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Natural hot-ion modes in a rotating plasma

E. J. Kolmes ,* I. E. Ochs , M. E. Mlodik , and N. J. Fisch
Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey 08540, USA

(Received 2 January 2021; revised 7 May 2021; accepted 24 June 2021; published 15 July 2021)

In steady state, the fuel cycle of a fusion plasma requires inward particle fluxes of fuel ions. These particle
flows are also accompanied by heating. In the case of classical transport in a rotating cylindrical plasma, this
heating can proceed through several distinct channels depending on the physical mechanisms involved. Some
channels directly heat the fuel ions themselves, whereas others heat electrons. Which channel dominates depends,
in general, on the details of the temperature, density and rotation profiles of the plasma constituents. However,
remarkably, under relatively few assumptions concerning these profiles, if the α particles, the by-products of the
fusion reaction, can be removed directly by other means, then a hot-ion mode tends to emerge naturally.
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I. INTRODUCTION

Nuclear fusion devices aim to achieve ignition by heating
a plasma to a very high temperature, typically on the order
of tens of keV. The heat losses at these temperatures are a
significant source of inefficiency in a fusion device. However,
the fusion cross section depends only on the temperature of
the fuel ions. At the same time, hot electrons incur large power
losses, either through radiation or heat transport, but do not
produce fusion power. Moreover, the capacity of a magnetic
confinement device to trap plasma is typically limited by total
plasma pressure; thus, the higher-temperature electrons take
up a large share of that pressure limit without producing any
additional fusion power. As such, the performance of a fusion
device can be improved—often dramatically—by achieving a
“hot-ion mode,” in which the ions are maintained at a higher
temperature than the electrons [1,2].

However, attaining a hot-ion mode is a significant technical
challenge. High-energy ions produced by fusion preferentially
lose their energy collisionally to electrons rather than to fuel
ions. If no additional strategy is employed to heat the ion
population, then the electrons will tend to be at least as hot
as the fuel ions, if not hotter. A hot-ion mode can be pro-
duced if significant external heating sources are directed at the
ion population. These sources could be neutral beams or RF
waves. Attaining a hot-ion mode in a reactor, however, where
the main heating is necessarily through the fusion reaction,
requires some form of α channeling, in which the energy
from fusion by-products is channeled into a wave (avoiding
collisional heating of the electrons), and that wave deposits
its energy into the fuel ions [3–11]. In all of these cases, the
hot-ion mode requires significant intervention to change the
power balance such that energy is directed to fuel ions. In
any of these cases, the differential in temperatures could be
increased if the electron energy confinement were reduced,
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though this strategy is less desirable insofar as it involves
increasing energy losses.

This paper will suggest an alternative possibility: a “natu-
ral” hot-ion mode. The notion of “natural” requires definition.
By natural, we imagine processes in which the ion heating
comes from transport processes that are already happening
in the plasma. Note that any steady-state fusion device must
have inward flows of fuel ions and outward flows of α par-
ticles in order to balance the fusion reactions. In the case
of classical transport, each particle flux is accompanied by
dissipation. If the dissipation is directed into the ions, and
if it is sufficiently large, then it could be possible to reach
a hot-ion mode naturally, without having to heat the ions
externally.

A plasma with large electric fields is a logical place to
look for such an effect, since the electric fields provide a
reservoir of potential energy through which moving particles
can exchange energy. If there are transfers of energy between
the particles and the electrostatic potential, then one might
imagine that certain populations of particles could be pref-
erentially heated or cooled. Exploiting this possibility, this
paper will consider cylindrically symmetric configurations
with radial electric and axial magnetic fields. We will focus
on a particularly simple case, in which the transport is purely
classical and where inhomogeneities in the direction of the
field can be neglected. In other words, consider the cylinder
long enough for end losses to be less important than transport
across the field.

Perpendicular E and B fields in this geometry cause plas-
mas to rotate, so any discussion of crossed-field plasmas
is inevitably a discussion of rotating plasmas. There are a
number of proposals for fusion devices involving signifi-
cant rotation. Supersonically rotating magnetic mirror devices
have promising theoretical properties [12,13] and have been
realized experimentally [14–16]. The wave-driven rotating
torus (WDRT) is a proposal for a toroidal device which relies
on poloidal rotation for confinement [17,18]. Additionally,
significant rotation velocities are sometimes observed even in
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devices (like tokamaks) for which rotation is not an essential
part of the confinement scheme [19–25].

The dissipation due to classical cross-field transport in a
rotating plasma can be split into two categories. Viscous heat-
ing occurs when the rotation profile is sheared. It heats ions.
Frictional heating occurs due to interactions between particles
of different species with different velocities. Frictional inter-
actions between ions and electrons heat electrons. However,
in the case of a plasma containing more than one ion species,
there is also ion-ion frictional dissipation, in which the heat
is divided between the ion species, preferentially heating the
lighter of any pair.

The problem of controlling the relative importance of these
channels has largely been overlooked, despite the fact that
expressions for the heating follow readily from established
theories of classical transport. The viscous heating scales with
the size of the deviation of the rotation profile from solid-body
rotation; the frictional heating scales with the deviation of
the different species’ pressures from a class of dissipationless
profiles.

We show here that a hot-ion mode can arise naturally by
arranging for the dominance of the ion dissipation channel.
For a plasma with a single ion species, classical dissipation
directly heats the ions only if the viscous dissipation is large.
If there are multiple ion species, then that constraint is relaxed,
since ion-ion friction can then compete with ion-electron fric-
tion. In general, in order for the heat dissipated in the rotating
plasma to naturally flow to the ions, the temperature, density,
and rotation profiles of the plasma constituents must all be
arranged carefully.

However, we further show here a remarkable property of
rotating and fusing plasma, so long as the steady-state density
of ions is maintained through ion fueling balancing the prompt
removal by α channeling of the spent fusion by-products.
Any other mechanism that removes the fusion by-products
on a collisionless timescale would produce the same result.
Surprisingly, such a steady-state plasma tends to assume nat-
urally the very favorable hot-ion mode without the necessity
of arranging in detail these profiles.

This paper is organized as follows: Section II reviews
classical cross-field particle transport in a rotating plasma.
Section III describes the classical heating channels associated
with the different mechanisms of cross-field particle trans-
port. Section IV discusses the conditions allowing different
channels to be dominant. Section V describes how, specifying
only global particle balance and boundary conditions, the ion
channel can dominate. Section VI briefly discusses two types
of device in which dominant ion heating could be particularly
dramatic. Section VII enumerates and discusses the major
assumptions that this paper relies on. Section VIII summarizes
and discusses these results.

