 → 0, coupling due to species
s vanishes as expected. The numerator of the coupling
coefficient measures how strong the three waves are coupled
by the scattering strength, and the denominator measures how
energetically expensive to excite the linear waves, as measured
by the wave energy coefficients.

It is instructive to count how many degrees of freedom the
three-wave coupling coefficient � contains. For each wave, its
4-momentum is constrained by one dispersion relation. Once
the 4-momentum is fixed, the wave polarization is determined
by the dispersion tensor up to the wave amplitude, which
� does not depend on. Therefore, for each wave, there are
three degrees of freedom. Now that the resonant conditions
give another four constrains, there are in total 3 × 3 − 4 = 5
independent variables. Hence, in the absence of additional
symmetry, the three-wave coupling coefficient � is a function
of five independent variables in a given plasma.

Once the coupling coefficient is obtained in a given
situation, the nonlinear three-wave equations (80)–(82) may
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be solved using a number of techniques. For the homogeneous
problem, where the spatial derivatives are zero, the equations
become a system of nonlinear ordinary differential equations,
and the general solutions are given by the Jacobi elliptic
functions [37,38]. Similarly, in one dimension, the steady
state problem, where the time derivatives are zero, can also be
solved in terms of the Jacobi elliptic functions [39]. As a trivial
extension, traveling wave solutions in one spatial dimension
can also be found [40–42], using the coordinate transform ξ =
x − vt . In addition to these periodic solutions, the nonlinear
three-wave equations also have compact solutions, such as the
N -soliton solutions [43,44]. More general solutions may also
be constructed using the inverse scattering method [45,46]. In
this paper, we will not be concerned with solving the three-
wave equations, and only focus on calculating the coupling
coefficient.

Without solving the three-wave equations, a number of
experimental observables can already be extracted from the
coupling coefficient. For example, � can be related to the
growth rate of parametric instabilities. Consider the parametric
decay instability where a pump wave with frequency ω1 decays
into two waves with frequencies ω2 and ω3. Suppose the pump
has constant amplitude a1, and the decay waves have no spatial
variation. Then solving the linearized three-wave equations,
we find a2 and a3 grow exponentially with rate

γ0 = |�a1|√
ω2ω3

. (84)

The experimentally observed linear growth rate will be
somewhat different than γ0 due to wave damping. Wave
damping, both collisional and collisionless, can be taken into
account by inserting a phenomenological damping term νa

into the left-hand side of the three-wave equations. Solving
the linearized equations, the growth rate, modified by wave
damping, is

γ =
√

γ 2
0 +

(
ν2 − ν3

2

)2

− ν2 + ν3

2
, (85)

where ν2 and ν3 are the phenomenological damping rates of the
two decay waves. In addition to wave damping, the experimen-
tally observed growth rate can also be modified by frequency
mismatch δω = ω1 − ω2 − ω3. When the frequency mismatch
is much smaller than the spectral width of waves, the three
waves can still couple almost resonantly. To find the growth
rate in the presence of small δω, promote amplitude a to be
complex and change variable αj := aj e

−itδω/2 for j = 2 and 3.
This change of variable is equivalent to modifying the damping
rates to ν ′

2 := ν2 + iδω/2 and ν ′∗
3 := ν3 − iδω/2. Therefore,

the growth rate of parametric decay instability, modified by
both weak damping and small frequency mismatch, is

γ ′ =
√

γ 2
0 +

(
ν2 − ν3 + iδω

2

)2

− ν2 + ν3

2
. (86)

The frequency mismatch δω not only introduces amplitude
modification, but also results in phase modification. In the
following discussions, we shall only be concerned with the
growth rate γ0 as observable, ignoring wave damping and
frequency mismatch.

IV. LAGRANGIAN OF THREE-WAVE INTERACTION

Now that we know how the coupling coefficient can be
related to experimental observables, let us unveil why its
formula looks the ways it is. Recall in the previous section,
we show that the three-wave scattering strength Sq,q′ satisfies
the action conservation laws. Motivated by these conservation
laws, here in this section, we show that the three on-shell
equations (65)–(67) can be derived from a classical three-wave
Lagrangian. More importantly, we will show that all terms in
the classical interaction Lagrangian arise from a single term
after quantizing the Lagrangian.

To write the Lagrangian, it is more convenient to use the
gauge field Aμ instead of the electric or magnetic fields. Since
we will later quantize the Lagrangian, it is convenient to use
the temporal gauge A0 = 0. In temporal gauge, the electric
field is related to the vector potential by

Ak = Ek

ωk
, (87)

which, in the natural units h̄ = c = 1, has the dimension of
energy M . Similarly, we can dimensionalize the wave energy
operator H by

�k := ωkHk, (88)

which then has the dimension of energy M as it should.
Having defined the necessary operators, we can now write

the classical three-wave action for the three on-shell equations

Sc =
∫

d4x(1)(Lc0 + LcI ), (89)

where the integrations over space and time are on the slow
scales x(1) and t(1). Abbreviating the subscripts kj as j , the
Lagrangian of freely advecting wave envelopes

Lc0 =
3∑

j=1

A∗
j · i�jdt(1)Aj , (90)

where the complex amplitude Aj (x(1),t(1)) is a function of the
slow spatial and temporal scales, and the advective derivative
dt(1) is defined by Eq. (52). It is easy to show that Lc0 gives
rise to a real-valued action Sc0 after integrating by parts. The
second term in the classical action [Eq. (89)] is the three-wave
interaction Lagrangian

LcI = −i(� − �∗), (91)

which is obviously real valued. Using Eq. (77), the three waves
interact through the coupling

� = A1A
∗
2A

∗
3

∑
s

esω
2
ps

2msc
�s, (92)

where �s is the normalized scattering strength [Eq. (78)], and
the A’s are the scalar amplitudes of the three waves. Clearly,
the coupling � has mass dimension M4, and hence the action
ScI is dimensionless in the natural unit as expected. Now that
we have written the Lagrangian, we can find the classical
equations of motion by taking variations with respect to A1, A2,
and A3 or, equivalently, their independent complex conjugates.
Using the self-adjointness [Eq. (29)] of the forcing operator,
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it is straightforward to verify that the three on-shell equations
(65)–(67) are the resultant equations.

The classical three-wave Lagrangian Lc = Lc0 + LcI has
U(1) symmetries, which lead to the action conservation laws.
For example, the Lagrangian is invariant under the following
global U(1) transformation

A1 → eiαA1, (93)

A2 → eiαA2, (94)

A3 → A3, (95)

where α is an arbitrary real constant. Under the above
transformation, the infinitesimal variation of the Lagrangian is
zero δLc = 0, while the infinitesimal variation δA1 = iαA1,
δA2 = iαA2, and δA3 = 0, giving rise to a Noether’s current.
In fact, we have an even stronger symmetry δ� = 0 for any α.
Therefore, this U(1) symmetry leads to the identity

A1 · δ�

δA1
− A∗

2 · δ�

δA∗
2

= 0, (96)

which is exactly the action conservation law (72). Using similar
arguments, other action conservation laws can be derived from
other global U(1) symmetries.

The large number of terms contained in the classical
Lagrangian can be reduced when we quantized the Lagrangian,
in which the gauge field becomes real valued. Before intro-
ducing the quantized Lagrangian, it is helpful to review the
second quantization notations. For simplicity, we will omit
the subscripts for the slow spatial and temporal variables x(1)

and t(1), with the implied understanding that all spatial and
temporal dependencies are on the full scales. Let us promote
the gauge field A to quantized operator

Â :=
∫

d3k
(2π )3

1√
2ωk

(ekâke
−ikx + e∗

kâ
†
ke

ikx), (97)

where kx := ωkt − k · x is the Minkowski inner product, ek is
the unit polarization vector, and the summation over branches
of the dispersion relation is implied. The annihilation operator
âk and the creation operator â

†
k satisfy the canonical commu-

tation relations for bosons, where the nontrivial commutator
is

[âp,â
†
k] = (2π )3δ(3)(p − k). (98)

Using the standard normalization, the single boson state

|k〉 :=
√

2ωkâ
†
k|0〉, (99)

where |0〉 is the vacuum state. Then, we have the following
Wick contraction:

Â|k〉 = eke
−ikx . (100)

Let us also promote the displacement operator for species s to
act on the operator Â by

�̂sÂ := i

∫
d3k

(2π )3

1√
2ωk

(
Fs,kek

ωk
âke

−ikx −F∗
s,ke∗

k

ωk
â
†
ke

ikx

)
,

(101)

where the minus sign in front of the second term comes
from notation (22). Taking time derivative of the displacement

operator, ∂t (�̂sÂ) is the velocity operator for species s, which
is proportional to the current operator.

Now, we are ready to write the quantized Lagrangian, which
contains a kinetic term and a single three-wave coupling term:

L = Â†i�dt Â −
∑

s

esω
2
ps

2ms

(�̂sÂ)i(∂iÂj )∂t (�̂sÂ)j . (102)

Here, the i and j indices in the second term are the spatial
indices, and summation over repeated indices is assumed. The
first term L0 closely resembles the kinetic term of quantum
electrodynamics (QED), with the Dirac spinor replaced by
the gauge field, and the Dirac gamma matrices replaced by
the � energy matrix. The second term LI is the three-wave
interaction Lagrangian, which is nonvanishing only if the
background density of some species s is nonzero. Notice that
the three-wave interaction is nonrenormalizable, which is not
unexpected in an effective field theory.

To make sense of the quantized Lagrangian, we recognize
that the displacement �̂sÂ is proportional to the polariza-
tion density P, and the velocity ∂t (�̂sÂ) is proportional to
the current density J. Therefore, the three-wave interaction
Lagrangian is of the form LI ∝ P i(∂iAj )J j , where the
polarization and current density are determined by linear
response. Although one may not have guessed this form of the
interaction Lagrangian, it makes the following intuitive sense:
in the absence of the third wave, the electromagnetic field
interacts with the particle fields through Aj J

j in the temporal
gauge; now, when the third wave is present, it modulates
the medium through which the electromagnetic field advects,
giving rise to the P i(∂iAj )J j interaction. In this interaction
term, there is no reason why a particular wave should only
be responsible for P, A, or J. Therefore, the three waves can
switch their roles, and the total interaction is given by linear
superpositions of all possible permutations.

