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ABSTRACT

Velocity-space anisotropy can significantly modify fusion reactivity. The nature and magnitude of this modification depends on the plasma
temperature, as well as the details of how the anisotropy is introduced. For plasmas that are sufficiently cold compared to the peak of the
fusion cross section, anisotropic distributions tend to have higher yields than isotropic distributions with the same thermal energy. At higher
temperatures, it is instead isotropic distributions that have the highest yields. However, the details of this behavior depend on exactly how
the distribution differs from an isotropic Maxwellian. This paper describes the effects of anisotropy on fusion yield for the class of
anisotropic distribution functions with the same energy distribution as a 3D isotropic Maxwellian and compares those results with the yields
from bi-Maxwellian distributions. In many cases, especially for plasmas somewhat below reactor-regime temperatures, the effects of anisot-
ropy can be substantial.
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I. INTRODUCTION

Velocity-space anisotropy of the particle distribution is naturally
present in a broad variety of plasma devices. For instance, in a system
with spatially nonuniform or time-varying magnetic fields, the conser-
vation of the first and second adiabatic invariants often results in plas-
mas that are hotter or cooler in the directions perpendicular and
parallel to the magnetic field.

This anisotropy is a central part of the confinement scheme for
devices like magnetic mirrors. However, it is also ubiquitous in devices
that do not rely on it; for instance, tokamaks and stellarators can have
significant velocity-space anisotropy, including whole populations of
particles whose parallel energies vanish at the high-field regions of
their orbits.1–4 Anisotropy can also be produced as a part of the com-
pression process in implosion devices like Z-pinches and h-pinches.5

In addition, many heating techniques deposit heat anisotropi-
cally. For instance, electron and ion cyclotron resonance heating both
heat in the direction perpendicular to the magnetic field, whereas neu-
tral beam heating preferentially heats in the direction of the beam.6–9

For this reason, strongly driven plasmas are often observed to have
anisotropic temperatures.

Thermonuclear fusion requires producing very high-temperature
plasmas. When designing fusion devices, the focus has traditionally
been on increasing the Lawson “triple product” of density, tempera-
ture, and confinement time. However, there are regimes in which

velocity-space anisotropy can significantly modify fusion yields, pro-
viding an additional pathway to better fusion performance. In some
limits, this fact is well known; for instance, it has long been recognized
that the fusion reactivity of a directed beam interacting with a bulk
plasma must be treated differently than the interaction of Maxwellian
ion populations.10–12

The role of anisotropy in determining fusion yields has received
less attention in contexts where the bulk plasma population is aniso-
tropic (for instance, due to adiabatic invariance or auxiliary heating),
though a few authors have explored different aspects of this problem.
Kiwamoto et al. reported that neutron counts from the GAMMA10
tandemmirror experiment appeared to be consistent with a 2D (rather
than 3D) Maxwellian particle distribution in velocity space.13 Kalra
et al.14 explored bi-Maxwellian fusion reactivities numerically; Nath
et al.15 did similarly while also including tri-Maxwellians and net
drifts. Both papers noted the same trend in bi-Maxwellian fusion reac-
tivities that we will show in Fig. 1.

As a model distribution with which to understand anisotropy,
the bi-Maxwellian has significant advantages: it is simple and, as we
will show, the fusion yields of interacting bi-Maxwellian can be param-
eterized in a particularly straightforward way. By “bi-Maxwellian,” we
mean that ions are distributed in velocity space with one temperature
Tjj in say, the parallel direction, and a different temperature T? in the
perpendicular direction, where parallel and perpendicular are generally
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considered to be with respect to a magnetic field, but need not be. The
intuitions that can be gained from studying bi-Maxwellian fusion
yields can certainly be useful, and for some kinds of anisotropy—for
instance, anisotropy generated by auxiliary heating—the
bi-Maxwellian distribution function may capture reasonably well the
velocity space anisotropy.

In any event, as we will discuss in Sec. II, the modification of the
fusion yield can be understood as a combination of two distinct mech-
anisms: First, the difference between T? and Tjj changes the orienta-
tions with which pairs of particles encounter one another. This
mechanism should affect all anisotropic distributions, bi-Maxwellian
and otherwise. Second, the balance between T? and Tjj affects the dis-
tribution of particle energies, regardless of their orientation, even if
the total energy in the system remains fixed. This effect is particular to
the bi-Maxwellian distribution and will not in general affect other dis-
tributions in the same way.

This second mechanism makes bi-Maxwellian distributions a
problematic model for any source of anisotropy that does not change
the overall distribution of particle energies. In particular, the conserva-
tion of adiabatic invariants (at least in the simplest, collisionless case,
and in the absence of electrostatic potentials) changes the balance of
the parallel and perpendicular energies while leaving the total energy
of any given particle fixed.

