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The gradient of fusion-born alpha particles that arises in a fusion reactor can be exploited to amplify
waves, which cool the alpha particles while diffusively extracting them from the reactor. The corresponding
extraction of the resonant alpha particle charge has been suggested as a mechanism to drive rotation. By
deriving a coupled linear-quasilinear theory of alpha channeling, we show that, for a time-growing wave
with a purely poloidal wave vector, a current in the nonresonant ions cancels the resonant alpha particle
current, preventing the rotation drive but fueling the fusion reaction.
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Introduction.—A particle gyrating in a magnetic field
with a velocity v⊥ greater than the phase velocity vp ≡
ωr=k⊥ of an electrostatic wave will become Landau
resonant at some point in its orbit, allowing for efficient
wave-particle energy exchange. Each time the particle
energy changes (Fig. 1), its gyrocenter position also
changes, leading to diffusion on a 1D path in the 2D
energy-gyrocenter coordinate space [1,2]. If, along the
path, there are more particles at higher than lower energy,
the diffusion on average cools particles, and the wave
amplifies. This effect is known as alpha channeling, so
named because it cools and extracts alpha ash from the hot
core of a fusion reactor, and channels their energy into wave
power useful for current drive [1,2] or ion heating [3–5].
For alpha channeling in a slab geometry, the diffusion

path slope in this energy-gyrocenter space has the simple
form ∂X=∂K ¼ k × b̂=mαωΩα, where K is the perpendi-
cular kinetic energy, X is the gyrocenter position, mα and
Ωα are the alpha particle mass and gyrofrequency, and ω
and k are the wave frequency and wave number. Thus, the
condition for wave amplification from channeling is

� ∂
∂K þ k × b̂

mαωΩα
·
∂
∂X
�
Fα0 > 0; ð1Þ

where Fα0 is the zeroth-order distribution function in
energy-gyrocenter space.
What remains unknown is whether or not the alpha

particles carry net charge out of the plasma as a result of the
wave-induced diffusion. If charge is in fact carried out, then
alpha channeling can be used to drive E × B rotation in the
plasma, providing an advantageous mechanism for shear
rotation drive and centrifugal confinement in mirror fusion
reactors [6]. Understanding whether such schemes are
possible at all requires evaluation of the effect of the
wave on the nonresonant particles, which has never been
examined for alpha channeling. Such reactions in the

nonresonant particles are extremely important in enforcing
momentum and energy conservation [7,8], making theories
that ignore them liable to error.
The reason the nonresonant response has proved elusive

is that there is no existing linear theory of alpha channeling.
Typically, a coupled linear wave and quasilinear particle
system is necessary to calculate the nonresonant particle
response. The elusivity of the linear theory is related to the
fact that Landau damping cannot be derived from the
magnetized dispersion relation, a conundrum sometimes
termed the Bernstein-Landau paradox [9,10]. Derivation of
the diffusion thus requires a nonlinear calculation, which
allows for stochastic diffusion of the particle throughout
phase space above a certain wave amplitude (see
Supplemental Material [11]) at which Landau-resonant
particles dephase from the wave [15–19]. This dephasing
effectively destroys the gyrophase-dependent structure of
the resonant particle distribution.
In this Letter, we show that a linear-quasilinear system

can be derived by assuming this wave-particle dephasing,
which we do by transforming the familiar unmagnetized
kinetic theory to gyrocenter coordinates, and then forcing
the resonant particle distribution to be independent of
gyroangle. To show that the system describes alpha
channeling, we show that it recovers both the amplification
condition [Eq. (1)] and the nonlinear diffusion coefficient
[16] for channeling by lower hybrid (LH) waves.
Treating the channeling problem in this way positions us

to answer the question of whether alpha channeling extracts
charge from the fusion reactor. We find that for the initial
value problem, where an electrostatic wave with purely
poloidal wave number grows in time, the charge flux from
the resonant alphas is canceled by an equal and opposite
charge flux in the nonresonant particles, so that no reactor
charging occurs. We also determine which particles carry
this nonresonant return current, in both single- and multi-
ion-species plasmas. For LH waves, the nonresonant return
current is carried exclusively by fuel ions, so that alpha
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channeling has the added benefit of fueling the fusion
reaction while extracting alphas.
Linear theory.—For any electrostatic wave, the dis-

persion relation obtained by linearizing and Fourier trans-
forming Poisson’s equation can be expressed as

0 ¼ 1þ
X
s

Ds; Ds ≡ −
4πqs
k2

ñs
ϕ̃
; ð2Þ

where qs and ns are the charge and density of species s, ϕ is
the potential, and tildes denote Fourier transforms. In the
standard limit jωi=ωrj ≪ 1, this becomes