To see how the quantized Lagrangian, with the linear
superposition principle built in, gives rise to the classical
Lagrangian, let us compute the S matrix element of three-wave
decay k1 → k2 + k3. The S matrix element

〈k2,k3|iLI |k1〉 = iMei(k2+k3−k1)x, (103)

where the reduced matrix element iM can be represented
using Feynman diagrams

iM =
1

2

3

+ 5 permutations. (104)

Since there are three external boson lines, each connecting to
one of the three vertices, there are in total 3! = 6 Feynman
diagrams. In the above Feynman diagram, interaction vertex
to which 1 is connected to is the usual QED vertex, whereas
vertices 2 and 3 appear only when there are background particle
fields [47]. The arrow between vertices 1 and 3 indicates the
direction of momentum flow, and also labels which vertex the
∂t derivative acts on. The above Feynman diagram corresponds
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to the particular Wick contraction

1
2

3

= −i
esω

2
ps

2ms
〈k2,k3|(Π̂sÂ)j(∂jÂl)∂t(Π̂sÂ)l|k1〉

= i
esω

2
ps

2msc
Θs

1,2̄3̄. (105)

Summing with the other five Feynman diagrams, the reduced
S matrix element in the quantum theory is related to the
normalized scattering strength in the classical theory by the
simple relation

M =
∑

s

esω
2
ps

2msc
�s. (106)

From the Lagrangian perspective, the classical three-wave
coupling is related to the quantized interaction through the
S matrix

i� = A1A
∗
2A

∗
3〈k2,k3|iLI |k1〉ei(k1−k2−k3)x. (107)

Using the above relation, we immediately recover the classical
three-wave coupling by computing the S matrix element using
the quantized Lagrangian. Alternatively, one may simply
regard Lagrangian (102) as a classical Lagrangian, and
substitute Eq. (97) as the spectral expansion of the gauge field.
Then, after integrating over spacetime,

∫
d4x exp[i(k1 − k2 −

k3)x] = (2π )4δ(4)(k1 − k2 − k3) will select out the six resonate
terms from the interaction Lagrangian.

Now that we understand how the classical theory and the
quantized theory are connected, we may postulate that the
three-wave coupling always arises from the P i(∂iAj )J j term
in the effective Lagrangian, regardless of the plasma model that
is used to calculate the linear response. In the cold fluid model,
the linear response is expressed in terms of the forcing operator
F. By modifying this operator to include thermal or even quan-
tum effects, and plugging it into the formalism we have devel-
oped, the three-wave scattering strength may be evaluated im-
mediately. Having obtained the normalized scattering strength,
as well as the wave energy coefficients in that particular plasma
model, one can then compute the three-wave coupling coeffi-
cient using Eq. (83). We have thus conjectured a prescription
for computing three-wave coupling, without the need for going
through the perturbative solution of the equations. The cou-
pling coefficient then enters the three-wave equation, which
governs the evolution of the envelopes of the three waves.

V. SCATTERING OF QUASITRANSVERSE AND
QUASILONGITUDINAL WAVES

In this section, we use two sets of examples to demonstrate
how to evaluate the three-wave coupling coefficient. The
coupling coefficient (83) can be readily evaluated in cold fluid
model using wave energy coefficient (75) and normalized
scattering strength (79). When using these formulas in the
most general geometry (Fig. 1), we need to ensure that
the resonant conditions (61) and (62) are satisfied by three
otherwise arbitrary “on-shell” waves. The evaluation becomes

FIG. 1. The most general geometry of three-wave scattering in
a uniform plasma with a constant magnetic field. The three wave
vectors k1 = k2 + k3 are in the same plane, and are at angles θ with
respect to the magnetic field.

particularly easy when waves are either quasitransverse (T) or
quasilongitudinal (L). In these situations, the wave dispersion
relations are simplified, and hence matching resonance condi-
tions becomes an easy task. Moreover, for both T and L waves,
the wave polarization vectors are at special angles with the
wave vector, so that the expressions for the wave energy and
scattering strength can be further simplified. Although T and L
waves can couple with other waves that have both electrostatic
and electromagnetic components, we will only give examples
where all three participating waves are either T or L waves.

In general, there are four different three-wave triplets:
{T ,T ,T }, {T ,T ,L}, {T ,L,L}, and {L,L,L}. However, only
two of these triplets can couple resonantly. From Appendix B,
we know the T waves are electromagnetic waves with ω 
ωp,|�e|, while the L waves are electrostatic waves with ω →
ωr , for some resonance ωr ∼ ωp,|�e|. Since the frequency of
a T wave is much higher than the frequency of an L wave, only
the following two types of interactions can match frequency
resonance:

T � T + L, (108)

L � L + L. (109)

A typical scenario for the TTL interaction is the scattering of
lasers. For example, an incident laser is scattered inelastically
by some plasma waves and thereafter propagates in some other
direction with shifted frequency. Similarly, a typical scenario
for the LLL interaction is the decay of a plasma wave launched
by some antenna array. In what follows, we will consider
these two scenarios in detail. We will first reproduce well-
known results for collimated TTL interaction, and then present
previously unknown results in more general geometry.

A. T � T + L scattering

Consider the decay of a pump laser (ω1) into a scattered
laser (ω2) and a plasma wave (ω3). Since the frequency ω1,2 
�s , the magnetization ratio β1,2 � 0 and the magnetization
factor γ1,2 � 1 for any species. Consequently, the forcing op-
erator F1,2 � I is approximately the identity operator, and the
lasers are therefore transverse electromagnetic waves. As for
the plasma wave, using the quasilongitudinal approximation
e3 � k̂3, the inner products are purely real:

k̂3 · f̂∗
s,3 � k̂3 · Fs,3k̂3 = γ 2

s,3

(
1 − β2

s,3 cos2 θ3
)
, (110)

where θ3 is the angle between k3 and b as shown in Fig. 1, and
k̂3 is the unit vector along k3 direction. With this basic setup,
we can readily evaluate Eq. (83), the coupling coefficient.
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Let us first calculate the wave energy coefficients (75),
which enter the denominator of the coupling coefficient. Since
F1,2 � I, the wave energy coefficients for the lasers are simply

u1 � u2 � 1. (111)

As for the plasma wave, after taking the frequency derivative
in Eq. (36), the wave energy coefficient for quasilongitudinal
wave is

u3 � 1 +
∑

s

ω2
ps

ω2
3

γ 4
s,3β

2
s,3 sin2 θ3. (112)

As expected, u3 is always positive, although γ 2
s,3 can be

either positive or negative, depending on whether βs,3 is either
smaller or larger than one.

To find the normalized scattering strength (78), which enters
the numerator of �, we again use the fact ω1,2  ω3. Since
the wave vectors are comparable in magnitudes, the dominant
terms of the coupling strength are the two terms proportional
to 1/ω3, if the inner product e1 · f∗

2 � f1 · e∗
2 � e1 · e∗

2 is of
order unity. Using the resonance condition k1 − k2 = k3, the
dominant term of the TTL scattering strength

�s � −ck3

ω3
(k̂3 · Fs,3k̂3)(e1 · e∗

2), (113)

where the inner product k̂3 · Fs,3k̂3 is given explicitly by
Eq. (110). Now that we have simplified both the denominator
and the numerator of Eq. (83), a simple formula for the
three-wave coupling coefficient � can be obtained.

Having obtained an explicit formula for the coupling
coefficient, we can use it to obtain expressions for experimental
observables. For example, the linear growth rate γ0 [Eq. (84)]
can be decomposed as

γ0 = γR|MT |, (114)

where γR is the backward Raman growth rate when the plasma
is unmagnetized,

γR =
√

ω1ωp

2
|a1Re(e∗

1 · e2)|, (115)

and MT is the normalized growth rate of the TTL scattering.
The normalized growth rate is proportional to the coupling
coefficient � = ω2

pμ/4 up to some kinematic factor

MT = 1

2

(
ω3

p

ω1ω2ω3

)1/2

μT , (116)

where the normalized coupling coefficient μT is given by

μT �
∑

s

Zs

Ms

ω2
ps

ω2
p

ck3

ω3

k̂3 · Fs,3k̂3

u
1/2
3

(117)

in the TTL approximation. In the unmagnetized limit B0 → 0,
we have β3 → 0 and γ3 → 1. Since ion mass is much larger
than electron mass, we have μT → −ck3/ω3. Moreover,
since the lasers can only couple through the Langmuir wave
in cold unmagnetized plasma, we have ω3 → ωp. Then,
the normalized growth rate MT → ck3/2

√
ω1ω2. Finally, in

backward scattering geometry ck3 = ck1 + ck2 � ω1 + ω2 �
2ω0, where we have denoted ω0 := ω1 � ω2. We seeMT → 1
in the unmagnetized limit as expected.

The normalized growth rate becomes particularly simple
when waves propagate at special angles. For example, consider
the situation where the three waves propagate along the mag-
netic field B0, and the plasma wave ω3 = ωp is the Langmuir
wave. Since γ 2

s,3 remains finite as θ3 → 0, the normalized
growth rate for collimated parallel wave propagation is

MP
T ‖ � −1

2

ck3√
ω1ω2

, (118)

where we have used Mi  1 to drop the summation over
species. The above is exactly the same as the unmagnetized
result [12,23], which is expected because the plasma wave is
not affected by the parallel magnetic field.

To give another simple example, consider the situation
where the three waves are collimated and propagate perpen-
dicular to the magnetic field B0. In cold electron-ion plasma,
there are two L waves in the perpendicular direction: the
upper-hybrid (UH) wave and the lower-hybrid (LH) wave.
Let us first consider scattering mediated by the UH wave
ω3 � ωUH �

√
ω2

p + �2
e . In this situation, the magnetiza-

tion factor γ 2
3,e � ω2

UH /ω2
p and γ 2

3,i � 1. Since Mi  1, the
dominant contribution for both the wave energy coefficient
and the scattering strength comes from electrons. The wave
energy coefficient u3 � ω2

UH/ω2
p, and the normalized coupling

coefficient μT � −ck3/ωp. Therefore, the normalized growth
rate for collimated perpendicular wave propagation mediated
by the UH wave is

MUH
T ⊥ � −1

2

ck3√
ω1ω2

(
ωp

ωUH

)1/2

. (119)

Similarly, let us consider scattering mediated by the LH
wave ω3 � ωLH � √|�e|�iωp/ωUH . Since the LH frequency
satisfies �i � ωLH � |�e|, the magnetization ratios β3,e  1
and β3,i � 1. Consequently, the magnetization factor γ3,e �
−1/β2

3,e and γ3,i � 1. When ωp ∼ |�e| are comparable, elec-
tron contributions again dominate. The wave energy coefficient
u3 � ω2

UH /�2
e , and the normalized coupling coefficient μT �

ck3ωLH/ωUH |�e|. Therefore, the normalized growth rate for
LH wave mediation in the collimated perpendicular geometry
is

MLH
T ⊥ � 1

2

ck3√
ω1ω2

ω
3/2
p ω

1/2
LH

ωUH |�e| . (120)

The above examples recover results known in Ref. [19], who
analyze the same problem in the restricted geometry where the
the waves are collimated and propagate perpendicular to the
magnetic field.

