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Coupled heat pulse propagation in two-fluid plasmas
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Because of the large mass differences between electrons and ions, the heat diffusion in electron-ion plasmas
exhibits more complex behavior than simple heat diffusion found in typical gas mixtures. In particular, heat is
diffused in two distinct, but coupled, channels. Conventional single fluid models neglect the resulting complexity,
and can often inaccurately interpret the results of heat pulse experiments. However, by recognizing the sensitivity
of the electron temperature evolution to the ion diffusivity, not only can previous experiments be interpreted
correctly, but informative simultaneous measurements can be made of both ion and electron heat channels.
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I. INTRODUCTION

Electron-ion plasmas have the distinctive and fundamental
property that the constituent populations reach equilibrium
within themselves, long before equilibrating with each other.
Additionally, the two species have very different transport
properties all due to the extreme mass disparity. Heat therefore
propagates through two distinct, but coupled, channels.

This basic fact has important, but thus far unaddressed,
implications for heat pulse based thermal diffusivity mea-
surements. Such experiments have been widely conducted in
magnetic confinement devices since the 1980s [1–17]. Yet,
many aspects of heat transport in plasmas remain mysteri-
ous. While that alone motivates their study, from a pragmatic
perspective, direct measurements of the transport coefficients
provide a means of validating transport models. The predic-
tive capability of these models is critical in reactor design.
These measurements also inform on profile stiffness [18–21]
and the reduction of heat conduction within magnetic islands
[22,23]. These phenomena have important consequences for
disruption avoidance [24–28]. More recently, heat pulse based
transport studies have been utilized in inertial confinement
fusion experiments as well [29,30].

The enduring relevance of heat pulse experiments has also
spawned an extensive body of theoretical work devoted to
their interpretation [31–37]. While many potential deviations
from diffusive propagation (e.g., convection, density coupling,
nonlocal transport) have been considered, the basic physics of
energy exchange between species, even when included, has
not been properly treated. Past works model energy loss to the
ions as a generic damping term for the electrons, effectively
assigning the ions the status of an inactive background sink.
This picture is qualitatively incomplete. If energy exchange is
sufficiently significant to warrant the inclusion of a damping
term, the propagation of this lost heat through the ion channel
must be considered in tandem. The electron temperature is
not only affected by the degree of energy exchange with the
ions, but in fact bears the signature of the ion heat transport
properties as well.

On this point, a change of philosophy is in order. En-
ergy coupling with the ions has long been considered an

inconvenient source of error to be avoided, when it actually
presents a valuable, but thus far missed, opportunity. Per-
turbative ion diffusivity measurements are presently in high
demand, but are limited by diagnostics and the complications
of ion heating. A proper treatment of energy coupling enables
a purely electron-based method that circumvents both of these
difficulties. The improved accessibility of these measurements
could greatly accelerate the understanding of the vast array of
complex transport processes in plasmas.

Beyond the direct utility and experimental relevance,
the coupled temperature modes explored in this work are
also of general academic interest. There is a long legacy
of work in disparate mass gas mixtures [38–41], but thus
far only the sound modes have received significant atten-
tion. The existence of diffusive heat modes has hardly been
explored, perhaps due to limited perceived experimental rel-
evance. Indeed, since the largest mass ratios in disparate
mass neutral gases are still orders of magnitude smaller than
the proton-electron mass ratio, the timescales on which a
two-temperature description would apply are comparatively
prohibitive. Additionally, the magnetized plasma-specific
tools of electron cyclotron heating and electron cyclotron
emission are singularly well suited for exciting and measuring
heat pulses, respectively. Although electron-phonon tempera-
ture coupling has received some attention in semiconductors
[42–44], spatially resolved phase information is not available,
which significantly limits the analyses possible. Plasmas thus
provide a unique opportunity to study these coupled tempera-
ture modes.