This leads to a question: to what extent is the behavior of the bi-
Maxwellian fusion yield general? Can intuitions gained from the bi-
Maxwellian case be safely applied to other anisotropic distributions?
The purpose of this paper is to address these questions and to clarify
the role of anisotropy in fusion yields. Section II describes and
parameterizes the fusion yield for interacting bi-Maxwellian distri-
butions. Section III introduces a class of distributions for which
the degree of anisotropy is decoupled from the distribution of par-
ticle energies, and analyzes the associated fusion yield. Section IV
shows an illustrative example using the distribution of particles in
a collisionless mirror trap. Section V discusses the implications of
these results.

II. FUSION YIELDS FROM INTERACTING
BI-MAXWELLIAN DISTRIBUTIONS

The fusion reaction rate between ions of species a and b can be
written as Y ¼: nanbhrwi, which can be expressed as

Y ¼
ð
d3va d

3vb rðwÞwfaðvaÞfbðvbÞ: (1)

Here, fa and fb are the distribution functions of species a and b, rðwÞ is
the fusion cross section, w¼: vb � va, and w¼: jwj. In the case where
the reaction is between two members of the same species, set a¼ b
and divide by two in order to avoid overcounting.

Let b̂ denotes the unit vector in the direction of the magnetic
field, and let vsjj ¼

:
b̂ � vs and vs? ¼: vs � b̂vsjj. The bi-Maxwellian dis-

tribution without net flows, given by

fsðvsÞ ¼
ns

T1=2
sjj Ts?

�
ms

2p

�3=2

exp �
msv2sjj
2Tsjj

�msv2s?
2Ts?

" #
; (2)

is arguably the simplest anisotropic variant of the Maxwellian. The
family of bi-Maxwellians with the same total thermal energy can be
parameterized by ds, where

Tsjj ¼ ð1þ dsÞTs; (3)

Ts? ¼ 1� ds
2

� �
Ts: (4)

In order to avoid negative temperatures, the ds parameter is assumed
to fall between �1 and 2. The distribution is isotropic when ds ¼ 0.
The particle velocities are confined to the perpendicular plane when
ds ¼ �1, and to the parallel axis when ds ¼ 2. For a pair of species a
and b, it is helpful to introduce a reduced mass

l¼: mamb

ma þmb
; (5)

and inverse-mass-weighted temperatures

Tjj ¼
: mbTajj þmaTbjj

ma þmb
; (6)

T? ¼
: mbTa? þmbTa?

ma þmb
: (7)

Tjj and T? can be parameterized in the same way as Tsjj and Ts? using
a weighted anisotropy parameter. If

T ¼: mbTa þmaTb

ma þmb
; (8)

d¼: mbTada þmaTbdb
mbTa þmaTb

; (9)

then

Tjj ¼ ð1þ dÞT; (10)

T? ¼ 1� d
2

� �
T: (11)

In other words, the relative importance of the anisotropy of species s is
weighted by Ts=ms.

Plugging two bi-Maxwellian distributions into Eq. (1) results in

FIG. 1. The yield for a D–T plasma as a function of the anisotropy parameter d,
evaluated for several choices of temperature. Below around 15 keV, less isotropic
distributions have higher yields. Above about 15 keV, the reverse is true.
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Y ¼ nanb

T1=2
jj T?

�
l
2p

�3=2 ð
d3w rðwÞw exp �

lw2
jj

2Tjj
� lw2

?
2T?

" #
: (12)

In terms of energy coordinates ejj ¼
:

lw2
jj=2 and e? ¼: lw2

?=2, with
e¼: ejj þ e?, this is

Y ¼ nanb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

plTjjT2
?

s ð1
0
dejj

ð1
0
de? rðeÞ

ffiffiffiffi
e
ejj

r
exp �

ejj
Tjj
� e?
T?

� �
:

(13)

For fixed densities and particle masses, Eq. (13) specifies the yield Y as
a function of Tjj and T?—or, equivalently, as a function of the temper-
ature T and the anisotropy parameter d. The expression can be simpli-
fied to get an integral over a single variable:

Y ¼ nanb

ffiffiffi
2
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lT?ðT? � TjjÞ
p

�
ð1
0
de rðeÞ

ffiffi
e
p

exp � e
T?

� �
erf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e
T? � Tjj
TjjT?

s24
3
5: (14)

Formally, Eq. (14) is not defined for d ¼ �1, 0, or 2, although it is well
behaved in these limits. When d!�1; Tjj=T? ! 0 and

lim
d!�1

Y ¼ 2nanb
3T

ffiffiffi
2
l

r ð1
0
de rðeÞ

ffiffi
e
p

exp � 2e
3T

� �
: (15)

In the opposite limit, where d! 2 and T?=Tjj ! 0,

lim
d!2

Y ¼ nanb

ffiffiffiffiffiffiffiffiffiffiffi
2

3plT

r ð1
0
de rðeÞ exp � e

3T

� �
: (16)

Finally, in the isotropic limit, where d! 0, let Yiso¼: limd!0 Y . Then,
Yiso is given by

Yiso ¼
2nanb
T3=2

ffiffiffiffiffiffi
2
pl

r ð1
0
de rðeÞe exp � e

T

� �
: (17)