Having reproduced well-known results, let us evaluate the
normalized growth rate in more general geometry, where
the waves are not collimated and propagate at angles with
respect to the magnetic field. The normalized growth rate
can be evaluated using the following procedure, mimicking
what happens in an actual experiment where the plasma
density and magnetic field strength are known. First, we
shine a laser with frequency ω1 into the plasma at some
angle θ1 with respect to the magnetic field. Then, the wave
vector k1 is known from the dispersion relation. Second,
we observe the scattered laser using some detector placed
at angle θ2 with respect to the magnetic field, and point
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FIG. 2. Scattering of a parallel pump laser in uniform hydrogen
plasmas. The pump laser has frequency ω1/ωp =10, and the scattered
laser propagates at angle θ2 with respect to k1 ‖B0. The laser can
scatter from the upper resonance (red), the lower resonance (orange),
and the bottom resonance (blue). When the plasma is overdense,
e.g., |�e|/ωp = 0.8 (a), (c), the upper resonance is of Langmuir
type, while the lower and bottom resonances are cyclotronlike;
when the plasma is underdense, e.g., |�e|/ωp = 1.2 (b), (d), the
lower resonance is of Langmuir type, while the upper and bottom
resonances are cyclotronlike. For Langmuir-type resonance, the
frequency shift (c), (d) �ω → ωp , and the normalized growth rate (a),
(b) is monotonously increasing; while for cyclotronlike resonances,
�ω → |�e|,�i , and the normalized growth rate |MT | peaks at
intermediate θ2, while becoming zero for exact backscattering. See
text for how |MT | scales with plasma parameters.

the detector at angle α2 with respect to the incoming laser.
Suppose the detector can measure the frequency ω2 of the
scattered laser, then from this frequency information, we
immediately know k2 from the dispersion relation, as well
as ω3 = ω1 − ω2 from the resonance condition. Next, we
can calculate k3 =

√
k2

1 + k2
2 − 2k1k2 cos α2 , and determine

θ3 by inverting ω3 = ωr (θ3), where ωr is the angle-dependent
resonance frequency. Using this procedure, the normalized
growth rate can be readily evaluated numerically. Conversely,
when plasma density and magnetic field are unknown, we may
use information measured from laser scattering experiments to
fit plasma parameters.

1. Parallel pump

To demonstrate how to evaluate the normalized growth rate
MT , consider the example where the incident laser propagates
along the magnetic field, while the scattered laser propagates
at some angle θ2. In this case α2 = θ2, and by cylindrical
symmetry, MT depends on only one free parameter θ2, as
plotted in Fig. 2 for hydrogen plasma with ω1/ωp = 10.
When there are only two charged species, as in the case of
hydrogen plasma, there are three electrostatic resonances the
lasers can scatter from (Fig. 8). The first resonance is the upper
resonance, whose frequency asymptotes to the upper-hybrid

frequency ωUH when θ3 → π/2. When scattered from the
upper resonance (red curves), the scattered laser is frequency
down-shifted (�ω = ω1 − ω2) by the largest amount. The
second resonance is the lower resonance, whose frequency
asymptotes to the lower-hybrid frequency ωLH when θ3 →
π/2. When scattered from the lower resonance (orange
curves), the scattered laser is frequency shifted by either |�e|
in overdense plasma (|�e| < ωp) or by ωp in underdense
plasma (|�e| > ωp), when θ3 → 0. The third resonance is
the bottom resonance, whose frequency asymptotes to 0
when θ3 → π/2. When scattered from the bottom resonance
(blue curves), the scattered laser is frequency shifted by at
most �i when θ3 → 0. Since �i is much smaller than other
frequency scales, the frequency shift �ω for scattering off the
bottom resonance is not discernible in Figs. 2(c) and 2(d). In
terms of the normalized growth rate (upper panels), we see
MT → 1 when the laser is backscattered from the Langmuir
resonance with �ω → ωp, while MT → 0 when the laser is
scattered from the cyclotron resonances with �ω → |�e|,�i .
For Langmuir-type resonance, MT increases monotonously
with θ2. In contrast, for cyclotronlike resonances, MT peaks
at intermediate θ2, and becomes zero for exact backscattering.

To better understand the angular dependence of the normal-
ized growth rate MT , let us find its asymptotic expressions. In
the limit ω1,2  ω3, the wave vector k2/k1 � 1 and k3/k1 �
2 sin(θ2/2). At finite angle θ2 > 0, we can approximate
θ3 � (π − θ2)/2 . For even larger θ2, we can also approx-
imate the resonance frequency ω3 using Eqs. (B11)–(B13)
because θ3 ∼ 0 is now small. These asymptotic geometric
relations will be useful when we evaluate the coupling
coefficient.

First, consider scattering off the Langmuir-type resonance
ω3 ∼ ωp. Since γ3,s is finite, the lowest order angular depen-
dence comes from k3. Take the limit θ3 → 0, we get Eq. (118).
Now, retain the angular dependence of k3, we can grossly
approximate

∣∣Mp

T

∣∣ � sin
θ2

2
. (121)

This approximation is of course very crude, but it captures
the monotonous increasing feature for scattering off the
Langmuir-type resonance. In fact, the above result becomes
a very good approximation when the magnetic field B0 → 0.
In this unmagnetized limit, we recover the angular dependence
of Raman scattering.

Second, consider scattering off the electron-cyclotron-like
resonance ω3 ∼ |�e|. Notice that in this case, the magne-
tization factor γ 2

3,e  1 for small θ3. Nevertheless, since
both the numerator and the denominator contain this factor,
MT remains finite. For electrons, the magnetization ratio
β3,e � 1. Using Eq. (B12), which is valid when ωp �= |�e|,
the magnetization factor γ 2

3,e � (�2
e − ω2

p)/(ω2
p sin2 θ3). In

comparison, β3,i � 1 and γ 2
3,i � 1. Hence, the dominant

contribution comes from electrons. Substituting these into
Eq. (116), we see to leading order

∣∣Me
T

∣∣ � 1

2

(
ωp

ω3

)1/2

sin θ2, (122)
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where ω3 as function of θ2 is given by Eq. (B12), with
θ3 � (π − θ2)/2. From Eq. (122), we see |Me

T | reaches
maximum when the laser is scattered almost perpendicularly
to the magnetic field. The maximum value scales roughly
as |Me

T | ∼ √ωp/|�e|/2, which can be very large in weakly
magnetized plasmas, as long as the cold fluid approximation
remains valid. Away from θ2 ∼ π/2, the normalized growth
rate |Me

T | falls off to zero. This falloff is expected because
exciting cyclotron resonance is energetically forbidden.

In the end, consider scattering off ion-cyclotron-like reso-
nance ω3 ∼ �i . In this case, the ion contribution to the wave
energy coefficient is no longer negligible because β3,i � 1 and
γ 2

3,i � �e/�i tan2(θ2/2)  1, as can be seen from Eq. (B13).
The scattering strength is still dominated by electrons, for
which β3,e  1, and γ 2

3,e � −1/β2
3,e � 1. Substituting these

into Eq. (116), the normalized growth rate

∣∣Mi
T

∣∣ � 1

2

(
ωp �i

|�e|ω3

)1/2

sin θ2. (123)

We see the above result is rather similar to Eq. (122), except
that ω3 ∼ �i has very weak angular dependence. Therefore,
|Mi

T | is very well approximated by Eq. (123). The normalized
growth rate peaks almost at θ2 = π/2, reaching a maximum
|Mi

T | ∼ √ωp/|�e|/2, which can be very large in weakly
magnetized plasmas. Similar to the electron cyclotron case,
|Mi

T | falls off to zero for parallel scattering.

2. Perpendicular pump

Consider the other special case where the pump laser prop-
agates perpendicular to the magnetic field. In this geometry, it
is natural to plot the normalized growth rate |MT | in spherical
coordinate (Fig. 3), where the polar angle θ2 is measured from
the magnetic field B0, and the azimuthal angle φ2 is measured
from the wave vector k1. By symmetry of this setup, it is
obvious that MT (φ2,θ2) = MT (φ2,π − θ2) = MT (−φ2,θ2).
Therefore, it is sufficient to consider the range θ2 ∈ [0,π/2]
and φ2 ∈ [0,π ]. By matching the k resonance, we can read
θ3 from the spherical coordinates (φ2,θ2), and thereafter read
the frequency shift ω3 from Fig. 8. As for the growth rate, in
electron-ion plasma, when scattered from the upper resonance
[Fig. 3(a)], backscattering has the largest growth rate. While
for scattering off the lower resonance [Fig. 3(b)], |MT |
reaches maximum for both backscattering and nearly parallel
scattering, where the scattered laser propagates almost parallel
to the magnetic field. In comparison, when scattering off the
bottom resonance [Fig. 3(c)], the normalized growth rate peaks
for nearly backward scattering, while it falls to zero for exact
backscattering.

To better understand the angular dependence of the nor-
malized growth rate, let us consider its asymptotic expressions
for two special cases. The first special case is when all waves
lie in the plane perpendicular to the magnetic field, namely,
when θ2 = 90◦. In this case, the angle θ3 is fixed to 90◦, and
the frequency of the plasma resonances are also fixed to ωUH ,
ωLH , or zero. Therefore, the angular dependence only comes
from k3. In the limit ω1,2  ω3, we have k3 � 2k1 sin(φ2/2).
Using Eqs. (119) and (120), it is easy to see, for scattering off

FIG. 3. Normalized growth rate |MT | for scattering of a per-
pendicular pump laser (k1 ⊥B0) in a uniform hydrogen plasma
with ω1/ωp = 10 and |�e|/ωp = 0.8. In spherical coordinate, the
scattered laser propagates at polar angle θ2 with respect to B0, and
azimuthal angle φ2 measured from k1. The laser can scatter from the
upper resonance (a), in which case backscattering is the strongest
scattering mode. Alternatively, the laser can scatter off the lower
resonance (b). In this case, one maximum of |MT | is attained for
backscattering, and another maximum is attained when the scattered
laser propagates almost perpendicular to the incident laser along the
magnetic field. Finally, the laser can scatter off the bottom resonance
(c). In this case, exact backscattering is suppressed while nearly
backward scattering is strong.

UH and LH waves in the perpendicular plane

∣∣MUH
T ⊥
∣∣ �

(
ωp

ωUH

)1/2

sin
φ2

2
, (124)

∣∣MLH
T ⊥
∣∣ � ω

3/2
p ω

1/2
LH

ωUH |�e| sin
φ2

2
. (125)

Now, let us calculate Mb
T ⊥ for scattering off the bottom

resonance. Using asymptotic expression (B16) for ω3, we
see although the magnetization ratio β3,s → ∞, the product
β3,s cos θ3 remains finite as θ3 → π/2. Since the magnetization
factor γ3,s � −1/β2

3,s � 1, it is easy to see Mb
T ⊥ ∝ √

ω3,
which goes to zero when θ3 → π/2. Hence, for scattering off
the bottom resonance in the perpendicular plane∣∣Mb

T ⊥
∣∣ = 0 (126)

is completely suppressed. Consequently, exact backscattering
from the bottom resonance is also suppressed.
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FIG. 4. Scattering of a perpendicular pump laser with ω1/ωp =
10 in a uniform hydrogen plasma. Figure (a) can be obtained from
Fig. 3 by taking a one dimensional cut along the unit sphere using
the plane spanned by k1 ⊥ B0. The scattered laser, propagating at
angle α2 with respect to k1, can scatter from the upper resonance
(red), the lower resonance (orange), and the bottom resonance (blue).
Both the normalized growth rate |MT | (a), (b) and the frequency
shifts �ω (c), (d) behave qualitatively the same in overdense
plasma, e.g., |�e|/ωp = 0.8 (a), (c), and in underdense plasma, e.g.,
|�e|/ωp = 1.2 (b), (d). As α2 increases from 0◦ to 180◦, |MT |
increases monotonously for scattering from the upper resonance. For
scattering off the lower resonance, |MT | hits zero near α2 ∼ 176◦,
where electron and ion contributions exactly cancel, and then increase
to finite value at exact backscattering. In contrast, when the laser
is scattered from the bottom resonance, |MT | strongly peaks near
α2 ∼ 170◦, and becomes zero for exact backward scattering. See text
for how |MT | scales with plasma parameters.