Here we show that coupled diffusive heat pulse propaga-
tion can dramatically affect thermal diffusivity measurements.
It will be shown that the electron temperature response to
a periodic source generally consists of two modes, and that
the propagation of these modes depends on both the electron
and ion diffusivities. This superposition of modes introduces
varying degrees of over- or underestimation of the electron
diffusivity when using popular single fluid formulas, depend-
ing on the strength of the coupling, the distance from the
source, and the ion diffusivity. The sensitivity of the electron
response to the ion heat channel opens the exciting possibility
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of simultaneously extracting both electron and ion diffusivi-
ties from the electron temperature alone.

II. ONE-DIMENSIONAL DIFFUSIVE HEAT TRANSPORT

The energy transport equations for electrons and ions can
be written as

3
2∂t nsTs − ∇ · (nsχs · ∇Ts) = 3

2νns(Tr − Ts) + Ps, (1)

where subscript s denotes either electrons or ions; subscript r
denotes the other species; χs is the heat diffusivity tensor of
species s; and ν is the electron-ion thermal equilibration rate.
Ps contains whatever species-specific heat sources and sinks
may be present, aside from the explicitly written electron-ion
equilibration term. In the interest of focusing on the treatment
of energy coupling, other nondiffusive effects that have al-
ready been extensively covered in other works (e.g., density
coupling, convection) are excluded. In order to ensure the
validity of using fluid equations for both the electrons and
ions, the dynamics of interest must be slower than the ion-ion
collision time, i.e., τ � τii where τ is the timescale set by the
heat source. For experiments in which heating is modulated,
τ can be easily identified with the period of heating, but, for
single-pulse relaxation experiments, τ is a local, less distinct
quantity.

Further simplifications arise from the anisotropy of trans-
port relative to the magnetic field. Since τs,⊥ � τs,‖, where
τs,‖ (τs,⊥) is the timescale on which species s = e, i equi-
librates along (across) field lines, the dimensionality of the
problem can be reduced. For timescales τ ∼ τs,‖, only trans-
port along the field lines need be considered, while for
timescales τ ∼ τs,⊥, the temperature will already be equili-
brated along field lines and only perpendicular transport will
be relevant. The perpendicular transport can typically be re-
duced to a one-dimensional (1D) problem with geometrical
corrections. Such corrections will not be considered here, and
a slab geometry will be used for physical clarity of solutions.

As we are interested in the temperature perturbations to an
equilibrium resulting from an electron heat source, all other
sources and sinks are taken to be balanced and will not be
explicitly written. Finally, if the density and diffusivities are
weakly inhomogeneous, i.e., the length scale of the pertur-
bations is smaller than the length scale of the background
in the relevant direction, the linearized 1D equations can be
approximately written:

∂t T̃e − Xe∂
2
x T̃e = ν(T̃i − T̃e) + Php, (2)

∂t T̃i − Xi∂
2
x T̃i = ν(T̃e − T̃i ), (3)

where Php is the external source driving the heat pulse(s), and
Xs := 2

3χs for notational convenience, with the relevant diffu-
sivity (perpendicular or parallel) determined by the timescale
orderings discussed above. It should be noted that in the case
of perpendicular transport, the relevant diffusivity will be
the “incremental,” or “heat pulse” diffusivity, which reflects
nonlinear dependence of χs on ∇Ts,0 [36,45]. These notably
simple coupled transport equations capture remarkably sur-
prising and varied heat transport phenomena.

III. COUPLED DIFFUSIVE MODES

Heat pulse experiments often employ a periodic heat
source, usually modulated electron cyclotron heating, which
has the attractive property of being highly spatially localized.
Then, Php = P0δ(x) exp(−iωt ), and the electron and ion tem-
perature responses can be written as the sum of two modes:
T̃ω,s = As,1 exp(ik1|x|) + As,2 exp(ik2|x|) where k1, k2 are the
two solutions to

(ν − iω + Xek2)(ν − iω + Xik
2) = ν2 (4)

with positive imaginary parts. As these are diffusive modes,
it is always true that Im(k j ) � Re(k j ). Modes 1 and 2 are
identified by Im(k1) < Im(k2).