Figure 1 shows the dependence of Y on d for several choices of
temperature T. The yields are normalized to the isotropic yield Yiso at
the same temperature. The curves in the figure are for deuterium–
tritium fusion; the cross section rðeÞ is modeled using the nine-
parameter fit calculated by Bosch and Hale.16 These numerical integrals
were calculated using Gaussian quadrature; the higher-dimensional
numerical integrals shown in Sec. III use a mix of quadrature and the
VEGASMonte Carlo algorithm.17

The dependence of the yield on anisotropy depends dramatically
on the temperature. For colder temperatures, less isotropic distribu-
tions produce higher yields. As the temperature increases, the effect of
anisotropy becomes less dramatic, until at around 15 keV it reverses
sign. Then, as the temperature increases, isotropic temperatures pro-
duce the highest yields by increasingly large margins. This trend was
previously pointed out by Kalra et al.14 and Nath et al.15

From one perspective, the explanation for this trend is relatively
straightforward. The yield integral can be understood as the average of
rðeÞ

ffiffiffiffiffiffiffiffiffiffi
2e=l

p
over the distribution of velocity differences between pairs

of particles. The shape of that distribution depends on d and can be

seen (weighted by
ffiffi
e
p

and a constant factor) in Fig. 2 for d ¼ �1, 0,
and 2. The less isotropic distributions have more particles at the
highest-energy parts of the tails, whereas the more isotropic distribu-
tion has more particles in the moderately high-energy region. The
highest-energy parts of the tails are most important at lower tempera-
tures, since the cross sections are steeper functions of energy at lower
energies.

However, this does not necessarily resolve the more basic ques-
tion: why does the distribution of velocity differences depend on
anisotropy in this way? There are two effects at play.

To some extent, this behavior can be understood in terms of the
alignment of the velocities of different particles. In a less isotropic dis-
tribution (larger jdj), the velocities are increasingly confined either to
the perpendicular plane or to the parallel axis, depending on the sign
of d. When the velocities are confined to a smaller-dimensional space,
a given pair of velocities is increasingly likely to be aligned (or
anti-aligned) rather than orthogonal. In other words, less isotropic
distributions have a greater number of “head-on” collisions, whereas
more isotropic distributions have more “side-swipe” collisions.

As an example, consider two particles with the same mass and
with speeds v1 and v2. If the two velocities are oriented along the same
direction, then their relative velocity will be either v1 þ v2 or jv2 � v1j,
depending on whether they are aligned or anti-aligned. If the two
velocities are completely orthogonal to one another, then their relative
velocity will be

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v21 þ v22

p
.

For a relatively cold plasma, fusion reactions are very rare events,
and they are much more likely to happen for those pairs of particles
with the largest relative velocities. In terms of fusion yields, this incen-
tivizes “high-risk, high-reward” configurations in which velocities are
confined to lower-dimensional subspaces; some pairs of particles will
be moving in the same direction and have low relative velocities, but
some will have very high-energy head-on collisions.

FIG. 2. The functions by which the cross section is weighted in the yield integrals
described by Eqs. (15), (16), and (17). They can be interpreted as the product offfiffiffiffiffiffiffiffi

e=T
p

and the distribution of the center-of-mass energies of pairs of particles. The
less isotropic distributions have comparatively large numbers of particles in the
highest-energy parts of the tails.
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On the other hand, for a hotter plasma, fusion events are less
rare. Pairs of particles with orthogonal velocities may not reach the rel-
ative velocities that are possible in a head-on collision, but they will
reliably have relative velocities higher than the velocity of either indi-
vidual particle. At higher temperatures, where the fusion cross section
is a less steep function of energy, these orthogonal orientations are
more favorable.

However, this cannot be the whole story. Consider a fusion reac-
tion between species a and b for which Ta=ma � Tb=mb. In this case,
the orientation of the particles does not matter; species b is effectively
immobile, and all of the relative motion is provided by the thermal
motion of species a. But the yield integrals depend on the species’ ani-
sotropies only through the dimensionless parameter d, which can take
on a full range of values between �1 and 2 even if one species is
immobilized. In other words, all of the effects of anisotropy can appar-
ently be observed even in a regime in which the relative orientation of
the particles does not matter whatsoever.

To see how this is possible, consider the dependence of Y on fa
and fb, as shown in Eq. (1). The anisotropy of the distribution func-
tions affects Y in two ways. First, for any given va ¼ jvaj and
vb ¼ jvbj, it changes the likelihood of a given w by modifying the rela-
tive orientation of va and vb. This leads to the effect described above,
but d can also affect the distribution of single-particle energies (i.e., the
distributions of va and vb themselves). Bi-Maxwellian distributions
with different values of d have differently shaped tails in energy space.
This is much like the effect shown in Fig. 2, but for single-particle
energy distributions rather than the distribution of energies of pairs of
particles.

