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ABSTRACT

In the classic Landau damping initial value problem, where a planar electrostatic wave transfers energy and momentum to resonant
electrons, a recoil reaction occurs in the nonresonant particles to ensure momentum conservation. To explain how net current can be driven
in spite of this conservation, the literature often appeals to mechanisms that transfer this nonresonant recoil momentum to ions, which carry
negligible current. However, this explanation does not allow the transport of net charge across magnetic field lines, precluding E!B rotation
drive. Here, we show that in steady state, this picture of current drive is incomplete. Using a simple Fresnel model of the plasma, we show
that for lower hybrid waves, the electromagnetic energy flux (Poynting vector) and momentum flux (Maxwell stress tensor) associated with
the evanescent vacuum wave become the Minkowski energy flux and momentum flux in the plasma and are ultimately transferred to
resonant particles. Thus, the torque delivered to the resonant particles is ultimately supplied by the electromagnetic torque from the antenna,
allowing the nonresonant recoil response to vanish and rotation to be driven. We present a warm fluid model that explains how this
momentum conservation works out locally, via a Reynolds stress that does not appear in the one-dimensional initial value problem. This
model is the simplest that can capture both the nonresonant recoil reaction in the initial-value problem, and the absence of a nonresonant
recoil in the steady-state boundary value problem, thus forbidding rotation drive in the former while allowing it in the latter.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0062034

I. INTRODUCTION
Consider an electrostatic wave propagating through an unmagne-

tized plasma. For certain particles in the plasma, the particle velocity
happens to match the phase velocity of the wave. These particles,
which see the same wave phase for an extended time, are said to be
“Landau resonant” and can exchange energy and momentum effi-
ciently with the wave. Whether the wave adds or subtracts energy to
each particle is essentially random, depending on the wave phase, and
so averaged over an ensemble of resonant particles the wave interac-
tion results in diffusion of the particles in momentum and energy.

To this simple system, add a background magnetic field along an
axis ẑ , chosen so that the frequency of particle gyration X around this
field is much lower that the wave frequency x. If we choose our wave-
vector k k ẑ , then the resonant particles are pushed along the mag-
netic field, resulting in a current. This setup is the basis for much of
the wave-based current drive used in tokamaks.1 Alternatively, if we
choose our wavevector k ? ẑ , then the gyrocenters of the resonant
particles, which are determined by the particle canonical momentum,
diffuse along the third direction k ! b̂. This gyrocenter diffusion is the
basis for alpha channeling.2,3 Incidentally, although it was long

thought that a nonlinear analysis was required to describe this latter
perpendicular diffusion,4,5 it has recently been shown that the diffu-
sion can be self-consistently treated within the simpler linear frame-
work of Landau resonance that we use in this paper.6

While we will focus here on alpha channeling via lower hybrid
waves,2,3,6–9 one can also make use of waves in the ion-cyclotron range
of frequencies10–21 and can further optimize the effect by combining
multiple waves.22–25 For any of these schemes, the basic idea is to setup
the gyrocenter diffusion path so that hot, fusion-born alpha particles
at the plasma center are cooled as they diffuse out of the plasma, thus
transferring their energy into the waves, which can then be used either
to drive current or heat fuel ions.

One of the most intriguing proposed applications of alpha
channeling is to drive rotation in axially magnetized plasmas.26,27 The
basic idea is to manipulate particles of a certain type to on average dif-
fuse from a source at the plasma center to a sink at the plasma edge, so
that the net charge of these particles is extracted from the plasma. This
creates a radial electric field in the plasma, which combines with the
axial magnetic field to drive rotation. Such rotation, if sheared,
can suppress turbulent transport28,29 and stabilize the plasma.30,31
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In addition, this alpha channeling paradigm alters the energy flow in
the plasma, as the waves can transfer energy from the alpha particles
directly into the plasma rotation. Interestingly, in certain regimes, the
viscous dissipation of this plasma rotation can disproportionately heat
the ions, allowing the plasma to achieve a natural hot-ion mode with-
out the use of direct ion heating.32

However, the success of these schemes, for both current and rota-
tion drive, depends on the response of the nonresonant particles.
Although each nonresonant particle interacts only very weakly with
the wave, there are many more nonresonant than resonant particles,
so the many weak responses can add up.