The coefficients As, j ( j = 1, 2) are given by

Ae, j = iP

/[
2Xek j

(
1 − α j

αk �= j

)]
, Ai, j = α jAe, j, (5)

where α j := ν − iω + Xek2
j .

The identity of the modes in the decoupled treatment can be
easily recovered by taking the high frequency limit (ω/ν →
∞), or equivalently taking ν → 0 in Eq. (4):

k1 → 1 + i√
2

√
ω

Xi
, k2 → 1 + i√

2

√
ω

Xe
. (6)

Here k2 can be recognized as the uncoupled electron mode,
with k1 as its ion counterpart. Note that, in making this
identification, it has been assumed that χi > χe. Intuitively,
if the driving frequency exceeds the rate at which energy
can be transferred between species, the oscillations will
be effectively uncoupled, with each k depending solely on
the respective diffusivity. The amplitude of the oscillations
in the other species appropriately vanishes (|Ae,1/Ai,1| →
0 and |Ai,2/Ae,2| → 0). The properties of each mode k j (ω)
and Ae, j/Ai, j are intrinsic, but the degree to which each mode
is excited depends on the heat source. Since we are consider-
ing pure electron heating, Ae,1/Ae,2 → 0 as ω/ν → ∞.

At first glance, this is an unsurprising reproduction of the
single fluid treatment—intuitively it should be expected that if
the driving frequency greatly exceeds the rate at which energy
can be exchanged, the heat would propagate solely through the
electron channel with no interference from the ions. However,
if χi > χe, which is the case for perpendicular transport, then
Im(k2) > Im(k1). Then no matter how preferentially the elec-
tron mode 2 is excited, its shorter damping length means that
eventually the ion diffusivity dependent mode 1 will dominate
as distance from the source is increased. Of course, how much
this matters in practice will depend on the measurement range,
ratio of ion and electron diffusivities, and driving frequency
relative to equilibration rate.

In the low driving frequency limit (ω/ν → 0):

k1 → 1 + i√
2

√
2ω

Xe + Xi
,

k2 →
(
X 2

e + X 2
i

)
2
√

νXeXi(Xe + Xi )3
ω + i

√
ν(Xe + Xi )

XeXi
. (7)

Evidently, in this limit k1 describes perfectly equilibrated
electrons and ions behaving as a single fluid, and propagated
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FIG. 1. Apparent diffusivity χapp for χe = 1 m2/s, χi = 2 m2/s.
(a) χapp vs frequency for several distances from source. Dotted lines
indicate limiting values at χe and χe/2(1 + γ ). (b) χapp vs distance
from source for low, intermediate, and high driving frequencies.
Dotted lines indicate limiting values at χe, (χe + χi )/2, and χi.

with an averaged diffusivity. This behavior can be reproduced
by taking the highly collisional limit of Eq. (1), leading to a
reduced single fluid equation.

The k2 mode has ions oscillating perfectly out of phase
with the electrons, with amplitude reduced by the factor Xi/Xe.
It becomes strongly damped relative to the k1 mode as ω/ν →
0. The physical necessity of mode 2 arises from species-
specific heating—even if collisions are rapidly bringing the
two species to the same temperature, close enough to the
source, this perfectly equilibrated picture must break down.
Accordingly, the relative amplitude of mode 2 decreases as
ω/ν → 0.

In intermediate frequency regimes, the modes cannot be
described in such simple terms and there is no clear preferen-
tial excitation of either mode. It is worth reiterating, however,
that the mode dominance of the temperature response is not
solely determined by the degree of excitation as represented
by the coefficents Ae, j , but will exponentially shift in favor of
the less damped mode k1 with increasing distance from the
source.