To see how Mb
T climbs up from zero, consider another

special case where k2 is in the plane spanned by k1 and
b. In this case, it is more natural to consider MT as
function of α2, the angle between k1 and k2, as plotted in
Fig. 4. Let us find the asymptotic expression of Mb

T when
α2 ∼ π . In this limit, we have θ3 ∼ π/2, and the resonance
frequency ω3 can be approximated by Eq. (B16). Then, the
magnetization ratios β2

3,e � �2
e/�2

i + |�e|/(�i cos2 θ3) and
β2

3,i � 1 + �i/(|�e| cos2 θ3). Consequently, the magnetiza-
tion factors can be well approximated by γ 2

3,e � −1/β2
3,e

and γ 2
3,i � −|�e| cos2 θ3/�i . Moreover, since ω1,2  ω3, the

angle θ3 � α2/2 and the wave vector k3 � 2k1 sin(α2/2).
Substituting these into Eq. (116), we see when α2 ∼ π , the
normalized growth rate

∣∣Mb
T

∣∣2 �
[
ζ
(
1 + ζ cos2 α2

2

)]3/2
sin2 α2

2 cos α2
2

r3 + r
[
1 + ζ

(
1 + ζ cos2 α2

2

)2]
sin2 α2

2

, (127)

where r := |�e|/ωp and ζ := Mi/Zi  1. To see the lowest
order angular dependence, we can use a cruder but simpler
approximation |Mb

T |2 � ζ 1/2 cos(α2/2)/r . We see |Mb
T | in-

creases sharply from zero away from exact backscattering.
Using result (123), we find in the other limit α2 ∼ 0 the

normalized growth rate∣∣Mb
T

∣∣ � sin2 α2
2

r1/2

(
1 − 1

ζ
tan2 α2

2

)−3/4

. (128)

We see scattering from the bottom resonance can be strong
when the plasma is weakly magnetized, as long as the scatter-
ing angle is away from exact forward or backward scattering.

In summary, the TTL scattering in magnetized plasma is
mostly due to density beating Eq. (113), and the modification
due to the magnetic field can be represented by the normalized
growth rate MT . In magnetized plasmas, cyclotronlike reso-
nances, in addition to the Langmuir-type resonance, contribute
to the scattering of the T waves. When scattered from the
Langmuir-type resonance, both the wave energy coefficient
and the scattering strength are finite. Therefore, in this case,
the angular dependence of MT comes mostly from k3, which
reaches maximum for backscattering. In contrast, for scattering
from cyclotronlike resonances, both the scattering strength
and the wave energy coefficient can blow up. Their ratio
MT goes to zero when the scattering angles are such that
the L wave frequency approaches either zero or the cyclotron
frequencies. In addition, MT can also become zero at special
angles where scattering from electrons and ions exactly cancel.
Away from these special angles, scattering from cyclotronlike
resonances, which increase with decreasing magnetic field,
typically have growth rates that are comparable to scattering
from Langmuir-type resonances. When the plasma parameters
are known, we can determine the angular dependence of
MT using Eq. (116). This knowledge can be used to choose
injection angles of two lasers such that their scattering is either
enhanced or suppressed. Conversely, by measuring angular
dependence ofMT in laser scattering experiments, one may be
able to fit plasma parameters to match Eq. (116). This provides
a diagnostic method from which the magnetic field, as well as
the plasma density and composition, can be measured.

B. L � L + L scattering

In this section, we consider the other scenario where
the three-wave scattering happens between three resonant
quasilongitudinal waves. This happens, for example, when we
launch an electrostatic wave into the plasma by some antenna
arrays. When the wave power is strong enough to overcome
damping, namely, when the damped growth rate [Eq. (85)]
is positive, the pump wave may subsequently decay to two
other waves that satisfy the resonance conditions. The decay
waves are not necessarily electrostatic, but for the purpose of
illustrating the general results in Sec. III, we will only give
examples where the two decay waves are also electrostatic.

The coupling strength between three L waves can be
simplified using the approximation that the waves are quasi-
longitudinal. Substituting ei � k̂i into (79) and using the
frequency resonance condition (62), the normalized scattering
strength for LLL scattering can be written as

�s � −ck1ω1

ω2ω3
(k̂1 · F∗

s,2k̂2)(k̂1 · F∗
s,3k̂3)

+ ck2ω2

ω3ω1
(k̂2 · Fs,1k̂1)(k̂2 · F∗

s,3k̂3)

+ ck3ω3

ω1ω2
(k̂3 · Fs,1k̂1)(k̂3 · F∗

s,2k̂2), (129)
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where ki := |ki | is the magnitude of the wave vector, and k̂i

is the unit vector along ki direction. It is easy to recognize
that k̂i · (Fs,j /ωj )k̂j is the projection of quiver velocity v̂j

in k̂i direction. Therefore, the couplings between three L
waves may also be interpreted as density beating. The first
term in �s is proportional to the rate of creating wave 1 by
annihilating waves 2 and 3, the second term is proportional to
the rate of annihilating waves 3 and 1̄ to create wave 2̄, and
the last term can be interpreted similarly. The interference
between these processes determines the overall scattering
strength.

Having obtained expressions for the normalized scattering
strength (129) and wave energy (112), we can immediately
evaluate the coupling coefficient (83), and find expressions for
experimental observables. For example, the linear growth rate
γ0 [Eq. (84)] of the parametric decay instability can be written
as

γ0 = γL|ML|, (130)

where γL is purely determined by the pump wave

γL = 1
2ck1|a1|. (131)

The normalized growth rate for LLL scattering

ML = ωp

2ck1

(
ω2

p

ω2ω3

)1/2

μL (132)

is the product of a kinematic factor with the coupling coeffi-
cient � = ω2

pμ/4. In the LLL approximation, the normalized
coupling coefficient

μL �
∑

s

Zs

Ms

ω2
ps

ω2
p

�s
r

(u1u2u3)1/2
, (133)

where �s
r is the real part of Eq. (129). Again, notice when

density of species s goes to zero, its contribution to μL also
goes to zero as expected.

To evaluate the normalized growth rate ML, we can
use the following procedure to mimic what happens in an
actual experiment. Suppose we know the species density and
magnetic field, then we know what resonances are there in
the plasma. We can then launch a pump wave at resonance
frequency ω1 using some antenna array. The antenna array not
only injects a wave at the given frequency, but also selects
the wave vector k1 and the wave direction θ1. To observe the
decay waves, we can place a probe at some angle θ2 with
respect to the magnetic field, and some azimuthal angle φ2 in
a spherical coordinate. The probe can measure fluctuations of
the plasma potential and therefore inform us about the wave
frequency ω2. Then, we immediately know ω3 = ω1 − ω2

from the three-wave resonance condition. Moreover, since
the third wave is a magnetic resonance, the frequency ω3

constrains the angle θ3 at which the third wave can propagate.
However, a simple probe cannot measure the wave vector, so
we will have to solve k2 and k3 from the resonance condition
(61), which can be written in components as

k2
3 = k2

1 + k2
2 − 2k1k2 cos α2, (134)

k3 cos θ3 = k1 cos θ1 − k2 cos θ2. (135)

Here, α2 = α2(θ1,θ2,φ2) is the angle between k1 and k2. The
above system of quadratic equations has two solutions in
general. This degeneracy comes from the symmetry 2 ↔ 3
because we cannot distinguish whether the probe is measuring
wave 2 or wave 3, both of which are electrostatic resonances. If
the solutions k2 and k3 are both real and positive, the three-wave
resonance conditions can be satisfied. Then, three-wave decay
will happen once the pump amplitude a1 exceeds the damping
threshold, for which the damped growth rate [Eq. (85)]
becomes positive. In other words, we control ω1 and k1 by
the antenna array, measure ω2 using probes, and infer ω3, k2,
and k3 by solving resonance conditions. With this information,
the analytical formula for the normalized growth rate ML can
be readily evaluated numerically.

1. Parallel pump

To demonstrate how to evaluate the normalized growth rate
ML, consider the example where the pump wave is launched
along the magnetic field (θ1 = 0). In an electron-ion plasma,
this geometry allows the antenna to launch three electrostatic
waves: the Langmuir wave, the electron cyclotron wave, or the
ion cyclotron wave. In the regime where ωp ∼ |�e| ∼ |ωp −
�e|  �i , four decay modes are allowed by the resonance
conditions: u → l + l, l → l + l, l → l + b, and b → b + b,
where we have labeled waves by the resonance branch they
belong to, and u, l, and b denote the upper, lower, and bottom
resonances.

First, let us consider the case where the pump wave
is the Langmuir wave [Figs. 5(a) and 5(b)]. In this case,
the magnetization factor γ1 is finite, the wave energy
coefficient u1 = 1, and Fs,1k̂1 = k̂1. The normalized scat-
tering strength (129) contains the following four simple
inner products: (k̂1 · F∗

s,2k̂2) = (k̂2 · Fs,1k̂1) = cos θ2; (k̂1 ·
F∗

s,3k̂3) = (k̂3 · Fs,1k̂1) = cos θ3, as well as two other in-
ner products (k̂2 · F∗

s,3k̂3) = cos θ2 cos θ3 − γ 2
s,3 sin θ2 sin θ3;

and (k̂3 · F∗
s,2k̂2) = cos θ3 cos θ2 − γ 2

s,2 sin θ3 sin θ2. Substitut-
ing these inner products into Eq. (129), and using the
resonance condition (135), the normalized scattering strength
can be immediately found. In the above expressions, θ2 is
the independent variable, and ω2 is measured. Then, we can
determine θ3 from ω3(θ3) = ω1 − ω2 using Eq. (B10), and
solve for k2 and k3 from Eqs. (134) and (135). Finally, with the
above information, the normalized matrix element ML can be
readily evaluated.

When pumped at the Langmuir frequency (ω1 = ωp), the
resonance conditions constrain the plasma parameters and
angles at which the three-wave decay can happen. In overdense
plasma [e.g., Fig. 5(a)], the Langmuir wave is in the upper
resonance, so the resonance condition can be satisfied only if
ωp < 2|�e|. Having satisfied this condition, the u → l + l

decay can happen if θ2 < θo
b , where θo

b is the angle such
that ωl(θo

b ) = ωp − |�e|. In comparison, in underdense plasma
[e.g., Fig. 5(b)], the Langmuir wave is in the lower resonance,
and therefore can always decay. One decay mode is l → l + l,
which can happen for θ2 > θu

a , where ωl(θu
a ) = ωp − ωLH .