Again, though, this is not sufficient on its own to explain all of
the effects of anisotropy. For instance, note that d depends on both da
and db, and that the resulting combined d parameter is quite different
depending on whether or not da and db have the same sign. It is even
possible for two anisotropic single-particle distributions to have d ¼ 0.
This would not happen if it was only the dependence of the single-
particle energy distributions on d that mattered. It appears, then, that
the observed behavior of Yðd;TÞ must follow from a combination of
two things: that anisotropy changes the relative orientation of pairs of
particle velocities, and that it changes the shapes of the single-particle
energy distributions.

Distinguishing between the two mechanisms is important
because there are physical effects that create anisotropy while leaving
the energy distribution unchanged. Consider a system in which the
first adiabatic invariant mv2?=2B is conserved. If a particle moves
through a region with varying field strength B, in the absence of colli-
sions or potentials, the total energy of the particle remains fixed, and it
trades v2jj with v2? in order to conserve the adiabatic invariant as B
varies. It is not obvious to what extent the fusion yield in this system
will behave like the bi-Maxwellian yield, because it is not obvious how
to distinguish between the two mechanisms affecting the bi-
Maxwellian.

III. A DIFFERENT MAXWELLIAN ANALOG

In order to disentangle these two effects, it is helpful to construct
a class of distribution functions which exhibit one mechanism but not
the other. To that end, consider distributions of the form

fsðvsÞ ¼ gsðhs;/sÞhMs ðvsÞ; (18)

where ðvs; hs;/sÞ is a spherical coordinate system:

vs ¼ x̂ sin hs cos/s þ ŷ sin hs sin/s þ ẑ cos hs; (19)

hMs ðvsÞ is a Maxwellian velocity distribution:

hMs ðvsÞ¼
:
ns

ms

2pTs

� �3=2

e�msv2s =2Ts ; (20)

and gsðhs;/sÞ is normalized such thatð2p
0
d/s

ðp

0
dhs sin hs gsðhs;/sÞ ¼ 4p: (21)

When gs ¼ 1, Eq. (18) gives a 3D isotropic Maxwellian. For any other
choice of gs, the distribution will have that same single-particle energy
distribution, but different choices of gs can still introduce anisotropy
and can therefore change the statistics of how pairs of particles’ veloci-
ties align. In addition to being a useful example, this kind of distribu-
tion can act as a simple model for anisotropy due to the conservation
of an adiabatic invariant, since varying g modifies the distribution of
pitch angles without changing the kinetic energy of any particle.

In many cases of interest, a distribution function may be aniso-
tropic due to dependence on hs but not /s, since in a magnetized
plasma any dependence on /s is averaged out over a Larmor gyration.
Let us¼: cos hs, so that d

3vs ¼ v2s dvs d/s dus. Define Kðûa; ûbÞ by

Kðûa; ûbÞ¼
:
4
ð
d3vad

3vb

rðwÞwhMa ðvaÞhMb ðvbÞdðua � ûaÞdðub � ûbÞ:
(22)

The factor of 4 appears because the integral of gsðusÞ over us is normal-
ized to 2. Then for any gaðuaÞ and gbðubÞ,

Y ¼ 1
4

ð
dûa dûb Kðûa; ûbÞgaðûaÞgbðûbÞ: (23)

Understanding Kðûa; ûbÞmakes it possible to understand the range of
behaviors that can be attained for more general distributions of the
form gsðusÞhMs ðvsÞ.

K(0, 0) can be understood as the yield in which each species has a
3D Maxwellian distribution with all velocity vectors rotated to lie on
the x̂ � ŷ plane. This distribution is analogous to the bi-Maxwellian
with d ¼ �1. In both cases, the velocity vectors lie entirely on the x̂–ŷ
plane, but the former has the v distribution of a 3D Maxwellian,
whereas the latter (the d ¼ �1 bi-Maxwellian) has the structure of a
2DMaxwellian.

The analog to the d ¼ 2 bi-Maxwellian is Ksymð1; 1Þ, where the
symmetrized K is defined by

Ksymðûa; ûbÞ¼
: 1
2
Kðûa; ûbÞ þ Kðûa;�ûbÞ½ �: (24)

Kðûa; ûbÞ is already symmetric with respect to the exchange of ûa and
ûb, so this symmetrized function is sufficient to describe the yields for
distributions that satisfy gsðusÞ ¼ gsð�usÞ. Ksymð1; 1Þ is the yield due
to 3D Maxwellian distributions with all of their vectors rotated to lie
on the ẑ axis (with equal numbers in either direction). In some ways,
it makes the most sense to compare Ksym with the bi-Maxwellian
yields (rather than K), since the imposed symmetry ensures that the
distribution functions do not have net axial particle flows. Of course, K
and Ksym are identical when ûa ¼ ûb ¼ 0.
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Figure 3 shows K and Ksym as functions of ûD and ûT for deuter-
ium–tritium fusion at several different temperatures. At low tempera-
tures, Ksym is largest when ûD and ûT are near 61 or 0. At higher
temperatures, the trend reverses and Ksym is smallest at these choices
of ûD and ûT . This follows from the same orientation argument made
in Sec. II; these distributions are confined to smaller-dimensional sub-
spaces in which pairs of particle velocities are comparatively likely to
be aligned or anti-aligned rather than orthogonal, and these configura-
tions are more favorable for increasing the fusion yield at lower
temperatures.