II. CLASSICAL PARTICLE TRANSPORT IN
A ROTATING LINEAR DEVICE

Consider a fully ionized cylindrical plasma device with an
axial field B = Bẑ. Suppose the system is homogeneous in the
θ̂ and ẑ directions and that all flows are radial or azimuthal. In
a region away from any particle sources or sinks, the momen-

tum equation for species s is

msns

(
∂vs

∂t
+ vs · ∇vs

)

= qsns(E + vs × B) − ∇ps − ∇ · πs + Rs, (1)

where ms is the mass of species s, ns is the density, vs is
the velocity, qs is the charge, ps is the pressure, ∇ · πs is the
viscous force density, Rs is the friction force density, and E is
the electric field. In steady state, the radial flux �s

.= nsvsr can
be obtained [26] by rearranging the θ̂ component of Eq. (1):

�s = Rsθ − (∇ · πs)θ
ms�s[1 + (rvsθ )′/r�s]

. (2)

Here the θ subscript denotes the θ̂ component of a vector and
�s

.= qsB/ms is the gyrofrequency. The prime in the denom-
inator denotes the derivative ∂/∂r. The friction force density
can be written as

Rsθ =
∑

s′
Rss′θ , (3)

where the θ̂ frictional force on species s due to interactions
with species s′ can be modeled by [27]

Rss′θ = nsmsνss′

[
(vs′θ − vsθ )

+ 3

2B

1

msTs′ + ms′Ts

(
ms′TsT ′

s

qs
− msTs′T ′

s′

qs′

)]
. (4)

Ts denotes the temperature of species s. νss′ is the collision
frequency between species s and s′. In order to ensure momen-
tum conservation, it must satisfy nsmsνss′ = ns′ms′νs′s, so that
Rss′θ + Rs′sθ = 0. Equation (4) includes both the friction due
to differences in flow velocity and the thermal friction, which
is driven by temperature gradients. The azimuthal friction
force that appears in Eq. (2) can be written as

(∇ · π )θ = − 1

r2

∂

∂r

[
ηs1r3 ∂

∂r

(
vsθ

r

)]
, (5)

where ηs1 is the corresponding Braginskii viscosity coefficient
[28] or its analog in a multiple-ion-species plasma [29]. This
form of the viscous force is derived in Appendix A.

Let δ
.= vsθ /r�s, and suppose δ � 1. Then

�s = Rsθ − (∇ · πs)θ
ms�s

∞∑
k=0

[
− (rvsθ )′

r�s

]k

(6)

= Rsθ − (∇ · πs)θ
ms�s

[1 + O(δ)]. (7)

Define the viscous flux �visc
s by

�visc
s

.= − (∇ · πs)θ
ms�s

. (8)

Define the frictional flux �fric
s by

�fric
s

.=
∑

s′
�fric

ss′ , (9)

�fric
ss′

.= Rss′θ

ms�s
. (10)
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FIG. 1. The cartoon on the left shows the kind of flow that gives
rise to frictional cross-field transport: The local velocities of different
species are not the same. The cartoon on the right shows the kind
of flow that gives rise to viscous cross-field transport: It is radially
sheared.

Then Eq. (7) can be rewritten as

�s = (
�fric

s + �visc
s

)
[1 + O(δ)]. (11)

The kinds of flows that give rise to these different fluxes are
shown in Fig. 1. In practice, the viscous flux �visc

s is often
small compared to the frictional flux �fric

s [26]. However, for
the purposes of understanding heat and charge transport, the
two fluxes are comparably important. This is partly because
the flux described by �fric

ss′ is ambipolar, in the sense that

qs�
fric
ss′ + qs′�fric

s′s = 0. (12)

The viscous flux �visc
s satisfies no such condition. In the dis-

cussions that follow, the ability of the flux to carry net charge
will be important, since it determines how effectively the
particles can exchange energy with an electrostatic potential.

III. CLASSICAL HEATING

The particle fluxes described by Eq. (2) are accompanied
by dissipation. The temperature evolution equation for species
s can be written as

3ns

2

(
∂Ts

∂t
+ vs · ∇Ts

)
+ ∇ · qs + ps∇ · vs

=
∑

s′

3msnsνss′

ms + m′
s

(Ts′ − Ts) + Qvisc
s + Qfric

s , (13)

were qs is the heat flux, Qvisc
s is the viscous heating, and Qfric

s
is the frictional heating. Qvisc

s and Qfric
s are not the only terms

in Eq. (13) that could possibly produce a difference between
different species’ temperatures. The heat flows can have a
significant impact on the evolution of Ts, as can compressional
heating. The compressional heating is discussed in more detail
in Appendix C. However, the goal of this paper is not to
describe full solutions to Eq. (13). Rather, our focus will be the
ways in which Qvisc

s and Qfric
s may preferentially heat different

species. These are the two terms that are driven directly by
classical collisional transport; each has a connection to one of
the particle fluxes described in Sec. II.

A. Viscous heating

The heating Qvisc
s due to the viscous flux �visc

sr is the simpler
of the two to understand. In this geometry, the leading-order
viscous heating for species s can be written as

Qvisc
s = −πs : ∇vs = ηs1

[
r

∂

∂r

(
vsθ

r

)]2

. (14)

Equation (14) is derived in Appendix A. Qvisc
s vanishes for a

species undergoing solid-body rotation, when vsθ ∝ r. Inte-
grated over the cross-sectional area of the system to an outer
radius at r = R, Eq. (14) becomes

2π

∫ R

0
Qvisc

s rdr

= 2πηs1r2vsθ
∂

∂r

(
vsθ

r

)∣∣∣∣
r=R

− 2π

∫ R

0
qsBvsθ�

visc
s rdr.

(15)

The boundary term in Eq. (15) results from any uncompen-
sated viscous stress at the edges of the system. It vanishes if
the rotation profile flattens at the edge or if a no-slip boundary
imposes vsθ (R) = 0. If the dominant rotation is an E × B drift,
then vsθ ≈ −E/B, and thus the last term is the Ohmic j · E
heating due to the current carried by the viscous flux of species
s. The Ohmic heating term can be rewritten as follows:

−2π

∫ R

0
qsBvsθ�

visc
s rdr = 2π

∫ R

0
vsθ (∇ · πs)θ rdr. (16)

The right-hand side integrand is the dot product of the viscous
force with vs. In other words, the viscous Ohmic dissipation
term is exactly compensated by the energy transferred out of
the rotational motion by the viscous force.

In some ways, the two terms on the right-hand side of
Eq. (15)—the boundary term and the Ohmic dissipation—are
independent quantities which can be manipulated separately.
For instance, as was noted above, the edge heating can always
be eliminated with an appropriate choice of boundary condi-
tions. However, these terms are not fully independent. Note
that the second term on the right-hand side of Eq. (15) can be
positive or negative, but that Eq. (14) requires that Qvisc

s � 0.
This implies that there are cases in which the boundary term
in Eq. (15) must be important. Any time the viscous heating
carries particles from regions of lower electrostatic potential
energy to regions of higher potential energy, the boundary
term must be larger than the Ohmic heating term. For similar
reasons, any choice of boundary conditions that eliminates the
boundary heating term will implicitly set the sign of qsE�visc

s .
This point will be significant in Sec. V.