Another decay mode is l → l + b. When ω2 = ωl , this decay
mode happens for 0 < θ2 < θu

i , where ωl(θu
i ) = ωp − �i ;

whereas when ω2 = ωb, this decay mode can happen at any
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FIG. 5. Scattering of a parallel electrostatic pump wave in
uniform hydrogen plasmas, when observed at angle θ2 with respect
to k1 ‖B0. At each θ2, due to the degeneracy 2 ↔ 3, the wave
vector has two possible values k±

2 , corresponding to M+
L (blue,

θ3 > 90◦) and M−
L (red, θ3 < 90◦). The pump wave can be the

Langmuir wave (a), (b); the electron cyclotron wave (c), (d); and
the ion cyclotron wave (e). The normalized growth rate attains
local extrema for symmetric scattering, where the two decay waves
have the same frequency ωr (θs) = ω1/2. In overdense plasma, e.g.,
|�e|/ωp = 0.8 (a), (c), u → l,l happens for θ2 < θo

b , where ωl(θo
b ) =

ωp − |�e|; l → l,l happens for θ2 > θo
a , where ωl(θo

a ) = |�e| − ωLH ;
and l → l2,b3 happens for θ2 < θo

i , where ωl(θo
i ) = |�e| − �i . In

underdense plasma, e.g., |�e|/ωp = 1.2 (b), (d), u → l,l happens
for θ2 < θu

b , where ωl(θu
b ) = |�e| − ωp; l → l,l happens for θ2 > θu

a ,
where ωl(θu

a ) = ωp − ωLH ; and l → l2,b3 happens for θ2 < θu
i ,

where ωl(θu
i ) = ωp − �i . Regardless of plasma density (e), b → b,b

can always happen, for which the growth rate peaks near θs ∼ 88◦,
where the decay is symmetrical. The gray lines indicate the symmetric
angles and the asymptotic maxima obtained in the text.

θ2. Finally, using the symmetry 2 ↔ 3, the constraints on θ3

can be readily deduced.
For Langmuir wave pump, the normalized growth rate

reaches maximum for symmetric decay, where ω2 = ω3 =
ωp/2. Let us find the asymptotic expression of ML in the
symmetric case, so as to get a sense of how the normalized
growth rate scales with plasma parameters. The symmetric
angle θs can be solved from Eq. (B10). Using ωp ∼ |�e| 
�i , we find sin2 θs � 3[1 − ω2

p/(4�2
e)]/4. Then, the wave

energy coefficient u2 = u3 � 1 + 3ω2
p/(4�2

e − ω2
p), where

the subdominant ion contribution in Eq. (112) has been
dropped. To solve for the degenerate wave vectors in the
symmetric case, it is more convenient to consider the two limits
θ2 = θs − φ,θ3 = θs + φ, and θ2 = θs − φ,θ3 = π − θs − φ,
and then let φ → 0. Solving Eqs. (134) and (135) for the
wave vectors, the two solutions are k−

2 /k1 � 1/(2 cos θs) and
k+

2 /k1 � sin θs/(2 sin φ). For the k−
2 solution, all terms are

finite, and the normalized scattering strength is dominated
by electron contribution �−

e � −3ck1[1 + ω2
p/(2�2

e)]/(4ωp).
Consequently, the normalized growth rate for symmetric k−
scattering

M−
L

(
ωp → ωp

2
,
ωp

2

)
� 3

4

(
1 − ω2

p

4�2
e

)
. (136)

Notice that this decay mode can happen only if |�e| �
ωp/2. To see what happens to the k+

2 solution, we need
to keep the dominant terms, and expand ω2 � ωp/2 − ω′

sφ

and ω3 � ωp/2 + ω′
sφ, where the angular derivative of lower

resonance ωl(θ ) can be evaluated at the symmetric angle
using Eq. (B10) to be ω′

s/ωp � −2�2
e sin(2θs)/(2�2

e + ω2
p).

Since ion terms do not contain singularity, the normalized
scattering strength is again dominated by electrons �+

e �
3ck1[1 + 5ω2

p/(4�2
e)]/(8ωp). Consequently, the normalized

growth rate for symmetric k+ scattering is

M+
L

(
ωp → ωp

2
,
ωp

2

)
� −M−

L

2

(
1 + 3ω2

p/2

ω2
p + 2�2

e

)
, (137)

where M−
L is given by Eq. (136). Since ωp � 2|�e|, it is easy

to see that |M+
L | is always smaller than |M−

L |. Moreover, wave
damping tends to be smaller for the k−

2 solution. Therefore,
the dominant decay mode in experiments will be the k− mode,
where the two decay waves propagate symmetrically at angle
θs with respect to the parallel pump wave.

Second, let us consider the case where the pump wave
is the electron cyclotron wave [Figs. 5(c) and 5(d)]. In this
case, βe,1 ∼ 1 and the magnetization factor γ 2

e,1 � (�2
e/ω

2
p −

1)/ sin2 θ1 approaches infinity, so the dominant contribution
comes from electrons. Keeping track of dominate terms as
θ1 → 0 and using small angle expansion (B11), the inner
products (k̂2 · Fe,1k̂1) � ∓γ 2

e,1 sin θ1 sin θ2 and (k̂3 · Fe,1k̂1) �
±γ 2

e,1 sin θ1 sin θ3. The other four inner products that enter
Eq. (129) are the same as before. Keeping terms ∝1/ sin θ1,
the leading term of the normalized scattering strength can be
readily found. Although the normalized scattering strength is
divergent as θ1 → 0, the normalized growth rate remains finite.
This is because the divergence in �e cancels the divergence in
the wave energy coefficient u1 � (ω2

p − �2
e)2/(ω2

p�2
e sin2 θ1),

which enters the denominator ofML. Following the procedure
in the first example, the normalized growth rate can be readily
obtained.

When intense electron cyclotron pump (ω1 = |�e|) exceeds
the damping threshold, a number of decay modes are possible.
In overdense plasma [e.g., Fig. 5(c)], the electron cyclotron
wave is in the lower resonance, and three-wave decay is always
possible. One decay mode is l → l + l, which can happen for
θ2 > θo

a , where ωl(θo
a ) = |�e| − ωLH . Another decay mode is

l → l + b, which can happen for any θ2 if ω2 = ωb, and can
happen for 0 < θ2 < θo

i if ω2 = ωl , where ωl(θo
i ) = |�e| −

�i . In comparison, in underdense plasma [e.g., Fig. 5(d)],
the electron cyclotron wave is in the upper resonance. The
resonance condition can be satisfied if |�e| < 2ωp, and u →
l + l decay can happen if θ2 < θu

b , where ωl(θu
b ) = |�e| − ωp.

We see the angular constraints for electron cyclotron pump
decay are reciprocal to that of the Langmuir pump.
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For electron cyclotron pump, the normalized growth rate
crosses zero and therefore vanishes for symmetric k− decay,
while reaching maximum for symmetric k+ decay. Let us find
the asymptotic expression for M+

L to get a sense of how
the normalized growth rate scales with plasma parameters.
Again, we can find the symmetric angle θs from Eq. (B10),
which gives sin2 θs � 3[1 − �2

e/(4ω2
p)]/4. Then, the wave

energy coefficients u2 = u3 � 2(1 + 2ω2
p/�2

e)/3. To find the
leading behavior of the scattering strength, consider the
limit θ2 = θs − φ,θ3 = π − θs − φ, and let φ → 0. In this
limit, the wave vector k+

2 /k1 � sin θs/(2 sin φ) → ∞, and
the frequencies can be expanded by ω2 � ωp/2 − ω′

sφ and
ω3 � ωp/2 + ω′

sφ, where the angular derivative ω′
s can again

be solved from Eq. (B10) to be ω′
s/�e � 2ω2

p sin(2θs)/(�2
e +

2ω2
p). Keeping the dominant terms as φ → 0, the nor-

malized scattering strength |�+
e | � ck1 sin(2θs)(1 − r2)(1 −

r2/4)/(sin θ1�e), where r := |�e|/ωp. Since the ion con-
tributions are subdominant, the normalized growth rate for
symmetric k+ scattering is∣∣∣∣M+

L

(
�e → �e

2
,
�e

2

)∣∣∣∣� r

4

√
(3−3r2/4)3(1+3r2/4)

2 + r2
. (138)

We seeM+
L is nonzero for 0 < r < 2, and reaches a maximum

of ∼0.38 when r ∼ 0.92. The normalized growth rate can be
related to the decay rate in experiments, once wave damping
is taken into account.

Finally, let us consider the case where the electrostatic
pump wave is at ion cyclotron frequency [Fig. 5(e)]. Since
�i is much smaller than any other characteristic wave
frequencies, the only possible decay mode is b → b + b. Such
decay can happen for any angle θ2 because the resonance
conditions can always be satisfied. Similar to what happens
in the previous example, the normalized growth rate ML

changes sign and therefore vanishes for symmetric k− decay,
while reaching maximum for symmetric k+ decay. Now,
let us give an estimate of the maximum value of M+

L .
Since the magnetization factor γ 2

1,i � ζ/ tan2 θ1 → ∞, where
ζ := Mi/Zi  1, the ion terms dominate. The divergent
inner products are (k̂2 · Fi,1k̂1) � ∓γ 2

i,1 sin θ1 sin θ2 and (k̂3 ·
Fi,1k̂1) � ±γ 2

i,1 sin θ1 sin θ3. The other four inner products
are finite and similar to what we have before. Using these
inner products and keeping the leading terms, the normalized
scattering |�+

i | � ck1�
2
e cos θs/(2�3

i sin θ1), where we have
expanded near the symmetric angle as before, with ω′

s �
9�e sin(2θs)/16. The symmetric angle, very close to π/2,
can be estimated from Eq. (B16) to be cos2 θs � �i/(3|�e|).
The wave energy coefficients u1 � ω2

p|�e|/(�3
i sin2 θ1) and

u2 = u3 � 16ω2
p/(9�i |�e|). Substituting these results into

formula (133), the normalized growth rate for symmetric k+
decay is ∣∣∣∣M+

L

(
�i → �i

2
,
�i

2

)∣∣∣∣ � 3
√

3

32

�i

ωp

. (139)

We see in a typical plasma where ωp  �i , the decay mode
b → b + b is orders of magnitude weaker than the other
decay modes. Nevertheless, when compared with the pump
frequency ω1 = �i , the growth rate of the three-wave decay
instability is not necessarily small.

2. Perpendicular pump

In this section, we use another set of examples to illustrate
how to evaluate the normalized growth rate ML, by consider-
ing the cases where the pump wave propagates perpendicular
to the magnetic field. In this geometry, the pump frequency can
either be the upper-hybrid frequency ωUH or the lower-hybrid
frequency ωLH , in an electron-ion plasma. For three-wave
decay to happen, the frequency resonance condition (62) must
be satisfied. Since the lower-hybrid frequency ωLH  �i , it
is not possible to match the frequency resonance condition
with a LH pump wave in a uniform plasma. By similar
consideration, for a UH pump wave, the decay mode u →
u + u is also forbidden. However, other decays modes of the
UH pump are possible. Using expression ω2

UH � ω2
p + �2

e , we
see that u → u + b is always possible; u → u + l is possible if
2/

√
ζ � r �

√
ζ/2, where ζ = Mi/Zi  1 is the normalized

charge-to-mass ratio for ions; and u → l + l is possible only
if 1/

√
3 � r �

√
3. Here, r = |�e|/ωp is the ratio of electron

cyclotron frequency to the plasma frequency. In this section,
we will consider r in the range where all three decay modes
are possible.