If it is not symmetrized, K does not show this same behavior,
because it distinguishes between configurations in which pairs of par-
ticles will be aligned and those in which they will be anti-aligned. This

is determined by the relative signs of ûD and ûT . If it is possible to
guarantee that pairs of particles will have oppositely oriented velocities,
then the highest yields will be attained by the counter-propagating 1D
velocity distributions.

Figure 4 shows Ksymð0; 0Þ; Ksymð1; 1Þ, the d ¼ �1 bi-
Maxwellian yield, and the d ¼ 2 bi-Maxwellian yield for a range of
temperatures. The yields in the figure are normalized to the yield Yiso

of an isotropic 3D Maxwellian at the same temperature. In all cases,
the anisotropic distribution outperforms the isotropic distribution at
lower temperatures and underperforms at higher temperatures. This
effect is most pronounced for the 1D distributions. For the highest and
lowest temperatures, it is more pronounced for the bi-Maxwellian
yields than for Ksymð0; 0Þ or Ksymð1; 1Þ. However, there is a range of

FIG. 3. This figure shows K and Ksym as they compare to the isotropic Maxwellian yield Yiso for a variety of temperatures. The cases shown here use the deuterium–tritium
cross section and assume that the deuterium and tritium are at the same temperature.
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intermediate temperatures for which Ksymð0; 0Þ and Ksymð1; 1Þ are
further away from Yiso than are their bi-Maxwellian counterparts.

There are limits in which Ksym differs more dramatically from its
bi-Maxwellian counterparts—for instance, when the thermal velocities
of the reacting species are more disparate. Recall that the relative ther-
mal velocities of species a and b do not affect the bi-Maxwellian yields,
so long as the combined T parameter given by Eq. (8) remains fixed.
This is not the case for K or Ksym. Note, for example, that in the limit
where Ta=ma � Tb=mb, K will no longer depend on the choices of ga
or gb. This can be seen in Eq. (22), since w! va in this limit.

Perhaps the most practical example in which this distinction
would become important is when the reacting species have disparate
masses—for instance, in p-11B fusion. This is shown in the lower two
panels of Fig. 4; as expected, there is a larger disparity between the two
kinds of anisotropy for this case. The numerical calculations shown in
the figure use the piecewise cross section fit described by Nevins and
Swain.18 p-11B provides a convenient formal example because of the
large mass disparity between the reactants, but the possibility of
enhancing the fusion reactivity also happens to be particularly topical.
Ignition in p-11B fuel is difficult for a plasma in which all species have
equal-temperature isotropic Maxwellian distributions, and different
ways in which the fusion yield might exceed that of the isotropic
Maxwellian case have received significant interest in the recent
literature.19–23

However, comparing the effects of anisotropy on two entirely dif-
ferent reactions is somewhat messy, since the cross sections for differ-
ent reactions can vary widely. An alternative way to demonstrate the
same physics is to calculate the yields for D–T reactions in which the
two species have very different thermal velocities. This can be accom-
plished either by having TD 6¼ TT or by artificially modifying their
masses (in fact, for the purposes of yield calculations, the two are for-
mally equivalent). Consider a scenario in which

TD ¼
mD þmT

amD þmT

� �
T; (25)

TT ¼ aTD; (26)

and the masses are left at their natural values. The inverse-mass-
weighted T given by Eq. (8) is unchanged, so the bi-Maxwellian yields
are the same for any choice of a. The dashed lines in the upper panels
of Fig. 4 show Ksym when a ¼ 1 and the dotted lines show Ksym when
a ¼ 1=20. When a is far from 1, the effects of anisotropy on Ksym are
strongly suppressed, and Ksymðûa; ûbÞ ! Yiso for all choices of ûa and
ûb.

IV. EXAMPLE: YIELD FOR A COLLISIONLESS MIRROR

As can be seen in Fig. 3, the extremal values of Ksymðûa; ûbÞ tend
to be fairly localized in ðûa; ûbÞ space. The yield for a particular choice

FIG. 4. These plots show the fusion yield in a variety of scenarios as a function of temperature (normalized to the yield of isotropic Maxwellian distributions at the same temper-
ature). The upper panels are for D–T reactions, and the lower panels are for p-11B. The dashed lines indicate Ksym in which the two species have equal temperatures; the dot-
ted lines in the D–T plots indicate the case in which TD ¼ 20TT . In cases where the species’ temperatures are not equal, the x-axis shows the inverse-mass-weighted
average of the two. For the unequal-temperature scenario shown here, that means TD ¼ ð50=31ÞT and TT ¼ ð5=62ÞT .
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of gaðuaÞ and gbðubÞ is determined by a weighted average of
Ksymðûa; ûbÞ over ûa and ûb; it is natural to wonder how much the
yield would still be modified after this averaging in a real system. This
could be done for any gaðuaÞ and gbðubÞ, but it may be helpful to see
an example.