B. Frictional heating

The dissipation due to the frictional particle flux �fric
ss′

behaves quite differently. The heating of species s due to
frictional interactions with species s′ can be written as

Qfric
ss′ = ms′

ms + ms′
(vs′ − vs) · Rss′ , (17)

= qsB

(
ms′

ms + ms′

)
(vs′θ − vsθ )�fric

ss′ . (18)
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This expression satisfies msQfric
ss′ = ms′Qfric

s′s . The total fric-
tional heating Qfric

s for species s is then

Qfric
s =

∑
s′

Qfric
ss′ . (19)

The frictional heating differs from the viscous heating in
two key ways. First, though both scale with the size of the
corresponding particle flux, the frictional heating depends
on the difference in velocities (vs′θ − vsθ ) rather than vsθ on
its own. In an E × B-rotating device, the rotational veloci-
ties for all species will be close to the E × B velocity, so
(vs′θ − vsθ ) � vsθ .

Intuitively, why can a viscous particle flux be responsible
for so much more dramatic heating than a frictional particle
flux of the same size? It follows from the ambipolarity of the
frictional flux. The frictional flux �fric

ss′ of species s interacting
with species s′ is always paired with a flux �fric

s′s of species s′
interacting with s. To leading order, this pair of particle fluxes
carries no net charge and therefore exchanges no net energy
with the electrical potential. Exchange of energy with the elec-
trical potential has to come from the higher-order corrections
to the flux in Eq. (7). These corrections are discussed in much
greater detail elsewhere [26,30]; they can result in flows of net
charge.

The second key difference between viscous and frictional
heating is the way in which heat is divided between the differ-
ent species. For a viscous particle flux �visc

s , the associated
heating goes entirely into species s, although the viscosity
coefficient ηs1 can depend on other species. From a macro-
scopic standpoint, if viscosity drives a current up or down an
electrostatic potential, then the particles carrying the current
pick up (or lose) that potential energy. On the other hand,
when a frictional interaction between species s and s′ drives
particle fluxes �fric

ss′ and �fric
s′s , the associated heating is divided

between species s and s′ such that each species receives heat
inversely proportional to its mass. This happens regardless of
which species is actually carrying current. The energy source
for heating might be the motion of particles down a potential
gradient, but that motion is mediated by collisions between
particles, and in those collisions energy is transferred in such
a way as to heat the lighter species in any given pair.

It can be useful to compare the frictional dissipation from
cross-field drifts with the Ohmic heating from currents par-
allel to B. Parallel Ohmic heating is driven by frictional
dissipation, so it is reasonably well described by Eq. (17)
(although a more complete kinetic treatment does lead to cor-
rections [31,32]). In steady state and assuming homogeneity
in the parallel direction, the force balance can be written in
terms of a parallel field E|| as

qsE|| = ms

∑
s′

νss′ (vs|| − vs′||). (20)

The velocity difference can be expressed as a function of the
species’ charge densities, collision frequencies, masses, and
E||. This is quite unlike the perpendicular case, where the
E × B flows are the same for all species and the velocity dif-
ferences are instead driven by diamagnetic and inertial effects,
and where it is possible to have an electric field without any
particle flux or dissipation.

Combining Eq. (17) with Eq. (20), it follows that so long
as the smallest dimensionless parameter in the problem is the
electron-to-ion mass ratio, most of the Ohmic heating must
go into the electrons. This can be understood by considering a
system containing two positive ion species, labeled a and b. So
long as νab � νae, the difference in velocity between species
a and b will be much smaller than |va|| − ve|||. The heating
due to interactions between two species scales linearly with
the collision frequency but quadratically with the velocity
difference, so a pair of species with a high collision frequency
will have similar velocities and therefore little heating. This is
a key difference between parallel and perpendicular frictional
dissipation; recall that in the perpendicular case, there are
configurations with multiple ion species for which the heating
can be directed into the ions.

C. Frictional cooling

There is an odd possibility worth pointing out in Eq. (18):
There are cases in which the frictional heating Qfric

ss′ can be
negative. If the frictional force Rss′ acts to reduce the ve-
locity difference between species s and s′, then it is clear
from Eq. (17) that this cannot happen, and Qfric

ss′ � 0. But the
frictional force can be split into two pieces: A flow friction,
which always does act to reduce velocity differences, and a
thermal friction, which depends on the temperature gradients
and has no particular obligation to align itself with the relative
flows of the different species. These two parts of the frictional
force can be seen explicitly in Eq. (4).

At first glance, frictional cooling may be a worrisome thing
to find in a transport theory. It would be reasonable to wonder
if this effect is unphysical. On its own, Eq. (17) contains no
obvious fix; Qfric

ss′ and Qfric
s′s always have the same sign, so this

is not simply a transfer of energy between species s and s′.
In fact, in order to demonstrate that this frictional cooling
is consistent with the second law of thermodynamics, it is
necessary to take into account the entropy production from
the heat flow qs. The entropy production rate for species s can
be written [33] as

�s = Qfric
s

Ts
+ Qvisc

s

Ts
− qs

Ts
· ∇Ts

Ts
+

∑
s′

3msnsνss′

ms + ms′
(Ts′ − Ts).

(21)

The last term is the entropy produced by local temperature
equilibration between different species. For simplicity, it is
helpful to consider the Braginskii single-ion-species limit, in
which the frictional heating (and its possible destruction of
entropy) affects only the electrons. In this case,

Qfric
e

Te
= meneνei

Te
(viθ − veθ )2

− 3

2

meneνei

eBTe

∂Te

∂r
(viθ − veθ ) (22)

and

−qe

Te
· ∇Te

Te
= −3

2

meneνei

eBTe

∂Te

∂r
(viθ − veθ )

+ 4.66
meneνei

e2B2Te

(
∂Te

∂r

)2

. (23)
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The part of the heat flux that depends on the flow velocities is
sometimes called the Ettingshausen effect; it is responsible for
entropy production or destruction equal to that of the thermal
friction. Qfric

e /Te and −(qe · ∇Te)/T 2
e can each be positive or

negative. However, they can be combined as follows:

Qfric
e

Te
− qe

Te
· ∇Te

Te

= 2.41
meneνei

e2B2Te

(
∂Te

∂r

)2

+meneνei

Te

(
viθ−veθ− 3

2eB

∂Te

∂r

)2

.

(24)

There are scenarios in which Qfric
e < 0; these scenarios involve

thermal forces driven by temperature gradients. However,
for any case in which Qfric

e < 0, the entropy destroyed by
this cooling effect is balanced by entropy produced as heat
flows down the temperature gradients. Note that positive en-
tropy production from these mechanisms is not the same as
an increase in temperature; the entropy production from the
heat flow depends on qs · ∇Ts/Ts, whereas the temperature
evolution depends on ∇ · qs. Incidentally, Eq. (24) provides
an alternate way of understanding the numerical instability
described in Ref. [34]. That instability occurred in simulations
in which the heat flux was artificially reduced below a certain
threshold. Equation (24) shows that if the heat flux is arti-
ficially suppressed, then the entropy production can become
negative.