In addition to the frequency condition, the wave vector
resonance conditions (61) must also be satisfied for three-wave
decay to happen. To see when Eq. (61) can be satisfied in
this perpendicular geometry, it is convenient to discuss in the
spherical coordinate where the polar angle θ is measured from
the magnetic field b, and the azimuthal angle φ is measured
from k1. In this spherical coordinate, the wave vectors k2

and k3 are constrained on the two cones spanning angles
θ2,π − θ2 and θ3,π − θ3. Then, k2 and k3 can reside along
the lines generated by cutting the two cones with a plane
passing through k1. When | cos θ2| > | cos θ3|, the plane starts
to intercept both cones when | cos φ3| � | cos φc|, where the
critical angle sin φc = tan θ2/ tan θ3. When the strict inequality
holds, for each k3, there are two solutions to k2 such that
the resonance condition (61) is satisfied. By the exchange
symmetry 2 ↔ 3, we immediately know what happens when
| cos θ2| < | cos θ3|. The resonance condition (61) constrains
where in the θ2 − φ2 plane the normalized growth rate ML

take nonzero values.
Having matched the resonance conditions, the normalized

growth rate in the polar coordinate can be readily evaluated
(Fig. 6). To understand the angular dependence of ML, it is
useful to notice that due to the exchange symmetryML(2,3) =
ML(3,2), the normalized growth rateML(θ2,φ2) in one region
can be mapped to ML(θ ′

2,φ
′
2) in anther region. To be more

specific, when ω2 is on the upper resonance [Fig. 6(a)], the
normalized growth rateML is nonzero in two regions. The first
region is θ2 < θa

u , where ωu(θa
u ) = ωUH − ωLH . In this region,

the decay mode u1 → u2 + l3 is allowed, where ω3 is on the
lower resonance. By the exchange symmetry, this region can be
mapped to the island on the bottom right corner of Fig. 6(b),
in which ω2 is on the lower resonance instead. The other
region in Fig. 6(a) where ML is nonzero is the narrow strip
θ2 > θb

u , where ωu(θb
u ) = ωUH − �i . In this region, the decay

mode u1 → u2 + b3 is allowed, where ω3 is on the bottom
resonance. Exchanging 2 ↔ 3, this region corresponds to the
case where ω2 is on the bottom resonance instead [Fig. 6(c)].
The remaining decay mode is u1 → l2 + l3, where both decay
waves are on the lower resonance. This decay mode is allowed
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FIG. 6. Normalized growth rate |ML| when pumped by an upper-
hybrid wave (k1 ⊥B0) in a uniform hydrogen plasma with |�e|/ωp =
1.2. The growth rates are observed at polar angle θ2 with respect to
B0 and azimuthal angle φ2 with respect to k1. When ω2 is on the
upper resonance (a), the u → u2,l3 decay can happen for θ2 < θa

u ,
where ωu(θa

u ) = ωUH − ωLH . In this case, an important decay channel
has ω2 ∼ |�e| propagating almost parallel to B0 in the backward
direction, and ω3  ωLH propagating almost perpendicular to B0 in
the forward direction. This region corresponds to the l2,u3 region
in (b), in which ω2 is on the lower resonance instead. The other
decay mode is u → u2,b3, which can happen in the narrow strip
θ2 > θb

u in (a), where ωu(θb
u ) = ωUH − �i . Equivalently, exchanging

the labels to b2,u3, this decay mode can happen in the colored region
in (c), in which ω2 is on the bottom resonance instead. For this decay
mode, the dominant decay channel has ω2 ∼ ωUH propagating almost
perpendicular to B0 in the forward direction, and ω3 ∼ �i propagating
either in the forward or backward direction. The last decay mode is
u → l2,l3, which corresponds to the large colored region in (b). For
this decay mode, the dominant decay channel is the symmetric decay,
where ω2 ∼ ω3 ∼ ωUH /2 and both waves propagate at angles with
B0 in the forward direction.

within the large region on the left of Fig. 6(b). This region
has a straight boundary at θ2 = θm

l , where ωl(θm
l ) = ωUH/2.

To the left of this boundary, we have θ2 < θ3, so there is
only one solution for k2. To the right of this boundary, we
have θ2 > θ3, so both k−

2 and k+
2 solutions exist as long as

sin φ2 < tan θ3/ tan θ2. Whenever both solutions exist, Fig. 6
shows the k− branch, which has weaker damping. In those
degenerate cases, the k+ branch is usually comparable with
the k− branch. An exception is inserted in Fig. 6(c′), where the
k+ branch is dominant for u1 → b2 + u3 decay, corresponding
to the forward scattering of the UH pump with little frequency
shift.

For the u → u2 + l3 decay [Fig. 6(a)], one important
decay channel has ω2 ∼ |�e| propagating almost parallel
to b in the backward direction (φ2 = 180◦), and the other
decay wave propagating almost perpendicular to b in the
forward direction (φ3 = 0◦). To see how ML scales with
plasma parameters, let us find its asymptotic expression when
θ2 → 0. In this limit ω2 → |�e|, so the magnetization factor
γ 2

2,e is divergent. Then, the dominant terms of the coupling
strength (129) come from the Fe,2 terms. The divergent inner
products are (k̂1 · F∗

e,2k̂2) � −γ 2
e,2 sin θ2 and (k̂3 · F∗

e,2k̂2) �
−γ 2

e,2 sin θ2 sin θ3, and we also need the finite inner products
(k̂1 · F∗

e,3k̂3) � γ 2
e,3 sin θ3 and (k̂3 · Fe,1k̂1) � γ 2

e,1 sin θ3. Then,

the leading term of the normalized scattering strength is
�e � ck1γ

2
e,1γ

2
e,2γ

2
e,3(ω2

1 − ω2
3) sin θ2 sin θ3/(ω1ω2ω3), where

we have used the resonance condition k3 sin θ3 = k1. The angle
θ3 can be estimated from Eq. (B10) using ω3  �i , which
gives sin2 θ3 � (ω2

3 − ω2
p)(ω2

3 − �2
e)/(ω2

p�2
e). Then, the wave

energy coefficient u3 � (2ω2
3 − ω2

UH )(ω2
3 − �2

e). As for the
other two wave energy coefficients, using previous results, we
know u1 = ω2

UH/ω2
p and u2 � (�2

e − ω2
p)2/(�2

eω
2
p sin2 θ2).

Substituting these into Eqs. (132) and (133), we find the
normalized growth rate

|ML(ωUH →|�e|,ω3)|� ω3(ω3 + ωUH )

ωp

√
2
(
ω2

UH − 2ω2
3

) , (140)

where ω3 = ωUH − |�e| is the resonance frequency. From
previous discussion, we know this decay mode can happen
as long as 1/

√
3 � r �

√
ζ/2. Within this parameter range,

it is easy to see that Eq. (140) decreases monotonically with
increasing magnetic field. The maximum value ML = √

3/2
is attained at r = 1/

√
3, where ω3 = |�e| = ωUH /2 such that

the decay is symmetric.
For the u → l2 + l3 decay [Fig. 6(b)], the dominant decay

channel is the symmetric decay, where ω2 = ω3 = ω1/2. In the
symmetric decay geometry, we have θ3 = π − θ2 and φ3 =
−φ2. Then, the wave vector resonance condition becomes
k2 = k3 = k1/(2 sin θ2 cos φ2). The symmetric decay angle
θ2 = θs can be estimated from Eq. (B10) using ω2 = ωUH/

2  �i , which gives cos2 θs � 3ω4
UH /(16ω2

p�2
e). Since the

frequencies are far away from cyclotron frequencies, all the
magnetization factors are finite. Then, the inner products (k̂1 ·
F∗

s,2k̂2) � γ 2
s,2(cos φ2 + iβs,2 sin φ2) sin θ2, (k̂2 · Fs,1k̂1) � γ 2

s,1

(cos φ2 + iβs,1 sin φ2) sin θ2, (k̂3 · F∗
s,2k̂2) � −1 + γ 2

s,2 sin2 θ2

(2 cos2 φ2 + iβs,2 sin 2φ2 − β2
s,2), and by exchanging 2 ↔ 3,

we can easily find the other three inner products. Substituting
these inner products into Eq. (129), the normalized scattering
strength becomes particularly simple when φ2 → π/2. In this
limit k2,k3 → ∞, but the product k2 cos φ2 = −k3 cos φ3 re-
mains finite. Keeping nonzero terms as φ2 → π/2, the scatter-
ing strength simplifies to �+

e � −2ck1ω
3
UH/[ω2

p(3�2
e − ω2

p)].
The electron terms also dominate the wave energy coefficients
u2 = u3 � 2ω2

UH /(3�2
e − ω2

p). Gathering the above results,
the normalized growth rate for symmetric k+ scattering is∣∣∣∣M+

L

(
ωUH → ωUH

2
,
ωUH

2

)∣∣∣∣� ωp

ωUH

. (141)

The above special value ofML is approximately the maximum
in Fig. 6(b), where θ2 = θs and φ2 = 90◦. Notice that this
special case is singular in wave vector k2,k3 → ∞, and hence
will be suppressed by wave damping. Therefore, the dominant
decay channels observed in experiment will happen at smaller
angle φ2 < 90◦ in the symmetric decay geometry.

Finally, for the u → b2 + u3 decay [Fig. 6(c)], the dominant
decay channel has ω2 ∼ ωUH propagating almost perpendic-
ular to b in the forward direction, and ω3 ∼ �i propagating
either in the forward or backward direction. As an example,
let us consider symmetric forward scattering where φ2 =
φ3 = 0 and θ2 = π − θ3 = θs . In this geometry, k−

2 = k−
3 =

k1/(2 sin θs). Since θs ∼ π/2, we can estimate the symmetric
angle using asymptotic expressions Eqs. (B14) and (B16).
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Substituting these expressions into the frequency resonance
condition (62), we obtain cos2 θs � 2�iω

3
UH/(�2

eω
2
p) ∼ 0,

where we have used that ω2
p|�e|/(2ω3

UH ) � 0.2 is always a
small number. Then, the wave energy u2 � u1 = ω2

UH /ω2
p

and u3 � ω2
p[1 + 2ω3

UH /(ω2
p|�e|)]2/(�i |�e|). Now that the

magnetization factors are all finite, the inner products are sim-
ply (k̂1 · F∗

s,2k̂2) � γ 2
s,2 sin θ2, (k̂2 · Fs,1k̂1) � γ 2

s,1 sin θ2, (k̂3 ·
F∗

s,2k̂2) � cos θ3 cos θ2 + γ 2
2,s sin θ3 sin θ2, and the three other

inner products can be obtained by exchanging 2 ↔ 3. Again,
the scattering is mostly due to electrons, for which γ 2

e,1 �
γ 2

e,2 � ω2
UH /ω2

p and γ 2
e,3 � −ω2

3/�2
e � cos θ2

s . Therefore, the
dominant term comes from the second line of Eq. (129), which
gives the scattering strength �−

e � −ck1�iω
5
UH/(ω3�

2
eω

4
p).

Substituting these results into (132) and (133), we imme-
diately see that the normalized growth rate for forward
scattering is

|M−
L (ωUH →ωUH ,�i)|� ωp

4
√

ωUH |�e|
(

ω3

�i

)1/2

, (142)

where ω3 = ωb(θs) ∼ �i can be obtained from Eq. (B16).
Using the above result, we can also find the symmetric nearly
backward scattering M+

L by replacing the coefficient 1
4 with

k+
2 /(2k1). The symmetric nearly backward scattering channel

has divergent k+
2 , and therefore can have very large growth

rate in the absence damping.