The importance of this nonresonant response is particularly nota-
ble in a classic plasma physics problem relevant to current drive: the
bump-on-tail instability.33–35 In this purely one-dimensional problem, a
high-frequency electrostatic wave interacts with electrons in an unmag-
netized plasma, and the kinetic distribution is setup in such a way that
energy is transferred from the resonant electrons into the waves, and the
waves grow. In the process, the resonant electrons lose momentum as
well. However, the electrostatic field of the wave contains no average
momentum, and so the momentum lost from the resonant particles
ends up in the nonresonant particles. For a wave that interacts only with
electrons, this means that no net current is driven after all.

Despite this theoretical result, experiments have long demonstrated
that currents are, in fact, driven by waves in tokamaks.36–41 Often, this is
attributed to some mechanism to put the nonresonant momentum into
the ions, which are much heavier than the electrons and thus contribute
negligibly to the current [Fig. 1(a)]. This offloading of nonresonant
momentum into the ions can be accomplished directly by an appropri-
ately chosen wave.42–44 Alternatively, because wave frequencies are typi-
cally chosen so as to drive resonant currents in the high-energy tail
electrons, the inverse energy dependence of the Coulomb cross section
causes bulk thermal electrons to transfer their momentum to ions much
more quickly than resonant electrons.35,45–47

If these explanations for how current drive works were correct,
then rotation drive via alpha channeling would be impossible. In a uni-
formly magnetized plasma with no electric field, the gyrocenter posi-
tion of a particle is intrinsically linked to its momentum. As a result, if
two particles exchange momentum, their gyrocenters will move in

such a way that no net charge moves [Fig. 1(b)]. This link between
charge transport and momentum conservation is why classical trans-
port48 is to the lowest order ambipolar.49–52 It is also responsible for
the cancellation53–55 of proposed radial currents56 in the study of
intrinsic rotation in tokamaks. Thus, if equal and opposite forces are
applied to the resonant and nonresonant particles, then regardless of
which species the nonresonant force is applied to, no net charge can
be transported: the resonant charge transport will simply be canceled
by a nonresonant charge transport, making rotation drive impossible.
Indeed, just such a cancelation was recently shown to exist for this
one-dimensional (1D) initial value problem in a magnetized plasma.6

Fortunately, as we will discuss in this paper, the above explana-
tion for current drive is incorrect. There is a fundamental difference
between how momentum conservation works in a multi-dimensional
boundary-value problem (BVP) compared to a one-dimensional ini-
tial-value problem (IVP). As a result, in many cases of interest, the
canceling current or charge transport that appears in the IVP is absent
in the BVP, allowing both current and rotation drive immediately.

The precise way in which the boundary value problem differs
from the initial value problem has been the focus of some conflicting
explanations. For instance, it has been recognized that, in the BVP, an
electrostatic wave is really only quasi-electrostatic, carrying a magnetic
field which allows energy flow into the plasma (see, e.g., Sec. 16.7 of
Stix35) It has also been recognized that the off diagonal component of
the generalized stress tensor in the presence of a wave plays a crucial
role in driving rotation. The relative importance of these two sources
has not been extensively explored.

Much of the previous work in the area of wave-driven rotation
has focused on low-frequency electrostatic turbulence.57–60 Often in
this work, key assumptions appropriate to low-frequency turbulence
were made, which make the analysis less suitable for our current and
rotation drive mechanisms. For instance, dissipation due to resonances
was often neglected or assumed to be in detailed balance, whereas
such dissipation provides the basis for current and charge transport in
our mechanisms. In addition, a key part of some theorems58 involved
replacing the radial velocity with the wave-induced E!B velocity, an
approximation valid only for low-frequency waves.