For the purposes of understanding classical mechanisms
for driving temperature differences between species, the pos-
sibility of frictional cooling leads to a caveat: |Qfric

s | � |Qfric
s′ |

would not necessarily mean that friction is preferentially heat-
ing species s. In principle there are temperature and velocity
profiles for which friction cools rather than heats. In order for
this to happen, the temperature gradients must be large enough
for the thermal friction to be larger than the flow friction.

The frictional cooling is also worth understanding because
it explains an otherwise surprising fact that will play a role in
Sec. V—namely that

∑
s Qfric

s = 0 does not necessarily imply
that Qfric

s = 0 for each s.

IV. CONTROLLING THE HEATING CHANNELS

If the different heating terms associated with cross-field
particle transport can be directed into either the ions or the
electrons, then under what conditions will ion or electron
heating dominate? Cross-field viscous dissipation heats ions.
For a plasma containing a single ion species, the frictional
dissipation heats the electrons, so—apart from the possibility
of frictional cooling—the tendency of classical heating to heat
ions or electrons depends entirely on the relative sizes of Qvisc

i
and Qfric

e . For a plasma containing a mix of ion species, ion-ion
collisions provide an additional channel for ion heating, and
Qfric

e must instead compete with Qvisc
i + Qfric

i .
There is more than one way to understand the conditions

under which different heating channels will dominate. One
approach is to directly compare the expressions for heating
given in Eqs. (14) and (17), and to infer the spatial density,
velocity, and temperature profiles that maximize or minimize
each.

Consider the conditions under which each of the heating
effects vanishes. The viscous dissipation is suppressed when
vsθ ∝ r—that is, in the limit of solid-body rotation. Any time
Qvisc

s vanishes, so does �visc
s . However, the reverse is not true;

there are profiles with viscous heating but no viscous particle
transport. In particular, there is heating without particle trans-
port when

ηs1r3 ∂

∂r

(
vsθ

r

)
= nonzero constant. (25)

If ηs1 is spatially constant, then this condition corresponds to
vsθ ∝ 1/r.

The relationship is the other way around for the frictional
heating and transport: There is never nonzero Qfric

ss′ without
nonzero �fric

ss′ , but there are profiles with particle transport
and no heating. These profiles are discussed in more detail in
Appendix B. The particle transport vanishes when Rss′θ = 0.
This can be written as a condition on the pressure profiles,
because the friction depends on vsθ and vs′θ , which depend on
the species’ diamagnetic drifts. If Ts′ = τTs for some constant
τ , then Rss′θ will vanish when{

ps(r)

ps(0)
exp

[
−

∫ r

0
dr

(
msv

2
sθ

rTs
+ γss′T ′

s

)]}1/Zs

=
{

ps′ (r)

ps′ (0)
exp

[
−

∫ r

0
dr

(
ms′v2

s′θ

rTs′
+ γs′sT

′
s′

)]}τ/Zs′

.

(26)

In the model used for Eq. (4),

γss′ = 3

2

ms′

msTs′ + ms′Ts
. (27)

Expressions that are closely related to Eq. (26) have been
studied in the particle-transport literature [35–40]. Equation
(26) is more general than the expressions that have been used
in the past, since it includes both the effects of the centrifugal
potential and the thermal friction, but the generalization is
straightforward; see Appendix B.

The existence of a special class of profiles for which Rss′θ
vanishes is known in the particle transport literature. However,
it has not been recognized that there is a second special class
of dissipationless profiles for which there is particle transport
but no frictional heating. Note from Eq. (17) that Qfric

ss′ van-
ishes whenever either Rss′θ = 0 or vsθ = vs′θ . If Ts′ = τTs, then
vsθ = vs′θ when{

ps(r)

ps(0)
exp

[
−

∫ r

0
dr

msv
2
sθ

rTs

]}1/Zs

=
{

ps′ (r)

ps′ (0)
exp

[
−

∫ r

0
dr

ms′v2
s′θ

rTs′

]}τ/Zs′

. (28)

This condition is derived in Appendix B. The profiles de-
scribed by Eq. (26) and those described by Eq. (28) become
the same when the temperature gradients vanish, or more
generally when

ms′TsT ′
s

qs
= msTs′T ′

s′

qs′
. (29)

The frictional heating Qfric
ss′ can be understood as a function

of how close the different pressure profiles are to the classes
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of dissipationless profiles described by Eqs. (26) and (28). A
pair of species that satisfies Eq. (28) will have a cross-field
frictional particle flux but no corresponding heating. A pair
that satisfies Eq. (26) will have no cross-field frictional parti-
cle flux (and no corresponding heating).

Qualitatively, the relative importance of viscous and fric-
tional heating depends on how far the velocity profile is
from solid-body rotation compared with how far the pres-
sure profiles are from satisfying Eqs. (26) or (28). Similarly,
the relative importance of frictional ion-ion and ion-electron
heating can be understood in terms of the deviations of the dif-
ferent species’ profiles from Eqs. (26) and (28), weighted by
the appropriate collision frequencies. For species with com-
parable densities, ion-ion collision frequencies are larger than
ion-electron collision frequencies by a factor of the square
root of the ion-electron mass ratio. As such, in order for elec-
tron heating to dominate, not only must the velocity profile
not be too far from solid-body rotation, but the electrons must
be substantially further away from satisfying Eqs. (26) or (28)
with respect to the ions than the ions are with respect to other
ion species.

V. GLOBAL CONDITIONS FOR ION HEATING

Remarkably, there are circumstances under which it is
possible to determine which heating terms dominate without
knowing anything other than the global 0D (0-dimensional)
particle balance and the boundary conditions. This is to be
contrasted with the approach taken in the previous section,
which relied on knowledge of the full spatial profiles of den-
sity, velocity, and temperature.

Consider a simple model of a cylindrical fusion device
with total radius R. Pick boundary conditions at the radial
boundary r = R, such that either vsθ or ∂ (vsθ /r)/∂r vanishes
at the boundary [so that the boundary term in Eq. (15) can
be ignored]. From Eq. (15) and the fact that Qvisc

s � 0, either
boundary condition implies that qs�

visc
s Er � 0.

Suppose fuel ions a and b are supplied at the edge and
suppose there is a fusion reaction consuming one ion of
species a and one ion of species b occurring at some rate
S per unit length at r = 0. Finally, suppose the fusion prod-
ucts are removed promptly, by a process other than classical
transport, which we can imagine to be wave driven, as in
α channeling [3]. Suppose the fusion products are removed
before they interact with the rest of the plasma, collisionally
or otherwise [41]. Then, in order to achieve steady state, there
must be injection of fuel ions into the system. This is shown
schematically in Fig. 2.

First assume that the wave-driven removal of the fusion ash
is nonambipolar, in the sense that only the ash ions (and not an
accompanying population of electrons) are removed. This is
the usual circumstance envisioned in the case of α channeling,
where resonant wave-particle interactions promptly eject the
α particles on a collisionless timescale. Then the total fuel ion
fluxes must satisfy

�a = �b = − S

2πr
(30)

for all r ∈ (0, R), and the electron flux is

�e = 0. (31)

FIG. 2. The global particle balance for a cylindrical system with
fusion reactions taking place at the core. If an effect like α channeling
removes the fusion products, then classical transport must provide a
balancing influx of fuel ions.