VI. CONCLUSION AND DISCUSSION

In summary, we solve the cold fluid-Maxwell system to
second order in the multiscale perturbation series in the
most general geometry (Sec. II), where waves in a discrete
spectrum interact in triplets through quadratic nonlinearities
[Eq. (51)]. Due to vs1 × B1, vs1 · ∇(0)vs1, and ∇(0) · (ns1vs1)
nonlinearities, three-wave scatterings change the envelopes of
“on-shell” waves as they advect, as well as generate a spectrum
of “off-shell” quasimodes due to wave beating. By introducing
the forcing operator [Eq. (26)], we manage to give a convenient
formula [Eq. (53)] for the scattering strength Sq,q′ in the most
general geometry.

When there are only three resonant “on-shell” waves par-
ticipating in the interaction (Sec. III), the scattering strengths
[Eq. (71)] are closely related due to action conservation. The
action conservation laws are manifested by the three-wave
equations [Eqs. (80)–(82)], which describe how the amplitudes
of waves evolve, regardless of the changes in their phases and
polarizations. The three-wave equations contain one essential
parameter, the coupling coefficient [Eq. (83)], whose explicit
formula is given in terms of the wave energy coefficient
[Eq. (75)] and the normalized scattering strength [Eq. (78)].
The coupling coefficient contains five degrees of freedom, and
can be readily evaluated once the participating waves and their
geometry are specified.

The general formula for the scattering strength becomes
particularly transparent once we quantize the classical three-
wave Lagrangian. Using the quantized Lagrangian [Eq. (102)],
all six terms of the scattering strength arise from a single
cubic interaction ∝P i(∂iAj )J j as six permutations of the

Feynman diagrams [Eq. (105)]. We postulate that this form
of the three-wave interaction is independent of the plasma
model that one uses to calculate the linear response. In this
paper, the linear response is calculated using the cold fluid
model. More generally, the linear response may be calculated
using the kinetic model or even quantum models. Then,
using the relation between the S matrix element and the
three-wave scattering strength [Eq. (106)], the three-wave
coupling coefficient may be directly computed without going
through the perturbative solution of the equations.

To demonstrate how to evaluate the cold fluid coupling
coefficient, we give a set of examples where all three participat-
ing waves are either quasitransverse (T) or quasilongitudinal
(L) (Sec. V). As an experimental observable, we compute the
growth rate of the three-wave decay instability [Eq. (84)],
which is proportional to the coupling coefficient when wave
damping is ignored. For TTL decay (Sec. V A), the scattering is
due to density perturbation of the L wave, and the normalized
growth rate is given conveniently by Eqs. (116) and (117).
For LLL decay (Sec. V B), the scattering is due to density
beating of three L waves, and the normalized growth rate
is given by the explicit Eqs. (129), (132), and (133). We
evaluate these equations numerically for the cases where the
pump wave is either parallel or perpendicular to the magnetic
field, while the decay waves propagate at arbitrary angles. To
facilitate understanding of the angular dependencies, we also
find asymptotic expressions of the normalized growth rate in
limiting cases.

The above examples elucidate the previously unknown
angular dependence of three-wave scattering when strong
magnetic field is present. In contrast to the unmagnetized case,
backscattering is not necessarily the fastest growing instability
in a magnetized plasma. For example, in the TTL scattering
(Figs. 2–4), which happens when two lasers interact via a
magnetic resonance, exact backscattering may be suppressed,
while nearly perpendicular scattering may be enhanced. For
another example, in the LLL scattering (Figs. 5 and 6), which
can happen when an electrostatic wave launched by antenna
arrays decays to two other longitudinal waves, symmetric
decays are usually favored whenever possible, but asymmetric
decays can also be important at special angles.

The above collisionless, cold, fluid results will need
to be modified when kinetic or collisional effects become
important. Aside from wave damping [Eq. (85)], a major
modification comes from the alternation of the linear eigen-
mode structure, which will be constituted of Bernstein waves
instead of the hybrid waves. In addition, weak coupling
results obtained in this paper will need to be modified when
three-wave interactions become strong. This happens when
wave amplitudes become nonperturbative, so that relativistic
effects become non-negligible, and linear eigenmode structure
becomes strongly distorted.

Despite the above caveats, the importance of this work is
twofold. First, the formulation we have developed preserves
the general mathematical structure, thereby enabling profound
simplifications of the most general results. From these results,
illuminating physical consequences are extracted, which can
be used to develop reduced models and benchmark numerical
simulations. Second, the uniform, collisionless, and cold
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fluid results we have obtained serve as the baseline for
understanding angular dependence of three-wave scattering
in magnetized plasmas, which is important for magnetic
confinement devices, as well as laser-plasma interactions in
magnetized environment.

ACKNOWLEDGMENTS

We would like to thank the anonymous referees for their
comments and suggestions. This research is supported by
NNSA Grant No. DE-NA0002948 and DOE Research Grant
No. DE-AC02-09CH11466.

APPENDIX A: MULTISCALE PERTURBATIVE
SOLUTION OF SYSTEM OF ODES

In Sec. II, we use a multiscale expansion to solve a
system of nonlinear hyperbolic partial differential equations.
To facilitate understanding of the multiscale expansion, here
we demonstrate how it can be successfully applied to the
following system of ordinary differential equations, which are
hyperbolic in the absence of perturbations

ẋ = y + εf (x,y), (A1)

ẏ = −x + εg(x,y). (A2)

Here, ẋ and ẏ denote the time derivatives of x(t) and y(t),
respectively, f and g are some polynomials, and ε � 1 is a
small parameter.

The above system of equations may be solved perturbatively
using the expansion

x(t) = x0(t) + εx1(t) + ε2x2(t) + · · · , (A3)

y(t) = y0(t) + εy1(t) + ε2y2(t) + · · · . (A4)

However, naive perturbative solutions using only the above
expansions will fail due to nonlinearity, by which the notorious
secular terms will arise. The secular terms grow monotonically
in time and will quickly render the perturbative solutions
invalid. To remove the secular terms, it is necessary that we
also expand the time scales

t = t0 + 1

ε
t1 + 1

ε2
t2 + · · · , (A5)

∂t = ∂0 + ε∂1 + ε2∂2 + · · · , (A6)

where one unit of the slow time scale tn worth 1/εn units of
the fastest time scale t0. Different time scales can be regarded
as independent, and the total time derivative can be written as
the summation of derivatives on each time scale ∂n := ∂/∂tn.
Substituting expansions (A3)–(A6) into Eqs. (A1) and (A2)
and collect terms according to their order in ε, we can obtain
a series of equations.

The ε0-order equations are simply the equations for a simple
harmonic oscillator

∂0x0 − y0 = 0, (A7)

∂0y0 + x0 = 0. (A8)

For real valued x and y, the general solution is well known:

x0 = a0e
it0 + c.c., (A9)

y0 = ia0e
it0 + c.c., (A10)

where c.c. stands for complex conjugate, and the complex
amplitude a0 = a0(t1,t2, . . . ) can be a function of slow
variables. If we truncate the solution on this order, then x and
y oscillate harmonically with constant amplitude. On the other
hand, if we move on to the next order, perturbations εf (x,y)
and εg(x,y) will cause the amplitude a0 to vary on slow time
scales, as will be described by higher order equations.

The ε1-order equations start to couple perturbations on
different time scales

∂1x0 + ∂0x1 − y1 − f0 = 0, (A11)

∂1y0 + ∂0y1 + x1 − g0 = 0, (A12)

where f0 = f (x0,y0) and g0 = g(x0,y0), in which x0 and y0

are given by Eqs. (A9) and (A10). The above two equations
contain three unknowns x1, y1, and ∂1a0. Therefore, we can
use the extra degree of freedom to remove secular terms. To
do that, let us first separate variables x1 and y1 and rewrite the
ε1-order equations as

∂2
0 x1 + x1 + 2∂1y0 = u1, (A13)

∂2
0 y1 + y1 − 2∂1x0 = v1, (A14)

where the source terms

u1[a0] = ∂0f0 + g0, (A15)

v1[a0] = ∂0g0 − f0. (A16)

Substituting x0 and y0 into polynomials f and g, we can write
f0 =∑n f0ne

int0 + c.c., and g0 =∑n g0ne
int0 + c.c., where

f0n and g0n are some functionals of a0. Then, the source
terms can be written similarly as u1 =∑n u1ne

int0 + c.c. and
v1 =∑n v1ne

int0 + c.c., where u1n = g0n + inf0n and v1n =
−f0n + ing0n.

To solve the ε1-order equations (A13) and (A14), we
can match coefficients of Fourier exponents and split the
equations into two sets. The first set of equations govern
how the amplitude a0 evolves on the slow time scale t1,
which can be written as ∂1x0 = − 1

2 (v11e
it0 + c.c.) and ∂1y0 =

1
2 (u11e

it0 + c.c.). These two equations are essentially the same,
as can be seen from the relations between x0 and y0, as well
as the definitions of u11 and v11. Both of these equations
result in the same equation for a0, which absorbs the secular
term

∂1a0 = 1
2 (f01 − ig01), (A17)

where the right-hand side is some functional of a0. This first
order ordinary differential equation (ODE) of a0 can usually
be integrated, from which a0 will be a known function of t1.
The other sets of equations govern x1 and y1:

∂2
0 x1 + x1 =

∑
n�=1

u1ne
int + c.c., (A18)

∂2
0 y1 + y1 =

∑
n�=1

v1ne
int + c.c. (A19)
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Having removed the secular terms, the above equations are
now secular free, and can be readily solved by

x1 = a1e
it0 +

∑
n�=1

u1n

1 − n2
eint0 + c.c., (A20)

y1 = b1e
it0 +

∑
n�=1

v1n

1 − n2
eint0 + c.c. (A21)

The amplitudes a1 and b1 are clearly related by the ε1-order
equations, which give

b1 = ia1 − 1
2 (f01 + ig01). (A22)

Notice that in the perturbation series (A3), we can always
redefine a0 + εa1 → a′

0. Hence, it is sufficient to set the
amplitude a1 = 0. In this way, we will obtain a x-majored
solution, where the amplitude of eit0 for x is completely
given by a0, whereas amplitude eit0 for y is given by the
summation b0 + εb1 + · · · . Alternatively, by setting b1 = 0,
we can obtain a y-majored solution, which we will not
pursue here. For three-wave scattering studied in this pa-
per, it is sufficient to truncate the solution series at this
order.