A second category of prior work in this area focused on hot,
kinetic, magnetized plasmas.61–65 However, these models focused
exclusively on the steady-state boundary-value problem, rather than
incorporating the initial value problem as well. In addition, the com-
plexity of the kinetic mathematics has a couple drawbacks. First, it
makes the theory tricky to generalize to more complex plasmas, such
as those with shear flow. Second, it obscures possible issues with the
calculation, such as a failure for some of the theories to agree with the
cold-fluid ponderomotive force in the appropriate limit, which have
taken years to emerge.66

A third area of prior work,67–69 focused on deficiencies of the
Kennel–Engelmann quasilinear theory70 in describing perpendicular
momentum effects in hot-plasma current drive problems, ignored the
nonresonant particles entirely. However, these papers exposed impor-
tant simplifying features of the resonant particle behavior, showing
how the resonant particle momentum absorption was consistent with
the absorption of Minkowski momentum from geometrical optics.71

In this paper, we aim to put forth the simplest possible model
that captures the behavior in both the initial and boundary value prob-
lem, and exposes the core differences that allow for momentum

FIG. 1. Consequence of the nonresonant recoil in current vs rotation drive: (a) for
current drive, the nonresonant recoil momentum can be put into the ions, which
contribute negligibly to the current, allowing for current drive despite the recoil; (b)
for cross field charge transport to drive E! B rotation, even if the nonresonant
recoil is put into ions, the gyrocenter shifts of ions and electrons will cancel, so that
no net charge moves across the field lines.
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injection in the boundary value problem but not the initial value prob-
lem. To this end, we begin in Sec. II with an overview of the different
types of energy and momentum commonly encountered in plasma
wave problems: the electromagnetic energy-momentum, the particle
energy-momentum, and the Minkowski energy-momentum. These
energy and momenta, which can be grouped into energy-momentum
tensors, form a couple different closed systems. We use these concepts
in Sec. III to review how in the 1D initial value problem, no net
momentum is transferred into the particles.

In Sec. IV, we introduce the overall framework for wave injection
we use throughout the paper. The subsequent two sections use this
framework to show how momentum conservation works out globally,
and locally in the area of wave damping, for lower hybrid current and
rotation drive.

In Sec. V, we adopt a simple Fresnel model for wave injection
into the plasma, that is broadly consistent with the theory72,73 of low-
frequency (x" Xe) wave launching into a plasma. In this model, an
evanescent wave in a homogeneous vacuum region converts into a
traveling slow wave in a bordering low-density plasma region. We
show that, in steady state, the flux of electromagnetic energy and non-
radial momentum through the evanescent vacuum region, as given by
the Poynting flux and Maxwell stress tensor, are identical to the flux of
the Minkowski energy and non-radial momentum in the plasma
region. This result stands in contrast to the initial value problem,
where the electromagnetic energy and momentum are, in general, dif-
ferent from the Minkowski energy and momentum.43 As a conse-
quence, we show that in the boundary-value problem, all the energy
and momentum that ends up in the resonant particles is ultimately
supplied by the fields near the waveguide, suggesting that the nonreso-
nant response vanishes. This fact establishes a global momentum
conservation.

In Sec. VI, we focus on the region of wave damping, after the
wave has mode-converted into an electrostatic wave. Here, we show
how the absence of the nonresonant response can be understood to be
consistent with momentum conservation, arising partially (as in earlier
works) from a wave-induced off diagonal component of the stress ten-
sor. We show that the minimal model required to understand the
behavior is the warm-fluid model, which is related to the fact that it
gives a wave with nonvanishing group velocity. Using the warm-fluid
model, we recover the behavior in both the initial value problem,
where no momentum is injected into the plasma, and in the
boundary-value problem, where momentum is injected exclusively
into the resonant particles. This result establishes the local momentum
conservation of the theory.