With that in mind, consider the following equilibrium angular
distribution for a long, thin mirror, obtained by Newcomb in the colli-
sionless limit.24 Denote the maximum magnetic field strength by Bmax.
Define

GðxÞ¼: 3Bmax þ 2x
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xðBmax � xÞ

p
þ 3B2

max

p
arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bmax

x
� 1

r
; (27)

for 0 � x � Bmax, and set G(x)¼ 0 otherwise, as per Newcomb’s Eq.
(C16). Then, for the notation and normalization used in Sec. III, the
angular distribution g(u) is given by

gðuÞ ¼ 2G
B

1� u2

� � ðþ1
�1

duG
B

1� u2

� �" #�1
: (28)

The local field strength B can be understood as a parameterization of
axial position. Newcomb’s solution is separable—that is, the full
kinetic distribution can be written as the product of g(u) and a func-
tion of v—and was derived for a case without any electrostatic
potential. For present purposes, it provides a good example of an equi-
librium with the intuitively expected behavior for a collisionless mirror
trap. The angular distribution is plotted in the left panel of Fig. 5. Near
the ends of the trap, B approaches Bmax, and an increasing proportion
of particles’ velocities are oriented in the direction perpendicular to the
field.

For this example distribution, the effect of anisotropy on D–T
fusion yields is shown in the right panel of Fig. 5. The angular distribu-
tion in the figure is given by Eq. (28), and the distribution of speeds is
given by a Maxwellian at 5 keV. Note that the yields in the figure are
normalized to the yield of an isotropic Maxwellian at the same local

density and temperature, so the plot of the variation of the yield with
B shows the effects of anisotropy but not the effects of axial variation
in density.

The yield results in Fig. 5 show a substantial yield improvement
(about 30%) over an isotropic plasma near the end-coils of the mirror,
but a much reduced enhancement in the middle of the mirror. These
results can be compared with the plot of Ksym at 5 keV in Fig. 3. When
B is close to Bmax, the yield is comparable to Ksymð0; 0Þ (a purely per-
pendicular distribution), as one would expect. For regions with smaller
B, the distribution is more isotropic and the modification of the yield
decreases accordingly. The drop-off in the yield enhancement is
approximately linear in B. Depending on the axial profile of B for a
particular mirror trap, this suggests that it might still be possible to
observe an enhancement in the fusion yields some distance away from
the end-coils. Note that this particular example distribution’s anisot-
ropy tends to result in excess energy in the perpendicular rather than
parallel direction. As can be seen in Fig. 3, a larger enhancement could
be possible at the same temperature if the distribution instead favored
excess parallel energy.

V. DISCUSSION

The different types of anisotropic distribution considered in this
paper differ in significant ways. One of the major conclusions of this
paper is that one must be careful when comparing anisotropy from
different sources and that subtle differences between different distribu-
tions can have surprisingly large impacts on the behavior of the fusion
yield. For instance, in the limit in which one fuel ion has a much larger
thermal velocity than the other, anisotropy can substantially modify
the fusion yield from a pair of bi-Maxwellian distributions, but it no
longer has any effect on the gshMs distributions discussed in Sec. III.
However, it is equally important to recognize that there are some ways
in which the dependence of the fusion yield on anisotropy appears to
be quite general, if not universal. This can be understood in terms of
the relative likelihoods that pairs of particles’ velocities will be aligned,
anti-aligned, or orthogonal.

The yields of gshMs distributions are of particular interest for sys-
tems that are anisotropic due to the conservation of adiabatic

FIG. 5. The left panel shows Newcomb’s angular distribution G as a function of B=Bmax and u. The right panel shows the yield for a D–T plasma at 5 keV with Newcomb’s colli-
sionless mirror distribution, normalized to the yield of an isotropic distribution at the same local temperature and density.
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invariants (this includes mirror machines, but trapped particle effects
can also be important in toroidal devices). These devices will not nec-
essarily have distributions with exactly this form; electrostatic and cen-
trifugal potentials can prevent the kinetic energy of a particle from
being constant over the course of an orbit, as can collisions and parti-
cle losses.25–30 Nonetheless, these distributions capture an essential
characteristic of this kind of anisotropy: that the mechanism of anisot-
ropy generation itself does not change the distribution of particle
energies.

These results have applications for optimizing and predicting
fusion yields in plasma devices. Anisotropy can affect the fusion yield
most dramatically in cases in which the plasma is hot enough to be
producing fusion events but cooler than the threshold for ignition.
One practical takeaway of this paper is that anisotropy (of either of the
two types discussed) can strongly enhance fusion reactivities for rela-
tively low-temperature devices. To the extent that anisotropy can be
engineered—for instance, by modifying the magnetic field coil config-
uration—this could allow for greater fusion yields without the need to
increase the plasma temperature or density.