0 ¼ 1þ
X
s

Dr;s; ð3Þ

0 ¼
X
s

�
iωi

∂Dr;s

∂ωr
þ iDi;s

�
; ð4Þ

where ωr and ωi are the real and imaginary components of
the wave frequency, and Dr;s and Di;s are the real and
imaginary parts of the dispersion function Ds in Eq. (2)
evaluated at real ω, k.
To treat the alpha channeling initial value problem, we

take the wave number kkx̂, the magnetic field Bkẑ, and the
gradient of the gyrocenter distribution function to be along
ŷ. Thus, y corresponds to the “radial” direction, and x to the
“poloidal” direction. For simplicity, we specialize to a LH
wave, assuming cold fluid populations of magnetized
electrons e and unmagnetized ions i, and a hot, unmagneti-
zed population of alpha particles α. Our dispersion compo-
nents are thus given by Dr;e ¼ ω2

pe=Ω2
e, Dr;i ¼ −ω2

pi=ω
2,

Di;e ¼ Di;i ¼ 0, and

Dα ¼ −
ω2
pi

k2x

Z
dvydvx

∂fα0=∂vx
vx − ω=kx − iν=kx

; ð5Þ

whereωps is the plasma frequency of species s, and ν → 0þ

determines the pole convention. We further take Dr;α ¼ 0,
which is a good approximation when the alpha particles are
hot and sparse compared to the ions.
Plugging these dispersion components into the real

dispersion Eq. (3), we find the familiar LH wave:

ωr ¼ �ωLH ≡�ðω−2
pi þ jΩeΩij−1Þ−1=2: ð6Þ

Taking ωr > 0, the imaginary dispersion yields

ωi ¼
π

2
Skx

ω2
pα

ω2
pi

ω3
LH

k2x

Z
dvy

∂fα0
∂vx

����
y¼y0;vx¼vp

; ð7Þ

where Skx ¼ sgnðkxÞ determines the direction of the phase
velocity vp ≡ ωr=kx.
To recover alpha channeling, we need to transform the

distribution function and derivatives from phase space
coordinates xi ≡ ðx; y; vx; vyÞ to gyrocenter-energy coordi-
nates Xi ≡ ðX; Y;K; θÞ:

X ¼ xþ vy
Ωα

Y ¼ y −
vx
Ωα

ð8Þ

K ¼ 1

2
mðv2x þ v2yÞ θ ¼ arctan ð−vy; vxÞ: ð9Þ

In this coordinate system, the phase space density function
transforms as

Fα0 ¼
ffiffiffiffiffi
jgj

p
fα0 ð10Þ

jgj ¼ jgijj ¼
���� ∂xm∂Xi

∂xn
∂Xj δmn

���� ¼ m−2
α : ð11Þ

Thus, we can rewrite our derivatives in terms of Xi as

∂fα0
∂vx

����
y;ωrkx

¼ ∂Xi

∂vx
∂
∂Xi ðmαFα0Þy0;ωrkx ð12Þ

¼ m2
α
ωr

kx

�∂Fα0

∂K −
kx

mαωrΩα

∂Fα0

∂Y
�

Y�;K�
; ð13Þ

where Y� ≡ y − vp=Ωa, K� ≡mðv2p þ v2yÞ=2, and we have
taken Fα0 independent of θ to capture the gyrophase
structure loss induced by the stochasticity.
The quantity in parentheses in Eq. (13) can be recog-

nized as derivative along the diffusion path in Eq. (1), and
thus describes wave amplification from alpha channeling.
Interestingly, this means that the condition that there be (on
average) a population inversion along the channeling
diffusion path in gyrocenter-energy space is identical to
the condition that there be a bump-on-tail instability in the
local hot alpha particle distribution.

FIG. 1. Schematic of the alpha channeling process. A hot
particle with v⊥ > vp resonates with the wave at some point in
the orbit, leading to a change in both energy and gyrocenter.
Thus, the particles diffuse along a specified path in gyrocenter-
energy space. The amplification condition Eq. (1) depends on the
derivative of the distribution function along this path.
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Under this new formalism, in contrast to the nonlinear
formalism, it is possible to straightforwardly calculate the
wave amplification rate. For instance, for a Maxwellian
with a gradient in Y, Fα0 ¼ e−K=Tαe−Y=L=2πTα, with
thermal velocity vthα ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tα=mα

p
, we have at y ¼ 0:

ωi ¼ −jωrj
ffiffiffi
π

8

r ���� vpxvthα

����3e−1=2ðvpxvthα
Þ2 ω2

pα

ω2
pi

×

��
1 −

vthα
vpx

ρthα
L

�
e−ðy−ρpαÞ=L

�
; ð14Þ

where ρthα ¼ vthα=Ωα and ρpα ¼ vp=Ωα. The first line is
the familiar Landau damping on a minority species [8], and
the second line contains the channeling effect.
Resonant diffusion.—Identifying alpha channeling with

the unmagnetized bump-on-tail instability allows us to
compactly derive the diffusion tensor, by performing the
same coordinate transformation. From unmagnetized qua-
silinear theory, we have for a single wave mode [8,20]:

∂f
∂t ¼

∂
∂xi
�
Dij

x
∂fα0
∂vj

�
; ð15Þ

Dvxvx
x ¼ ω2

pα

mαnα

WðyÞ
kxi

�
1

vx − ωr=kx − iωi=kx − iϵ
− c:c:

�
;

ð16Þ

whereWðyÞ ¼ E0ðyÞ2=16π and E0ðyÞ are the wave electro-
static energy density and amplitude at y, respectively. The
diffusion equation (15) transforms as

∂Fα0

∂t ¼ ∂
∂Xi

� ffiffiffiffiffi
jgj

p
Dij

X
∂

∂Xj

�
Fα0ffiffiffiffiffijgjp ��

; ð17Þ

where Dij
X is determined from Dij

x by the same tensor
transformation law as for the metric in Eq. (11).
Performing the coordinate transformation, taking Fα0

independent of θ, and averaging Eq. (17) over θ, we find

�∂Fα0

∂t
	

t
¼ ∂

∂X̄i

�
hDij

X̄
i
θ

∂Fα0

∂X̄j

�
; ð18Þ

where the gyroaveraged coordinates X̄i ≡ ðK; YÞ, and

hDij
X̄
i
θ
¼ 1

2π

ω2
pα

mαnα

WðyÞ
kv⊥i

 
Ω−2

s I0d − mαv⊥
Ωα

I1d

− mαv⊥
Ωα

I1d m2
αv2⊥I2d

!
ð19Þ

with v⊥ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2K=ms

p
and Iad ¼ Ia− − Iaþ, where

Ia� ≈
�
1 ∓ iωi

∂
∂ωr

�Z
2π

0

dθ
sina θ

sin θ − ωr=kv⊥ � iϵ
: ð20Þ

This integral can be evaluated with the u substitution
u ¼ sin θ. As discussed in Ref. [20], Iad then consists of
two terms: one from the “1” and the pole, corresponding to
resonant particles, and one from the iωi∂=∂ωr and the
principle value, corresponding to nonresonant particles.
We will focus on the resonant diffusion, which gives at
Y� ¼ y − vp=Ωα:�∂Fα0

∂t
	

t
¼ d

dK

����
path

�
DKK d

dK

����
path

Fα0

�
ð21Þ

DKK ≡m2
α

2

�
qαE0ðyÞ

mα

�
2 v2pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2v2⊥ − ω2
r

p Hðv⊥ − vpÞ ð22Þ

d
dK

����
path

≡
� ∂
∂K −

k
msωrΩα

∂
∂Y
�
: ð23Þ

Equation (22) is the same as Karney’s [16] diffusion
coefficient in v⊥ in the limit of large kxρ as used in [2]
(see Supplemental Material [11]). Furthermore, the diffu-
sion is seen to occur along the diffusion path in Eq. (1),
confirming that this approach recovers alpha channeling.
The diffusion coefficient corrects the energy-space

diffusion coefficient in Refs. [1,21]. This discrepancy is
discussed in the Supplemental Material [11]. This error
did not affect the study of alpha channeling in toroidal
geometry due to ion-Bernstein waves (IBWs) [4,22], which
relied on a different diffusion coefficient from orbit-
averaging the cyclotron-resonant response [23,24].
Nonresonant reaction.—Having established that the

linear-quasilinear system recovers alpha channeling, we
are now in a position to examine the nonresonant response.
In contrast to the resonant particles, which remain on
largely unperturbed gyro-orbits except at the resonance
points [Fig. 2(a)], and which have their θ-dependent
structure destroyed by nonlinear effects, the nonresonant
particles experience sloshing motion along vx only, and
thus have a nongyrotropic distribution function at OðE2Þ
[Fig. 2(b)].
Thus, instead of transforming the nonresonant diffusion

coefficient to the coordinates Xi, we find the nonresonant
response by first calculating the total force density on
species s from the field-particle correlation:

Fsx ¼ qshE1xn1ix: ð24Þ

This approach is equivalent to finding the force from the
full (nongyroaveraged) quasilinear theory.
Linearizing and Fourier transforming the above gives

Fsx ¼ lim
L→∞

qs
L

Z
L=2

−L=2
dx
Z

dp0
x

2π

dk0x
2π

Ẽp0
x
ñs;k0x

× eiðp0
xþk0xÞx−i½ωðp0

xÞþωðk0xÞ�t; ð25Þ
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which can be expressed entirely in terms of ϕ̃ by using
Ẽp0

x
¼ −ip0

xϕ̃p0
x
and ñs;k0x from Eq. (2). Then, in this Fourier

convention, the wave ϕ ¼ ϕ0 cosðkxx − ωtÞeωit corre-
sponds to

ϕ̃k0x ¼ πϕ0½δðk0x − kxÞ þ δðk0x þ kxÞ�: ð26Þ

Plugging this in to Eq. (25) and making use of the
symmetry property Dð−kxÞ ¼ D�ðkxÞ allows us to calcu-
late the total force on species s as

Fsx ¼
ϕ2
0e

2ωit

8π
Im½kxk2Ds� ð27Þ

≈2Wkx

�
Dis þ ωi

∂Drs

∂ωr

�
: ð28Þ

Here, the first term on the right-hand side is the force
density on the resonant particles due to the wave-induced
diffusion, and the second term is the force density on the
nonresonant particles. This derivation generalizes the result
for an unmagnetized plasma in Ref. [20] to any electrostatic
wave. Summing over all species, we recover the imaginary
component of the dispersion function, Eq. (4). Thus the
total force applied to the plasma sums to 0, as demanded by
momentum conservation for the electrostatic wave.
The fact that the forces cancel in turn means that the

total cross-field currents from resonant and nonresonant
particles cancel, as can be seen by calculating the total
gyrocenter current from the resulting F ×B drifts:

X
s

jsy ¼
X
s

−qsns
ðFsx=nsÞBz

qsB2
z

¼−
1

Bz

X
s

Fsx¼ 0: ð29Þ

Thus, for a purely poloidal wave mode growing in time,
alpha channeling does not charge the plasma.
In addition to revealing the conservation of total charge,

Eq. (28) also tells us which species carries the canceling
nonresonant current. Specializing to an LH wave, with
∂Dr;e=∂ωr ¼ 0, we see that the nonresonant reaction is
exclusively in the ions, which experience a force density:

Fix ¼ 4Wkxωi

ω2
pi

ω3
r
¼ nimi

�
qiE0

mi

�
2 kxωi

ω3
r
: ð30Þ

Thus, for every alpha particle brought out of the plasma by
the LH alpha channeling instability, two fuel ions are
brought in, fueling the fusion reaction.
The total shift in the nonresonant ion gyrocenter due to

the ponderomotive force for the LH wave can be expressed
nicely by integrating the F ×B drift over the growth of the
wave, using dE2

0=dt ¼ 2ωiE2
0. This gives

ΔY ¼ −
1

2

qi
mi

�
kx
ωr

�
3 Δϕ2

0

Bz
; ð31Þ

whereΔϕ2
0 is the change of the wave potential squared. In a

multi-ion-species plasma, Eq. (31) reveals to what extent
each ion species moves inward as a result of LH alpha
channeling. For instance, in a p-B11 fusion plasma, Boron
ions would flow inward ZB=μB ¼ 5=11 as much as the
protons. For other electrostatic waves such as the IBW, the
general force density from Eq. (28) can be used to
determine each species’ response. Equation (31) can also
be easily checked against single-particle Lorentz force
simulations in which a wave is ramped up from 0 initial
amplitude, which are found to agree well (Fig. 3). Details
for these simulations, which use the Boris algorithm
[25,26], are given in the Supplemental Material [11].
It is important to note that the cancellation of the

resonant and nonresonant gyrocenter currents is not locally
exact. Because the nonresonant ions are cold, the electric
field that enters this equation is evaluated locally at y ≈ Y,
in contrast to the case for the hot resonant particles, where it
is evaluated at y ¼ Y þ vp=Ωα. Thus, if there is variation in
the electric field in y on some scale length L, the slight

FIG. 3. Change in gyrocenter position Y for the particle in
Fig. 2(b) due to the slow ramp-up of the electrostatic wave. The
gyro-period-averaged position in the simulations (solid black
diamonds) agrees well with the predicted shift (gray dashed line)
from Eq. (31) due to the nonresonant reaction.FIG. 2. Simulated single-particle trajectories in the x-y plane of