When new fuel ions are supplied at the edge, they must be at
rest in order to ensure that the total angular momentum in the
system remains constant; the j × B torques due to the inward
motion of the fuel ions and the outward motion of the ash will
balance one another.

The fluxes given by Eqs. (30) and (31) will in general be
a mix of frictional and viscous transport. However, almost all
of the net flow of charge must be carried by the viscous fluxes
�visc

a and �visc
b . This is not at all obvious. Note that we have

not made any assumptions about the relative sizes of �visc
s

and �fric
ss′ for the ions, so one might imagine a case in which

�visc
s is at least O(δ) smaller than

∑
s′ �fric

ss′ and the current is
instead carried by the O(δ) terms in Eq. (7). Indeed, if the
O(δ) corrections were entirely arbitrary, then this might be
possible. But they are not arbitrary; recall that Eq. (2) can be
expanded as

�s =
(

�visc
s +

∑
s′

�fric
ss′

) ∞∑
k=0

[
− (rvsθ )′

r�s

]k

. (32)

Intuitively, the (k + 1)th term in the sum in Eq. (32) can be
understood as the F × B flow from the Coriolis and Euler
forces that result from the radial motion described by the kth
term [26].

The k 	= 0 corrections in Eq. (32) can produce nonam-
bipolar corrections to otherwise ambipolar flows. However, a
nonambipolar correction will only appear if there is a nonva-
nishing total flow at the next-lowest order. In other words, the
k 	= 0 terms can contribute a significant part of the current-
carrying flow only if there is a nonvanishing ambipolar flow
that is much larger. In this scenario, the leading-order flow
is already nonambipolar, so the flow of charge cannot be
explained by these corrections.

As such, to leading order in δ, it follows that the current is
carried by the viscous fluxes:

Za�
visc
a + Zb�

visc
b = −(Za + Zb)

S

2πr
. (33)
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Then, up to O(δ) corrections, the heating associated with the
flow of charge down the electrical potential goes into the ion
species.

Even so, there could be large frictional fluxes in the system;
if there are temperature gradients, then it is possible to have
�fric

s = 0 but �fric
ss′ 	= 0. This can happen when the thermal

friction is at least comparable to the friction from flows. In
that case, it is possible to have Qfric

ss′ 	= 0. If �fric
s = 0 for all

species, then

∑
s,s′

Qfric
ss′ =

∑
s,s′

qsB

(
ms′

ms + ms′

)
(vs′θ − vsθ )�fric

ss′ , (34)

= −B

2

{ ∑
s

qsvsθ

∑
s′

�fric
ss′ +

∑
s′

qs′vs′θ

∑
s

�fric
s′s

}
,

(35)

= 0. (36)

The frictional heating
∑

s′ Qfric
ss′ for any given species s does

not necessarily vanish on its own, so it must represent a trans-
fer of heat between species (recall that Qfric

ss′ can be frictional
heating or frictional cooling). However, if the thermal friction
is on the same order as the total friction, then it is possible to
show that

∑
s′ Qfric

ss′ is very small compared to the temperature
equilibration term between any two species, so the energy
transfer associated with the frictional flows will not have a
significant effect on the relative temperatures of the different
species.

Equation (33) is an interesting result because it implies
that, for every fusion event, the overall population of fuel ions
would be heated by (Za + Zb)e��, where �� is the potential
difference between the edge and the center. This is possible
because, for these boundary conditions, all of the potential
energy liberated by a viscosity-driven current (i.e., the full
j · E) goes into the ions. For a system with very large fields,
this would represent a very large ion heating effect.

Note that the scenario put forth in this section is a spe-
cial case that relies on the transport being nonambipolar to
leading order in the ratio of the rotation frequency to the ion
gyrofrequency. This ordering can be thought of as a limit to
the electric field (since δ ∝ E ), which in turn limits only how
much energy can be gained by falling through the electric
potential. Note also that in a case in which the net classi-
cal transport were ambipolar (for instance, if the mechanism
that removed the fusion ash also removed a balancing pop-
ulation of electrons), it would not be possible to determine
the dominant heating channel through global particle balance
constraints alone. Instead, it would be necessary to consider
the full spatial profiles, along the lines of the discussion in
Sec. IV.

VI. EXAMPLE CONFIGURATIONS

There are a couple of different proposed fusion reactor
configurations with particularly large voltage drops between
the edge and the core of the plasma, such that the ion j · E
dissipation described in Sec. IV could be very significant. For
instance, the WDRT is a proposed toroidal configuration in
which a minor-radial electric field and toroidal mangetic field
produce sufficiently large E × B flows to produce a rotational

transform [17], essentially fulfilling the same function as the
poloidal field in a tokamak. A WDRT would likely involve
MV-scale potential differences between the edge of the system
and the core.

Comparable voltage drops could be found in a rotating
magnetic mirror: that is, a linear system in which the axial
confinement is enhanced by the centrifugal force from fast
rotation [12–16]. In this case, the expulsion of fusion products
via α channeling could be arranged with a stationary mag-
netic field perturbation [42,43], removing the need to inject
RF waves. For example, Bekhtenev suggested a configuration
with a density of about 3 × 1013 cm−3, ion temperatures be-
tween 30 and 100 keV, rotational energy around 150–500 keV,
and a central magnetic field strength between 1.5 and 2.5 T.
For a 2-T field, simulations by Fetterman and Fisch suggest
that the α-channeling effect could be accomplished with a
stationary field ripple of 0.1 T [44].

In either configuration, it would be reasonable to expect
O(1)-MV voltage drops across the system. In such a case,
the j · E dissipation could deliver O(Za + Zb) MeV to the fuel
ions for every fusion event. The total power going into the
ions through classical viscous dissipation could be on the
same order as the part of the fusion power that resides in
charged particles. The overall power balance of the system
would involve some significant fraction of the fusion power
being diverted through α channeling into maintaining the
electrostatic potential, and fuel ions taking large amounts of
energy from that potential as they move from edge to core.
Of course, the mechanism described in Sec. IV does not
require MV-scale potential differences. For smaller �� (that
is, slower rotation), all other things being equal, the size of
the j · E dissipation (and the associated tendency of the ion
temperature to exceed the electron temperature) would be
reduced.

VII. CAVEATS

The foregoing analysis relies on a number of assumptions
about the behavior of the system. It is reasonable to wonder
how easy or difficult each of these would be to realize in
practice.

First, the transport model used here assumes that cross-
field particle transport is classical. This may be the most
difficult condition to realize; after all, turbulent transport dom-
inates in many fusion experiments, often by a large margin.
However, there are strong indications that classical transport
may be more easily attainable in rotating plasmas, and that
sheared rotation can suppress turbulence [45–47]. A fully
classical fusion device would certainly represent a significant
technical and scientific achievement, but there are reasons to
be optimistic. Of course, it may be that there are regimes
in which turbulent transport can also produce dissipation in
a way that leads to a hot-ion mode; indeed, turbulent trans-
port can also produce dissipation, especially when it involves
net motion aligned with an electric field [48,49]. This goes
beyond the scope of this paper, but it could be worth future
investigation.