These effects become smaller and eventually reverse sign at
higher temperatures. For d ¼ �1 and d ¼ 2 bi-Maxwellian, the D–T
fusion yield becomes equal to Yiso at T � 14 keV and 15 keV, respec-
tively. This reversal is pushed to higher temperatures for the analogous
values of Ksymð1; 1Þ and Ksymð0; 0Þ: T � 23 keV and 22 keV, respec-
tively. Of course, for other fusion reactions these crossing points are
different; for the p-11B cases shown in Fig. 4, the reversal is not until
the plasma gets to temperatures well over 100 keV.

Especially for the kind of anisotropy generated by the conserva-
tion of adiabatic invariants (i.e., modeled by an integral over Ksym),
these effects could still be nontrivial at reactor-relevant temperatures.
For a deuterium–tritium plasma at 15 keV, Ksymð1; 1Þ=Yiso � 1:29
and Ksymð0; 0Þ=Yiso � 1:07. The yield enhancement for a real device
would presumably be an average over some finite region of ðûD; ûTÞ-
space, but these results suggest that significant enhancements are still
possible at these temperatures. In a device as large and costly as a mag-
netic fusion reactor, even a relatively small enhancement to the reactiv-
ity is worth noting.

This paper has considered two possible classes of particle distri-
butions: separable distributions of the form gsðhs;/sÞhMs ðvsÞ (for cases
in which the mechanism generating anisotropy does not change the
energy distribution) and bi-Maxwellian (for cases in which it does).
These are not the only two possibilities. For instance, there are reasons
to be careful of the bi-Maxwellian model for a scenario involving
anisotropic heating. If energy is put into a distribution at some e0, the
process of populating the higher-energy parts of the distribution with
e > e0 tends to rely on collisions between particles with orthogonal
velocities (if one imagines equilibration through pairwise collisions, it
is necessary for some collisions to leave one of the particles with more
energy than either started with). These orthogonal collisions also tend
to equalize the energies oriented in different directions, so there may
be scenarios in which the bi-Maxwellian is a good model for the bulk
population of particles but not for the high-energy tails. Interestingly,
this also suggests that a distribution occupying a higher-dimensional
velocity subspace might be able to populate its high-energy tails more
efficiently, since pairs of particles are more likely to have orthogonal
velocities. In any case, it is important to consider carefully before pick-
ing a distribution with which to model the plasma in a particular

system, especially given the sensitivity of the fusion yield on the struc-
ture of the high-energy tails.

ACKNOWLEDGMENTS

The authors thank Nicolas Lopez, Ian Ochs, and Xin Zhang for
helpful discussions. This work was supported by NSF PHY-1805316
and NNSA 83228–10966 [Prime No. DOE (NNSA) DE-NA0003764].

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request.

REFERENCES
1J. A. Rome and Y.-K. M. Peng, Nucl. Fusion 19, 1293 (1979).
2Y. R. Lin-Liu and R. L. Miller, Phys. Plasmas 2, 1666 (1995).
3W. A. Cooper, J. P. Graves, S. P. Hirshman, T. Yamaguchi, Y. Narushima, S.
Okamura, S. Sakakibara, C. Suzuki, K. Y. Watanabe, H. Yamada, and K.
Yamazaki, Nucl. Fusion 46, 683 (2006).

4W. A. Cooper, S. P. Hirshman, P. Merkel, J. P. Graves, J. Kisslinger, H. F. G.
Wobig, Y. Narushima, S. Okamura, and K. Y. Watanabe, Comput. Phys.
Commun. 180, 1524 (2009).

5I. E. Ochs and N. J. Fisch, Phys. Plasmas 25, 122306 (2018).
6W. Choe, C. S. Chang, and M. Ono, Phys. Plasmas 2, 2044 (1995).
7V. V. Maximov, A. V. Anikeev, P. A. Bagryansky, A. A. Ivanov, A. A. Lizunov,
S. V. Murakhtin, K. Noack, and V. V. Prikhodko, Nucl. Fusion 44, 542 (2004).

8T. Yamaguchi, K. Y. Watanabe, S. Sakakibara, Y. Narushima, K. Narihara, T.
Tokuzawa, K. Tanaka, I. Yamada, M. Osakabe, H. Yamada, K. Kawahata, K.
Yamazaki, and LHD Experimental Group, Nucl. Fusion 45, L33 (2005).

9Z. S. Qu, M. Fitzgerald, and M. J. Hole, Plasma Phys. Controlled Fusion 56,
075007 (2014).

10D. R. Mikkelsen, Nucl. Fusion 29, 1113 (1989).
11H. H. Towner, R. J. Goldston, G. W. Hammett, J. A. Murphy, C. K. Phillips, S.
D. Scott, M. C. Zarnstorff, and D. Smithe, Rev. Sci. Instrum. 63, 4753 (1992).