IV. DIFFUSIVITY MEASUREMENTS

Although there are a number of ways to analyze these
experiments, most often some type of analytic formula is used
to relate the measured phase (φ) and amplitude (A) profiles
to the electron thermal diffusivity. The widely cited work by
Jacchia et al. [37] gives the following expression:

χe = 3ω

4φ′(A′/A)
. (8)

This expression is derived accounting for electron temper-
ature damping, but without the coupled treatment described
here. This is equivalent to employing Eq. (2) only, but forcing
T̃i = 0. Without coupling, the product of phase and amplitude
derivatives is independent of the damping coefficient.

Evaluating expression (8) but with phase and amplitude
profiles calculated with the two-fluid Eqs. (2) and (3) gives an
“apparent diffusivity” (χapp) that depends on distance from the
source, driving frequency, and both electron and ion diffusiv-
ities. This quantity normalized to the true electron diffusivity
is plotted in Fig. 1, which shows each of these dependencies.

FIG. 2. Left: Relative diffusivity error χapp/χe as a function
of measurement distance and driving frequency. Right: Zoomed-in
view of a region of backwards-propagating phase and increasing
amplitude. Left negative region corresponds to φ′ < 0; right region
corresponds to A′ < 0. Overlap produces positive values, so a cut
along either frequency or position axis containing this overlap would
exhibit four resonances.

Most of the limiting behaviors are obvious from the
limiting forms of the solutions. At driving frequencies
greatly exceeding the equilibration rate, the solution close
to the source is the familiar uncoupled electron mode; in
this case χapp → χe. Still in the high frequency limit, but far
from the source, the solution is dominated by the uncoupled
ion mode and accordingly χapp → χi.

Interestingly, at low driving frequencies, although mode
1 is both preferentially excited and not as strongly damped,
χapp → (χe + χi )/2 only sufficiently far from the source. Tak-
ing derivatives of the phase or amplitude introduces factors
of k, and as can be seen from Eq. (7), |k2|/|k1| → ∞ as
ω/ν → 0; so although the solution itself is dominated by the
k1 mode, the phase and amplitude derivatives contain non-
negligible contributions from the k2 mode. A more careful
analysis yields that the true low frequency limit of expression
(8) evaluated at x = 0 will be χe/2(1 + γ ), where γ := χi/χe.
Note that this will in general be significantly smaller than the
true electron diffusivity—a rather counterintuitive result, as
one might expect the measured diffusivity to be bounded by
the electron and ion values.

At higher frequencies and larger distances from the
source, Fig. 1(b) shows spiky structures in the apparent
diffusivity, just before transitioning to the high frequency
and far-from-source limits. These arise due to proximity in
frequency-position space with regions of backwards-moving
phase (φ′ < 0) or increasing amplitude (A′ > 0), illustrated in
Fig. 2. “Resonances” in the apparent diffusivity appear at the
boundaries of these regions, when (φ′ = 0) or (A′ = 0). These
are purely a result of the superposition of multiple modes,
which in turn are only introduced by the coupling. It can
be shown that Eq. (2) alone without coupling does not ad-
mit backwards-moving phase or locally increasing amplitude,
even including, for example, inhomogeneities.

In tokamak heat pulse experiments, typically ν ∼
10–100 s−1 and χe ∼ 1 m2/s so the spatial range shown in
Fig. 1 corresponds to ∼1 m, while measurements are typically
performed over a range on the order of 10 cm. Driving fre-
quencies are also traditionally O(10–100) Hz, so while the
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FIG. 3. Composite quantites (a) φ′/(A′/A) and (b) φ′(A′/A) eval-
uated at a distance of 20 cm from the source vs driving frequency,
for several ion diffusivities.

resonances, and the ensuing far-from-source limiting behav-
iors are likely not of immediate experimental relevance, they
cannot be ruled out.