Second, the calculations in this paper assume that axial
effects can be neglected. In principle, even in the limit of very
poor axial confinement, this problem could be circumvented
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by a very long device [50]. Again, though, the presence of
rotation makes this condition more realizable. In mirror-type
systems, rotation can improve axial confinement. If the rota-
tion is sufficiently fast, then this improvement can be dramatic
[12,13], though rotation does not fully eliminate axial losses.

Third, in the case of the 0-D fusion reactor model presented
in Sec. V, this paper assumes that there is a mechanism like
α channeling that can remove fusion products with incurring
collisional effects, and that this mechanism does not also
expel electrons or draw in fuel ions. α channeling has a good
theoretical basis [3–11], and aspects of the theory have been
validated by experiment [51,52], but full experimental valida-
tion remains an open problem.

Fourth, the reactor model in Sec. V assumes a simple
boundary condition on the rotation profile (that either the
rotation or the shear vanish on the boundary). A fully realistic
treatment of the boundary would need to include things like
plasma-surface and plasma-neutral interactions, which are ne-
glected here.

Finally, Sec. V assumes that the plasma is in a steady state
with fusion reactions taking place near r = 0. The results of
the analysis would be different if the system were pulsed,
at least if the plasma lifetime was not long compared to the
timescales of cross-field transport and fuel depletion.

VIII. DISCUSSION

In a rotating plasma, the classical dissipation can proceed
through several very different mechanisms. By controlling
which mechanism dominates, the power flow through the
plasma can be altered significantly. If the right channels
dominate—and if the dissipation is large—then it is possible
to create what we have called a “natural” hot-ion mode, pro-
duced without any need for auxiliary heating of the ions.

In the most general case, the heating going through each
of the classical dissipation channels depends in a complicated
way on the density, rotation velocity, and temperature of each
species. However, the viscous heating is large when the ve-
locity profiles are far from solid-body rotation. The frictional
heating is large when the pressure profiles deviate from the set
of pairwise relations to which the system would in principle
relax, were it not driven. Thus, ions are preferentially heated
when viscous dissipation and ion-ion frictional dissipation
dominate ion-electron frictional dissipation. In contrast, in the
case of parallel Ohmic dissipation, the ion-electron friction
always dominates, so that it is always the electrons that are
heated. A related set of concerns has been considered in
the neutral-beam heating literature by Helander, Akers, and
Eriksson; they pointed out that viscous heating of ions can be
significant in that context [53].

It is quite remarkable that, in a simple 0-D model of a
fusion reactor, it is possible to determine the dominant heating
channel through global constraints alone. In particular, with
appropriate constraints on the boundary conditions and the
behavior of the fusion products, global constraints, that force
the particle fluxes to be nonambipolar to leading order in
rotation frequency over ion gyrofrequency, also ensure that
heat flows to the ions through viscous dissipation. The ions
then receive energy in the form of heat comparable to the
electrostatic potential energy drop from the edge to the core.

This ion heating may then produce a hot-ion mode significant
enough to facilitate economical nuclear fusion.

There are scenarios in which the waves used for α chan-
neling could damp on the fuel ions directly (for instance, if
the amplified waves encounter the tritium resonance [4]). This
would increase Ti − Te significantly, and could circumvent
the need for classical dissipation to produce a hot-ion mode.
However, if α channeling does move net charge across field
lines, and if Er < 0, then the wave would no longer absorb
all of the kinetic energy from the fusion products, because
pulling fusion products out of an electrostatic potential comes
with an energetic cost [42,43,54]. If the potential is large, then
much of the energetic effect of α channeling could be simply
to transfer the fusion energy to the potential. This would
tend to make the classical dissipation mechanisms discussed
here more important, since it reduces the amount of available
energy in the wave that could heat the fuel ions directly. Taken
together, the net effect would be to move energy from the
fusion products to the fuel ions, effectively replacing the con-
ventional α-particle slowing down process with a mechanism
that does not heat electrons.

Regardless of precisely what happens to the wave energy,
what we have shown here is that in a rotating hot plasma,
in which fusion ash is expelled promptly while fuel ions are
drawn in through collisional transport, there is a tendency for
the natural dissipation in maintaining the plasma configura-
tion to favor heat going into the ions rather than the electrons.
This produces the possibility of a naturally occurring hot-ion
mode, without the need for external mechanisms that directly
heat fuel ions. This remarkable circumstance could be of great
interest in economical controlled nuclear fusion.
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APPENDIX A: VISCOUS FORCES AND HEATING

Consider a system with cylindrical symmetry, no flow in
the ẑ direction, and a magnetic field in the ẑ direction. The
velocity of species s can be written as

vs = vsr (r)r̂ + rωs(r)θ̂ . (A1)

Suppose the plasma is weakly coupled and strongly magne-
tized; the viscosity can change significantly if either of these
conditions is not met [55]. Moreover, suppose Braginskii’s
flow ordering is satisfied, so that the flow velocities are com-
parable to the ion thermal velocity.

For the following calculation, the species index s will be
suppressed. The viscosity tensor πi j can be calculated in an
arbitrary coordinate system using the procedure outlined in
Ref. [26]. It is convenient to pick cylindrical coordinates, for
which the metric tensor gi j is

gi j =

⎛
⎜⎝

1 0 0

0 r2 0

0 0 1

⎞
⎟⎠ (A2)
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and the Christoffel symbols are given by

�r
i j =

⎛
⎜⎝

0 0 0

0 −r 0

0 0 0

⎞
⎟⎠ (A3)

�θ
i j =

⎛
⎜⎝

0 r−1 0

r−1 0 0

0 0 0

⎞
⎟⎠ (A4)

�z
i j = 0. (A5)

Define a covariant velocity vector u in this coordinate sys-
tem, satisfying ur = vr , uθ = r2ω, and uz = 0. By definition,
the corresponding contravariant vector has components ui =
gi ju j , so ur = vr , uθ = ω, and uz = 0.