12M. J. Hay and N. J. Fisch, Phys. Plasmas 22, 112116 (2015).
13Y. Kiwamoto, T. Tatematsu, T. Saito, H. Abe, M. Ichimura, M. Inutake, N.
Yamaguchi, T. Tamano, Y. Nakashima, M. Shoji, T. Cho, M. Hirata, H. Hojo,
K. Ikeda, K. Ishii, A. Itakura, I. Katanuma, A. Mase, Y. Nagayama, and K.
Yatsu, Phys. Plasmas 3, 578 (1996).

14M. S. Kalra, S. Agrawal, and S. Pandimani, Trans. Am. Nucl. Soc. 56, 126 (1988).
15D. Nath, R. Majumdar, and M. S. Kalra, J. Fusion Energy 32, 457 (2013).
16H.-S. Bosch and G. M. Hale, Nucl. Fusion 32, 611 (1992).
17G. P. Lepage, J. Comput. Phys. 27, 192 (1978).
18W. M. Nevins and R. Swain, Nucl. Fusion 40, 865 (2000).
19P. Lalousis, I. B. F€oldes, and H. Hora, Laser Part. Beams 30, 233 (2012).
20H. Hora, G. Korn, L. Giuffrida, D. Margarone, A. Picciotto, J. Krasa, K.
Jungwirth, J. Ullschmied, P. Lalousis, S. Eliezer, G. H. Miley, S. Moustaizis, and
G. Mourou, Laser Part. Beams 33, 607 (2015).

21S. Eliezer, H. Hora, G. Korn, N. Nissim, and J. M. M. Val, Phys. Plasmas 23,
050704 (2016).

22S. V. Putvinski, D. D. Ryutov, and P. N. Yushmanov, Nucl. Fusion 59, 076018
(2019).

23H. Hora, G. H. Miley, S. Eliezer, and N. Nissim, High Density Phys. 35, 100739
(2020).

24W. A. Newcomb, J. Plasma Phys. 26, 529 (1981).
25B. Lehnert, Nucl. Fusion 11, 485 (1971).
26V. P. Pastukhov, Nucl. Fusion 14, 3 (1974).
27D. P. Chernin and M. N. Rosenbluth, Nucl. Fusion 18, 47 (1978).
28R. H. Cohen, M. E. Rensink, T. A. Cutler, and A. A. Mirin, Nucl. Fusion 18,
1229 (1978).

29A. A. Bekhtenev, V. I. Volosov, V. E. Pal’chikov, M. S. Pekker, and Y. N.
Yudin, Nucl. Fusion 20, 579 (1980).

30X. Zhang, D. B. Elliott, A. Maan, D. P. Boyle, R. Kaita, and R. Majeski, Nucl.
Mater. Energy 19, 250 (2019).

Physics of Plasmas ARTICLE scitation.org/journal/php

Phys. Plasmas 28, 052107 (2021); doi: 10.1063/5.0050293 28, 052107-8

Published under an exclusive license by AIP Publishing

https://doi.org/10.1088/0029-5515/19/9/003
https://doi.org/10.1063/1.871315
https://doi.org/10.1088/0029-5515/46/7/001
https://doi.org/10.1016/j.cpc.2009.04.006
https://doi.org/10.1016/j.cpc.2009.04.006
https://doi.org/10.1063/1.5055568
https://doi.org/10.1063/1.871456
https://doi.org/10.1088/0029-5515/44/4/008
https://doi.org/10.1088/0029-5515/45/11/L01
https://doi.org/10.1088/0741-3335/56/7/075007
https://doi.org/10.1088/0029-5515/29/7/003
https://doi.org/10.1063/1.1143630
https://doi.org/10.1063/1.4936346
https://doi.org/10.1063/1.871885
https://doi.org/10.1007/s10894-013-9594-0
https://doi.org/10.1088/0029-5515/32/4/I07
https://doi.org/10.1016/0021-9991(78)90004-9
https://doi.org/10.1088/0029-5515/40/4/310
https://doi.org/10.1017/S0263034611000875
https://doi.org/10.1017/S0263034615000634
https://doi.org/10.1063/1.4950824
https://doi.org/10.1088/1741-4326/ab1a60
https://doi.org/10.1016/j.hedp.2019.100739
https://doi.org/10.1017/S0022377800010904
https://doi.org/10.1088/0029-5515/11/5/010
https://doi.org/10.1088/0029-5515/14/1/001
https://doi.org/10.1088/0029-5515/18/1/008
https://doi.org/10.1088/0029-5515/18/9/005
https://doi.org/10.1088/0029-5515/20/5/007
https://doi.org/10.1016/j.nme.2019.02.027
https://doi.org/10.1016/j.nme.2019.02.027
https://scitation.org/journal/php

	s1
	s2
	d1
	d2
	d3
	d4
	d5
	d6
	d7
	d8
	d9
	d10
	d11
	d12
	f1
	d13
	d14
	d15
	d16
	d17
	f2
	s3
	d18
	d19
	d20
	d21
	d22
	d23
	d24
	f3
	d25
	d26
	s4
	f4
	d27
	d28
	s5
	f5
	l
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	c21
	c22
	c23
	c24
	c25
	c26
	c27
	c28
	c29
	c30