(a) hot particles (v0 ¼ 3.5vp) and (b) cold particles (v0 ¼ 0.03vp)
in a growing electrostatic wave. Lines are particle positions, and
triangles are orbit-averaged gyrocenter positions. Axes are
normalized to ρps ≡ ω=kΩs, i.e., x̃ ¼ x=ρps and ỹ ¼ y=ρps.
The color indicates time, light to dark. The hot particles diffuse
stochastically. The cold particles have a clearly nongyrotropic
velocity distribution due to the oscillations, and exhibit a clear
shift in gyrocenter downward.
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offset of the resonant and nonresonant currents will
produce a net current ordered down from the resonant
current by Oðρpα=LÞ ≪ 1. The resulting charge accumu-
lation could in principle drive shear flow in the plasma,
albeit at a much reduced rate than that suggested by the
resonant current alone.
Discussion.—The force in Eq. (30) is the same time-

dependent force that arises from the unmagnetized ponder-
omotive potential in the form

Φ ¼ e2E2
0

4mðω − k · vÞ2 ; ð32Þ

from whence the force is derived via

ðmδij −ΦvivjÞ
dvj
dt

¼ Φvixjvj þΦvit −Φxi ; ð33Þ

where the subscripts represent derivatives. The force in
Eq. (30) appears as the second term on the right-hand side.
Equation (32) can be derived from unmagnetized plasma

susceptibility using the K-χ theorem [27], which relates
the linear susceptibility to the ponderomotive potential.
Interestingly, application of the K-χ theorem to the mag-
netized hot plasma dispersion relation [13] does not yield
the nonresonant force we observe here, as we show in the
Supplemental Material [11]. Nevertheless, single-particle
simulations confirm the effect. The failure of the hot plasma
dispersion to capture the effect is likely related to the
gyroaverage in the hot plasma dispersion, which has
previously been found to obscure the derivation of
perpendicular resonant quasilinear forces [28–30].
The approach used here, of taking the lowest-order alpha

particle motion to be a straight trajectory, and then
averaging over a gyroperiod, is similar to how neoclassical
wave-particle interactions are treated. In those interactions,
one does not generally use the full constant-of-motion
space dispersion relation [23] to calculate the quasilinear
diffusion, but rather averages the effect of the diffusion
derived from the magnetized dispersion relation over the
neoclassical orbit [5,24]. This destroys resonances asso-
ciated with the neoclassical orbit period, which are
assumed to be destroyed by nonlinearities anyway. In each
case, the long-term orbit is ignored in the calculation of the
dispersion, allowing in the neoclassical case cyclotron
damping for banana orbits, and in the LH alpha channeling
case Landau damping at resonance points on the gyro-orbit.
Note that, while the charge transport cancellation result

is general for any purely poloidal electrostatic wave, the
channeling path in Eq. (1) and diffusion coefficient in
Eq. (22) apply only to the case of gyroaveraged Landau
resonance [1,2,21,31], and not to channeling via cyclotron
resonances, as for the IBW [3,4,22,32–34].
Conclusion.—The alpha channeling interaction, which

releases the free energy of particles through diffusion in

coupled energy-space coordinates, can rigorously be trans-
formed to the classic bump-on-tail instability in velocity
space only. Applying the traditional mathematical appara-
tus then shows that, in an initial value problem, where
resonant ions are ejected as the electrostatic wave grows at
the expense of the ion energy, those same waves must pull
in a return current of nonresonant ions so as to draw no
current. This unexpected result is related to the cancellation
of resonant and nonresonant currents in the bump-on-tail
instability [8,20], except that these newly found currents
are perpendicular to the magnetic field, rather than parallel.
We also calculated for the first time the contribution to the
imaginary component of the dispersion relation due to
alpha channeling, a useful quantity for ray tracing
calculations.
We not only prove rigorously the current cancellation,

but we also determine the extent to which each species
contributes to this cancellation. For LH waves, the non-
resonant ions are pulled into the plasma core; thus, while no
rotation is driven, the fusion reaction is beneficially fueled
as ash is expelled. In a p-B11 reactor, we showed that
protons are drawn in at twice the rate of boron.
While the nonresonant particles have been ignored in

alpha channeling theory up to this point, our analysis shows
that they can have important zeroth-order effects on the
plasma dynamics. However, the specific problem we
considered here is only part of the story; in the most
useful scenarios, channeling is driven by a stationary wave
propagating radially inward from an antenna at the boun-
dary, requiring a fundamentally 2D analysis. While the 2D
problem is outside the scope of this Letter, the 1D self-
consistent theory of alpha channeling laid out here provides
a sound basis for examining the nonresonant response in
more general scenarios.
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