In terms of the covariant derivative ∇i, Braginskii’s trace-
less rate-of-strain tensor Wi j is defined by

Wi j
.= ∇iu j + ∇ jui − 2

3 gi j∇kuk . (A6)

For the velocity given by Eq. (A1), its nonzero components
are

Wrr = 2
3 (2∂rur − r−1ur ), (A7)

Wrθ = Wθr = ∂ruθ − 2r−1uθ , (A8)

Wθθ = − 2
3 (r2∂rur − 2rur ), (A9)

Wzz = − 2
3 (∂rur + r−1ur ). (A10)

Braginskii’s viscosity tensor can be written as

πi j = −η0
0Wi j − η1

1Wi j − η2
2Wi j + η3

3Wi j + η4
4Wi j,

(A11)

where the kW tensors can be written in covariant form [26] as

0Wi j = 3

2

(
bib j − gi j

3

)(
bmbn − gmn

3

)
W mn, (A12)

1Wi j =
(

δ⊥
imδ⊥

n j + 1

2
δ⊥

i j bmbn

)
W mn, (A13)

2Wi j = (δ⊥
imb jbn + δ⊥

n jbibm)W mn, (A14)

3Wi j = 1

2

(
δ⊥

imεnbkbk − δ⊥
n jεimkbk

)
W mn, (A15)

4Wi j = (bibmεn jkbk + b jbnεimkbk )W mn. (A16)

Here bi = (0 0 1) is the unit vector in the direction of the
magnetic field and δ⊥

i j
.= gi j − bib j . In this coordinate system,

the Levi-Civita tensor is defined as

εi jk
.= rε̃i jk, (A17)

where ε̃i jk is the Levi-Civita symbol.
These expressions are derived from Braginskii’s model,

which assumes a single ion species. For a plasma containing
several ion species, the viscosity can still be modeled using
Eq. (A11), but the expressions for the η coefficients for each
species are modified [29].

With these definitions, it is possible to directly calculate πi j

in cylindrical coordinates for the chosen velocity profile:

πi j = −η0

3r

∂ (rur )

∂r

⎛
⎜⎝

1 0 0

0 r2 0

0 0 −2

⎞
⎟⎠

−
[
η1r

∂

∂r

(
ur

r

)
+ η3r

∂

∂r

(
uθ

r2

)]⎛
⎜⎝

1 0 0

0 −r2 0

0 0 0

⎞
⎟⎠

−
[
η1r2 ∂

∂r

(
uθ

r2

)
− η3r2 ∂

∂r

(
ur

r

)]⎛
⎜⎝

0 1 0

1 0 0

0 0 0

⎞
⎟⎠.

(A18)

Then the viscous force density can be written as

∇iπ
i j = ∂iπ

i j + �i
iλπ

λ j + �
j
iλπ

iλ. (A19)

The first and second of the three matrices in Eq. (A18)
contribute to the r̂-directed force. After converting from the
resulting contravariant force vector back to the original coor-
dinate normalization,

(∇ · π )r = − ∂

∂r

[
η0

3r

∂ (rvr )

∂r

]

− 1

r2

∂

∂r

[
η1r3 ∂

∂r

(
vr

r

)
+ η3r3 ∂ω

∂r

]
. (A20)

Only the third matrix in Eq. (A18) contributes to the θ̂ -
directed force. Again, in the original normalization,

(∇ · π )θ = − 1

r2

∂

∂r

[
η1r3 ∂ω

∂r
− η3r3 ∂

∂r

(
vr

r

)]
. (A21)

For the chosen velocity profile, there is no viscous force in the
ẑ direction.

The relative importance of these different terms depends, in
part, on the η coefficients. From this point forward, the species
indices will no longer be suppressed. For a plasma containing
a single ion species, Braginskii gives ion coefficients [28]

ηi0 = 0.96
√

2
niTi

νii
, (A22)

ηi1 = 3

10
√

2

niTiνii

�2
i

, (A23)

ηi3 = 1

2

niTi

�i
, (A24)

and electron coefficients

ηe0 = 0.73
neTe

νei
, (A25)

ηe1 = 0.51
neTeνei

�2
e

, (A26)

ηe3 = 1

2

neTe

|�e| , (A27)

where �s
.= qsB/ms. In the multiple-ion-species case, the

coefficients scale similarly [29], but in general there are ad-
ditional contributions due to collisions with other species.
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If the radial flow is driven by classical transport, then vsr

will be much smaller than vsθ . In the case of a plasma with a
single ion species [26],

vir

viθ
∼ ver

veθ
∼ νie

�i

E

rB�i
. (A28)

This is because the frictional F × B flow due to the difference
between ion and electron azimuthal velocities is smaller than
the azimuthal velocity difference by a factor of νie/�i, and
the azimuthal velocity difference is typically small compared
to the total azimuthal velocity by a factor of E/rB�i. In the
multiple-ion-species case, the radial transport could instead be
driven by unlike-ion collisions, in which case the radial flow
would be larger by a factor of O(νii′/νie) than what is given in
Eq. (A28). Meanwhile, ηi1/ηi3 ∼ νii/�i. For this reason, for
the flows studied in this paper, Eq. (A21) can be approximated
as

(∇ · πi )θ ≈ − 1

r2

∂

∂r

[
ηi1r3 ∂

∂r

(
viθ

r

)]
. (A29)

The relative sizes of the η coefficients also imply that (∇ ·
πe)θ is small compared to (∇ · πi )θ .

The radial viscous forces may be relatively large. The
largest of the η coefficients to appear in Eq. (A20) is ηs0.
However, note that the part of (∇ · πs)r that depends on ηs0

will vanish for any divergenceless radial flow. Moreover, if
the flow is not divergenceless, then the part of the radial force
that depends on ηs0 scales like

− ∂

∂r

[
ηi0

3r

∂ (rvir )

∂r

]
∼ vir

νiiL

pi

L
, (A30)

− ∂

∂r

[
ηe0

3r

∂ (rver )

∂r

]
∼ ver

νieL

pe

L
, (A31)

where L is the characteristic gradient scale length. Radial
flows driven by classically transport will typically move par-
ticles much less than the gradient scale length over the course
of a collision time. Therefore, this part of the radial viscous
force is negligible compared to the pressure force. Similar
arguments apply for the other terms in Eq. (A20); after all,
ηs1 and ηs3 are small compared to ηs0.

Note that this scaling argument should not be used to
neglect the θ̂ component of the viscous force, since it is
in a different direction. In an axially magnetized plasma,
azimuthal forces are much more efficient than radial forces
at driving radial transport, because azimuthal forces produce
F × B drifts in the radial direction. This is discussed in greater
detail in Ref. [26].

The other important effect of viscosity is the viscous heat
dissipation. The viscous heating for species s is

Qvisc
s = −π i j

s ∇iu j , (A32)

which can be evaluated as

Qvisc
s = ηs0

3r2

[
∂ (rvsr )

∂r

]2

+ ηs1r2

[
∂

∂r

(
vsr

r

)]2

+ ηs1r2

[
∂

∂r

(
vsθ

r

)]2

. (A33)

The ion η coefficients are large compared to the corresponding
electron coefficients, so Qvisc

i � Qvisc
e . For a divergenceless

flow, the part of Qvisc
i that depends on ηi0 vanishes. If the flow

is not divergenceless, then

ηi0

3r2

[
∂ (rvir )

∂r

]2/
ηi1r2

[
∂

∂r

(
viθ

r

)]2

∼
(

�i

νii

vir

viθ

)2

. (A34)

According to the scaling in Eq. (A28), this ratio is small, and
the first of the three terms in Eq. (A33) can be neglected. The
second of the three terms can be neglected whenever the radial
velocity is small compared to the azimuthal velocity, as will
be the case if that radial flow is driven by classical transport.
Therefore, the viscous heating for ion species i can reasonably
be approximated by

Qvisc
i ≈ ηi1r2

[
∂

∂r

(
viθ

r

)]2

. (A35)

This is the expression used elsewhere in the paper. Because
of the symmetric geometry and velocity profile used here, this
treatment includes only the perpendicular viscosity; however,
note that there are contexts (particularly involving MHD fluc-
tuations) in which the parallel viscosity may drive significant
ion heating [56–58].