II. FORMS OF ENERGY AND MOMENTUM
Before we delve into the specific scenario we will study for wave-

driven rotation, we review the types of energy and momentum that
will be important throughout the paper.

Energy, momentum, and their associated fluxes are often
grouped together into a single object T known as an energy-
momentum tensor (EMT),

T ¼ W S=c
cp P

! "
: (1)

Here,W is the energy, p is the momentum, S is the energy flux, and P
is the momentum flux, also called the stress.

In a closed system in space, energy and momentum conservation
are expressed by the vanishing of 4-divergence of the energy-
momentum tensor, i.e.,

r!Tl! ¼ 0; (2)

wherer! is the covariant derivative,
74 and we use Einstein summation

notation. For flat spacetime and Cartesian coordinates, this becomes

1
c
@

@t
Tl0 þ @

@xi
Tli ¼ 0: (3)

Energy conservation corresponds to the l ¼ 0 portion of this equation
and momentum conservation to the l ¼ 1% 3 components.

Equation (3) applies to the stress tensor which encompasses all
forms of energy and momentum in the system. Often, it is useful to
separate out different subsystems. For instance, in a plasma, we can
separate out the electromagnetic and particle subsystems,

T ¼ TEM þ TP: (4)

Then, Eq. (3) applies to this sum. The components of the electromag-
netic subsystem EM are given by

WEM ¼
E2 þ B2

8p
(5)

SiEM ¼
c
4p
"ijkEjBk (6)

piEM ¼
Si

c2
(7)

Pij
EM ¼ %

1
4p

EiEj % 1
2
dijE2 þ BiBj % 1

2
dijB2

! "
; (8)

where E is the electric field and B is the magnetic field. Meanwhile, the
components of the particle subsystem P are given by75

Tl!
P ¼

ð
fpðt; x; pÞplp!

dp
p0

(9)

p0 ¼ UP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2c4 þ jpj2c2

q
; (10)

where here p is the relativistic four-momentum in units of energy
ðUP; pPÞ, so that p0 ¼ UP and pi ¼ mcvi=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1% v2=c2Þ

p
, and fp is the

distribution function in momentum space. In the sub-relativistic limit
v" c, the components of the tensor become

WP ¼
ð

mc2 þ 1
2
mv2

! "
f ðt; x; vÞdv (11)

SiP ¼
ð

mc2 þ 1
2
mv2

! "
vif ðt; x; vÞdv (12)

piP ¼
ð
mvif ðt; x; vÞdv (13)

Pij
P ¼

ð
mvivjf ðt; x; vÞdv: (14)

In addition to these familiar and physically intuitive forms of
energy and momentum, there is another energy-momentum tensor
we can form for waves in a plasma, known as the Minkowski energy-
momentum tensor.71 The components of the Minkowski EMT are
expressed in terms of the wave action I and group velocity vg ,
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WM ¼ xrI (15)

SiM ¼WMvig (16)

piM ¼ kirI (17)

Pij
M ¼ piMvjg : (18)

Consider a quasi-monochromatic electromagnetic wave with complex
amplitude ~E, such that the physical wave is given by

E ¼ Re ~Eeik(x%ixtð Þ: (19)

For such a wave, when the magnetic susceptibility l ¼ 1, the action is
given by71

I ¼ 1
16px2

~E
i) @

@xr
x2"H;ij
% &

~E
j
: (20)

Here, "H;ij is the Hermitian part of the dielectric tensor.35 The group
velocity is obtained from the part Dr of the dispersion function D that
is real when D is evaluated at real x; k:

vig ¼ %
@Dr=@kri
@Dr=@xr

: (21)

If the polarization is known, the dispersion function can be written in
terms of the polarization vector ~ec * ~E=j~Ej,71

D ¼ ~e)c ( ! ( ~ec %
c2

x2 k ! ~e)c
% &

( k ! ~ecð Þ
' (

: (22)

There are a couple limitations of the Minkowski EMT that must
be noted. First, the Minkowski EMT is only well-defined in areas
where the wavepacket is eikonal, i.e., jkij" jkr j and jxij" jxr j.
Thus, it is not well-defined in regions where the wave is evanescent.