To show the general structure of the multiscale expansion,
here, it is instructive to carry out the solution to the next order.
The ε2-order equations are

∂2x0 + ∂1x1 + ∂0x2 − y2 − f1 = 0, (A23)

∂2y0 + ∂1y1 + ∂0y2 + x2 − g1 = 0, (A24)

where f1 = x1∂xf0 + y1∂yf0 and g1 = x1∂xg0 + y1∂yg0. In
the above two equations, there are three unknowns x2, y2, and
∂2a0. So, again, we can use the extra degree of freedom to
remove the secular terms. Separating variables x2 and y2, we
can rewrite the equations as

∂2
0 x2 + x2 + 2∂2y0 = u2, (A25)

∂2
0 y2 + y2 − 2∂2x0 = v2. (A26)

Since we set a1 = 0 for the x-majored solution, the source
terms are functionals of a0 only:

u2[a0] = ∂0f1 + g1 + ∂2
1 x0 − 2∂1y1 − ∂1f0, (A27)

v2[a0] = ∂0g1 − f1 + ∂2
1 y0 + 2∂1x1 − ∂1g0. (A28)

Since f and g are polynomials, we can write f1 =∑
n f1ne

int0 + c.c. and g1 =∑n g1ne
int0 + c.c. Then, the

source terms can be written similarly as u2 =∑n u2ne
int0 +

c.c. and v2 =∑n v2ne
int0 + c.c., where v21 = iu21 = i∂2

1 a0 +
ig11 − ∂1g01 − f11, and for n � 2, we have u2n = inf1n −
∂1f0n + g1n − 2∂1v1n/(1 − n2) and v2n = ing1n − ∂1g0n +
f1n + 2∂1u1n/(1 − n2).

To solve the ε2-order equations (A25) and (A26), we can
use a similar procedure to split the equations into two sets.
The first set of equations can be written as a single equation
governing how the amplitude a0 evolve on the slow time

scale t2:

∂2a0 = 1

2
(f11 − ig11) − i

4
∂1(f01 + ig01). (A29)

Regarding t1 as a parameter, the above equation is a first order
ODE for a0(t2), which can usually be integrated. The second
set of equations is similar to Eqs. (A18) and (A19), with u1n

and v1n replaced by u2n and v2n, respectively. The solutions
to these secular-free equations are similar to Eqs. (A20) and
(A21) with the order index “1” replaced by the order index “2”
in which the second order amplitudes a2 and b2 are related by
the ε2-order equations

b2 = ia2 − 1

2
(f11 + ig11) − i

4
∂1(f01 + ig01). (A30)

To obtain the x-majored solution, we again set a2 to zero. By
the obvious analogy between the ε1- and ε2-order equations,
the above procedures can be readily extended to higher order
in the perturbation series.

To see how the multiscale expansion works in practice,
interested readers are encouraged to try the following two
examples. The first is a linear example, where f (x,y) = −x

and g(x,y) = 0. In this case, the exact solution can be
easily obtained. The second is a nonlinear example, where
f (x,y) = 0 and g(x,y) = −x + 2x3. The exact solutions to
this nonlinear example are the Jacobi elliptic functions. One
can expand the exact solutions in ε, and check order by order
that they match the perturbative solution obtained using the
multiscale expansion.

APPENDIX B: LINEAR WAVES IN COLD
MAGNETIZED PLASMAS

In Sec. II A, we obtain the first order electric field equation
(33) in the momentum space. The solutions to this matrix
equation give the linear eigenmodes of the cold fluid-Maxwell
system. In this appendix, we review properties of the linear
waves, in order to facilitate understanding of their scatterings
discussed in this paper.

To discuss properties of the linear waves, it is convenient to
choose the coordinate system where the uniform magnetic field
is in the z direction. In this coordinate, the forcing operator
(26) has matrix representation

Fs,k =
⎛
⎝ γ 2

s,k iβs,kγ
2
s,k 0

−iβs,kγ
2
s,k γ 2

s,k 0
0 0 1

⎞
⎠. (B1)

Having fixed the z axis, we can rotate the coordinate system,
such that the wave vector k = (k⊥,0,k‖) = k(sin θ,0, cos θ ),
where θ is the angle between k and b. In this coordinate
system, the matrix representation of the dispersion tensor (34)
can be easily found. Then, the first order electric field equation
DkE (1)

k /ω2
k = 0 can be written as⎛
⎝S − n2

‖ −iD n⊥n‖
iD S − n2 0

n⊥n‖ 0 P − n2
⊥

⎞
⎠
⎛
⎜⎝
E (1)

x

E (1)
y

E (1)
z

⎞
⎟⎠ = 0, (B2)

where n = ck/ω is the refractive index, n⊥ = n sin θ , and
n‖ = n cos θ are projections in the perpendicular and parallel
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directions. Following Stix’s notations [36], the components of
the dielectric tensor are

S = 1 −
∑

s

ω2
ps

ω2 − �2
s

, (B3)

D =
∑

s

�s

ω

ω2
ps

ω2 − �2
s

, (B4)

P = 1 −
∑

s

ω2
ps

ω2
. (B5)

In the above expressions, we have omitted the k subscripts
for both ω and E (1). The expressions for S and D can
be simplified, using identities in quasineutral electron-ion
plasma, in which ne = Zini , so �iω

2
pe + �eω

2
pi = 0 and

�2
i ω

2
pe + �2

eω
2
pi + ω2

p�e�i = 0, where ω2
p =∑s ω2

ps is the
plasma frequency squared.

The electric field equation (B2) has nontrivial solution if and
only if the dispersion tensor is degenerate. This is equivalent to
requiring the determinant of the dispersion tensor to be zero,
which gives a constraint between ω and k, called the dispersion
relation. In the above coordinate system, using Stix’s notation,
the dispersion relation can be written as

An4 − Bn2 + C = 0, (B6)

where the coefficients of the quadratic equation of n2 are

A = S sin2 θ + P cos2 θ, (B7)

B = RL sin2 θ + PS(1 + cos2 θ ), (B8)

C = PRL, (B9)

which are functions of ω only, independent of the wave
vector. In the above expressions, R = S + D and L = S − D

are the right- and left-handed components of the dielectric
tensor. The quadratic dispersion relation (B6) has two solu-
tions n2

± = (B ± F )/(2A), where F 2 = B2 − 4AC = (RL −
PS)2 sin4 θ + 4P 2D2 cos2 θ . Since F 2 � 0, we see the two
solutions n2

± are both real. However, n2
± is not always positive,

so each solution may contain many branches, emanating from
cutoff frequencies ωc, at which C(ωc) = 0 so that n2 = 0.
For example, in electron-ion plasma [Fig. 7(a)], the cutoff
frequencies are at ωR , ωp, and ωL, and the dispersion relation
contains two electromagneticlike branches, for which ω → ck

as k → ∞, as well as three electrostaticlike branches, for
which ω → ωr as k → ∞, where ωr is some resonance
frequencies.

The resonance frequencies are asymptotic values of ω on
electrostatic branches when k → ∞. As the frequency ap-
proaches the resonance frequencies from below, the refractive
index n2

± → ∞, so we can find ωr by solving A(ωr ) = 0. In
electron-ion plasma, this equation for resonance frequencies
can be explicitly written as

0 = ω6
r − ω4

r

(
ω2

p + �2
e + �2

i

)− ω2
p�2

e�
2
i cos2 θ

+ω2
r

[
ω2

p

(
�2

e + �2
i

)
cos2 θ − ω2

p�e�i sin2 θ + �2
e�

2
i

]
.

(B10)

FIG. 7. Linear wave dispersion relations (a) and polarization
angles (b) in a cold electron-ion plasma with mi/me = 10 and
|�e|/ωpe = 1.2, when θ = 45◦. Both the n2

+ (red) and the n2
− (blue)

solutions contain an electromagneticlike branch and electrostaticlike
branches. The electromagneticlike branches asymptote to vacuum
light wave ω → ck when k → ∞, where the waves become
transverse (φ → 90◦, mod 180◦). The electrostaticlike branches
asymptote to resonances ω → ωr as k → ∞, where the waves
become longitudinal (φ → 0◦, mod 180◦). The waves are in general
elliptically polarized (ψ �= 0◦, mod 90◦), except at special angles.

The above cubic equation for ω2
r has three solutions (Fig. 8),

which can be ordered from large to small as the upper
(ωu), lower (ωl), and bottom (ωb) resonance. When θ ∼ 0
or π , the resonance frequencies approach ωp, |�e|, and
�i . Keeping the next order angular dependence, the three
resonance frequencies, when sin θ ∼ 0, can be approximated

FIG. 8. Resonance frequencies in electron-ion plasma with
mi/me = 10. In overdense plasma, e.g., |�e|/ωp = 0.8 (a), as θ

increases from 0◦ to 90◦, the upper resonance (red) increases from
ωp to ωUH ; the lower resonance (orange) decreases from |�e| to
ωLH ; and the bottom resonance (blue) decreases from �i to zero. In
underdense plasma, e.g., |�e|/ωp = 1.2 (b), as θ increases from 0◦

to 90◦, the upper resonance (red) increases from |�e| to ωUH ; the
lower resonance (orange) decreases from ωp to ωLH ; and the bottom
resonance (blue) decreases from �i to zero. This figure can be used
to read out the frequency shift �ω, once the scattering angle of the
longitudinal wave is known.
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by

ω2
r

ω2
p

� 1 − �2
e sin2 θ

�2
e(2 − cos2 θ ) − ω2

p

, (B11)

ω2
r

�2
e

� 1 − ω2
p sin2 θ

ω2
p(2 − cos2 θ ) − �2

e

, (B12)

ω2
r

�2
i

� 1 − �i

|�e| tan2 θ. (B13)

In the other limit, when θ ∼ π/2, the resonance frequencies
approach the upper-hybrid frequency ωUH , the lower-hybrid
frequency ωLH , and 0. Keeping the next order angular depen-
dence, the upper, lower, and bottom resonance frequencies,
when cos θ ∼ 0, can be approximated by

ω2
u

ω2
UH

� 1 − ω2
p�2

e cos2 θ(
ω2

p + �2
e

)2 + ω2
p�2

e cos2 θ
, (B14)

ω2
l

ω2
LH

� 1 + �2
e cos2 θ

�2
e cos2 θ + |�e|�i(1 + cos2 θ )

, (B15)

ω2
b

�2
i

� |�e| cos2 θ

�i + |�e| cos2 θ
. (B16)

The above asymptotic expressions for resonance frequency
ωr are extremely useful when we approximate the scattering
strength and wave energy coefficients.

When frequencies approach resonances, the waves become
longitudinal. On the other hand, the wave becomes trans-
verse when frequencies approach infinity. For intermediate
frequencies, we can find the wave polarization by solving
for eigenmodes of the electric field equation (B2). In the
wave coordinate k̂,ŷ, and k̂ × ŷ, we can write Ek = E cos φ,
Ey = −iE sin φ cos ψ , and E× = E sin φ sin ψ , where we have
omitted the superscript of E (1). Then, the polarization angles

tan ψ = Sn2 − RL

n2D cos θ
, (B17)

tan φ = P cos θ

(n2 − P ) sin θ sin ψ
. (B18)

Notice that E×/Ey = i tan ψ is imaginary. Therefore, the
wave is elliptically polarized in general. Also notice that the
polarization ray Ê is invariant under transformations (φ,ψ) →
(φ ± 180◦,ψ) and (φ,ψ) → (−φ,ψ ± 180◦). Therefore, the
polarization angles [Fig. 7(b)] can be interpreted up to these
identity transformations. Finally, notice that ψ± for the n2

±
solutions satisfies the identity tan ψ+ tan ψ− = −1. Hence,
polarizations of these two frequency-degenerate eigenmodes
are always orthogonal in the transverse plane.
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