APPENDIX B: DERIVATION OF DISSIPATIONLESS
PRESSURE PROFILES

The frictional heating of species s due to frictional interac-
tions with species s′ can be written as

Qfric
ss′ = ms′

ms + ms′
(vs′ − vs) · Rss′ . (B1)

In the typical case where vsr � vsθ , this can be written as

Qfric
ss′ = ms′

ms + ms′
(vs′θ − vsθ )Rss′θ , (B2)

where the friction force density Rss′θ is

Rss′θ = nsmsνss′ (vs′θ − vsθ )

+ nsmsνss′

B

(
γss′TsTs′

qs
− γs′sTs′T ′

s′

qs′

)
, (B3)

where

γss′
.= 3

2

ms′

msTs′ + ms′Ts
. (B4)

The momentum equation for species s is given by Eq. (1). In
steady state, its r̂ component is

msnsvsr
∂vsr

∂r
− msns

v2
sθ

r
= qsnsE + qsnsvsθB − ∂ ps

∂r
+ Rsr .

(B5)

vsr is small compared to vsθ , so msnsvsr∂vsr/∂r � msnsv
2
sθ /r.

The collision frequencies νss′ are small compared to the gy-
rofrequency �s, so Rsr � qsnsvsθ B. Dropping these two small
terms and rearranging,

vsθ = −E

B
+ 1

qsBns

∂ ps

∂r
− 1

�s

v2
sθ

r
. (B6)
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Then

vs′θ − vsθ = 1

qsB

[
qs

qs′

p′
s′

ns′
− p′

s

ns
− qs

qs′

ms′v2
s′θ

r
+ msv

2
sθ

r

]

(B7)

and

Rss′θ = nsmsνss′

qsB

[
qs

qs′

p′
s′

ns′
− p′

s

ns
− qs

qs′

ms′v2
s′θ

r
+ msv

2
sθ

r

+
(

γss′TsT
′

s − qs

qs′
γs′sTs′T ′

s′

)]
. (B8)

The condition for Rss′θ = 0 can be rewritten as

1

qs′

(
p′

s′

ns′
− ms′v2

s′θ

r
− γs′sTs′T ′

s′

)

= 1

qs

(
p′

s

ns
− msv

2
sθ

r
− γss′TsT

′
s

)
. (B9)

In the simple limit where Ts′ (r) = τTs(r) for some constant τ ,{
ps(r)

ps(0)
exp

[
−

∫ r

0
dr

(
msv

2
sθ

rTs
+ γss′T ′

s

)]}1/Zs

=
{

ps′ (r)

ps′ (0)
exp

[
−

∫ r

0
dr

(
ms′v2

s′θ

rTs′
+ γs′sT

′
s′

)]}τ/Zs′

.

(B10)

where Zs
.= qs/e, so electrons would have Ze = −1. The con-

dition for vs′θ − vsθ = 0 can similarly be treated similarly.
Under the same assumptions, it reduces to{

ps(r)

ps(0)
exp

[
−

∫ r

0
dr

msv
2
sθ

rTs

]}1/Zs

=
{

ps′ (r)

ps′ (0)
exp

[
−

∫ r

0
dr

ms′v2
s′θ

rTs′

]}τ/Zs′

. (B11)

The condition for Rss′θ = 0 and the condition for vsθ = vs′θ
are identical in the limit where T ′

s = T ′
s′ = 0.

Define PR
ss′ as a profile for species s that satisfies Eq. (B10)

with respect to species s′:

PR
ss′ (r) = PR

ss′ (0) exp

[ ∫ r

0
dr

(
msv

2
sθ

rTs
+ γss′T ′

s

)]

×
{

ps′ (r)

ps′ (0)
exp

[
−

∫ r

0
dr

(
ms′v2

s′θ

rTs′
+γs′sT

′
s′

)]}τZs/Zs′

.

(B12)

Define Pv
ss′ as a profile for species s that satisfies Eq. (B11)

with respect to species s′:

Pv
ss′ (r) = Pv

ss′ (0) exp

[ ∫ r

0
dr

msv
2
sθ

rTs

]

×
{

ps′ (r)

ps′ (0)
exp

[
−

∫ r

0
dr

ms′v2
s′θ

rTs′

]}τZs/Zs′

. (B13)

The flux �fric
ss′ tends to make ps relax to PR

ss′ . Note that the elec-
tric field appears only in the centrifugal v2

sθ term (unlike in the

unmagnetized case, where it can drive differential transport
more directly [59,60]).

The heating Qfric
ss′ can be rewritten in a way that more

explicitly shows how it depends on the deviation of ps from
PR

ss′ and Pv
ss′ :

Qfric
ss′ = ms′

ms + ms′

T 2
s nsmsνss′

q2
s B2

×
[

∂

∂r
log

(
PR

ss′

ps

)][
∂

∂r
log

(
Pv

ss′

ps

)]
. (B14)

This expression vanishes as ps approaches either PR
ss′ or Pv

ss′ .

APPENDIX C: COMPRESSIONAL HEATING

The temperature evolution equation, Eq. (13), includes a
compressional heating term that is largely not discussed in this
paper:

3ns

2

dTs

dt

∣∣∣∣
compressional

= −ps∇ · vs. (C1)

In part, this is a question of scope: the focus of the paper is
on the classical heating terms Qvisc

s and Qfric
s , and on their

connection with the classical particle fluxes �visc
s and �fric

s .
Moreover, the compressional heating behaves identically in a
rotating plasma as in any other plasma (unlike Qvisc

s and Qfric
s ,

both of which depend on the rotation profile in one way or
another).

However, it may be helpful to say something about the
expected size of the compressional heating. If ss is the vol-
umetric particle source rate, then the continuity equation is

∂n

∂t
+ ∇ · (nsvs) = ss. (C2)

Then for a system in steady state,

−ps∇ · vs = −Ts∇ · (nsvs) + Tsvs · ∇ns (C3)

= −Tsss + Tsvs · ∇ns. (C4)

Note that for inflowing particles, vs · ∇ns is positive if the
density is peaked toward the core of the system. Away from
sources, if the density has a gradient scale length L, then

−ps∇ · vs ∼ Ts�s

L
. (C5)

This can be contrasted with Eq. (15), which implies that
without boundary stresses,

Qvisc
s ∼ qsE�visc

s . (C6)

For many rapidly rotating systems, qsE is large compared to
Ts/L. In the most dramatic cases discussed in this paper, where
the j · E heating is very large and can be directed into the
ions, the scaling in Eq. (C5) suggests that the compressional
heating will not be important. However, that does not mean
there are no scenarios in which it matters; a full solution of
the temperature evolution equation would have to take it into
account.
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