The vast majority of heat pulse experiments have fallen
in the high frequency and close-to-source regime, where ef-
fects from ion coupling are negligible. Occasionally, however,
a driving frequency on the order of the equilibration rate
[3,6,8,15,18,20,46] or even slower [11,13,14] is used. In this
case, the apparent diffusivity can be significantly smaller than
the true electron diffusivity. These errors can be comparable
with the estimated diffusivity value itself. This is in direct con-
trast with the consensus that neglecting ion coupling would
only lead to overestimating the electron diffusivity [36,47].

But of far more consequence than inaccurate estimates is
the missed opportunity of simultaneously extracting the ion
diffusivity from the exact same electron temperature mea-
surements that have been taken all along. Historically, higher
modulation frequencies have been used to effectively drown
out nondiffusive effects, ion energy exchange included, for
ease of interpretation. Many experiments, especially in recent
years, have strayed from this prescription, opting for slower
modulation which produces oscillations that travel further for
a given heating intensity, providing a better signal to noise
ratio while avoiding nonlinear effects. At these lower mod-
ulation frequencies, coupling plays a significant role in the
electron temperature response, and this can be exploited to
infer the ion diffusivity. We emphasize here that there has been
no previous attempt or recognition of the possibility of ex-
tracting both ion and electron diffusivities from the relatively
accessible electron temperature alone, even when coupled
equations have been used in the fitting process [48].

A simultaneous measurement of both heat channels might
be performed in the following way. Figure 3 shows the ion
diffusivity and driving frequency dependence of two possible
composite experimental quantities, (b) showing the combina-
tion φ′(A′/A) which is designed to be independent of damping
[37], (a) showing the quantity φ′/(A′/A), which was picked

with the opposite intention. It can be seen that composite
quantity (a) displays promising sensitivity to the ion diffu-
sivity for driving frequencies comparable to, or slower than
the local electron-ion equilibration time. This is in stark con-
trast to quantity (b), for which no frequency range exhibits
appreciable sensitivity to the ion diffusivity, true to its design.
An interesting consequence is that the apparent diffusivity
evaluated with quantity (a) can be significantly different from
the true electron diffusivity, while remaining insensitive to the
ion diffusivity. This suggests an analysis method where both
quantities are used to analyze a frequency scan—quantity (b)
used to establish the local damping time and electron diffu-
sivity, which can then be used to back out the ion diffusivity
from the appropriately sensitive quantity (a).

V. SUMMARY

Energy exchange between species is a fundamental aspect
of heat propagation in plasmas. Heat flows through two dis-
tinct, but inevitably interacting, channels with often vastly
different transport properties—this can lead to surprising phe-
nomena that can only be understood through the lens of
coupled transport. The two-fluid coupled treatment performed
here reveals that the temperature response to a periodic source
consists of two modes, a fact of far reaching consequence for
diffusivity measurements.

Diffusivity values inferred with formulas derived from sin-
gle fluid models may suffer from varying degrees of over-
or underestimation, depending not only on distance from the
source and strength of coupling, but the ion diffusivity as
well. A rich diversity of regimes is possible, but in typical
experiments, it is most common that the electron diffusivity
will be underestimated.

What is remarkable is that even minimal electron-ion en-
ergy coupling can change the character of heat propagation
profoundly, with the electron temperature response exhibiting
sensitivity to the ion heat diffusivity. This sensitivity suggests
a new measurement technique: rather than attempting to avoid
the energy coupling pollution of electron diffusivity measure-
ments, it should be exploited to obtain a simultaneous estimate
of the ion diffusivity. This can be accomplished simply by
recognizing the coupled nature of the heat propagation in the
experimental interpretation, and opting for slower modulation
frequencies. Moreover, since the coupled heat propagation
equations are linear, the spectral components of an arbitrary
heat source can be treated separately by the analysis here.

As the distinct but coupled nature of heat propagation is a
direct consequence of the extreme electron-ion mass disparity,
the considerations here are by no means limited to magne-
tized plasma. Thus, heat pulse modulation techniques, well
developed in the tokamak literature, but newly informed by
the coupled treatment presented here, might also be adapted to
other plasma settings, including inertial confinement fusion.
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