Second, there is no relevant EMT that combines with the
Minkowski EMT in such a way that Eq. (3) is satisfied for the combi-
nation of systems. In other words, the Minkowski EMT does not form
a physically relevant subsystem of the closed plasma-wave system.

Nevertheless, the Minkowski energy-momentum tensor is
extremely useful for ray tracing calculations and calculating the evolu-
tion of wavepackets. Furthermore, since it incorporates the energy of
the oscillating particles, it provides an intuitive notion of “total” wave
energy.

In regions where geometrical optics applies and the wave remains
eikonal, the evolution of the Minkowski EMT follows from the conser-
vation of the wave action,71

@I
@t
þr ( vgI

% &
¼ %CI : (23)

C * 2D i

@D r=@xr
: (24)

The right-hand side of Eq. (23) represents dissipation on resonant par-
ticles. Thus, in areas where Dr is purely real—i.e., in areas without res-
onant particles interactions—the action is perfectly conserved and
advected at the group velocity.

This action conservation principle is useful even in wave prob-
lems where the eikonal approximation breaks down in a local region,
known as a caustic. Such caustics occur in the regions of wave reflec-
tion, tunneling, or mode conversion. In caustic regions, the wave

action on rays flowing into the caustic reappears on rays flowing out
of the caustic, and action is still conserved.76

Though the Minkowski EMT does not generally combine with
anything to form a closed subsystem of a total EMT, it can be shown
from Eq. (23) that in the special case when kr and xr are constant, all
energy and momentum that are lost from the Minkowski EMT TM

show up in the resonant particle EMT TR.
59,68 That is, if there are no

other forces on the resonant particles R, then

T ¼ TM þ TR; (25)

forms a closed system. Here, the components of the resonant particle
EMT TR are similar to the components of the total particle EMT TP ,
except the integrations are performed only over the resonant parts of
the particle distribution, i.e., over the region where k ( v + xr for a
Landau resonance. We will make use of this extremely useful property
throughout the paper.

For a propagating light wave in a vacuum, the electromagnetic
EMT and Minkowski EMT coincide.71 However, in general, the two
EMTs can be completely different, as we review in Sec. III.

III. 1D INITIAL VALUE PROBLEM EXAMPLE
As an example of the stark difference between the Minkowski

EMT and the electromagnetic EMT, and of the ways in which our var-
ious conservation laws are useful, consider the classic problem of
Landau damping of electron Langmuir waves in an unmagnetized
plasma.33–35 For this problem, the ions barely interact with the wave
and can be ignored. We proceed quickly, since similar discussions can
be found in Refs. 43, 44, and 71.

The unmagnetized, hot-plasma susceptibility tensor is:33,35

"ij ¼ dij 1%
x2

pe

k2

ð

L
dv

k ( @fe0=@v
k ( v % x

" #

; (26)

where dij is the Kronecker delta function, fe0 is the electron distribution
function in velocity space (normalized to one), xpe ¼ ð4pe2ne=meÞ1=2
is the electron plasma frequency, and e, me, and ne, are the electron
charge, mass, and average number density, respectively. The integral is
performed along the Landau contour, wrapping around singularities
as necessary to analytically continue the contour from xi , 1.

For this 1D problem, k is purely real, and we will take k k ŷ .
Then, the integral can be trivially integrated over vx and vz, and we can
reduce the integral to a 1D integral with fe0 replaced by
ge0 ¼

Ð
dvxdvzfe0. Then, taking the standard expansions jxi=xr j" 1

and jk ( v=xrj" 1, we find to the lowest order the Hermitian and
anti-Hermitian susceptibilities,

"H;ij ¼ dij 1%
x2

pe

x2

' (
(27)

"A;ij ¼ %dijip
x2

ps

k2
@ge0
@vy

****
xr=k

: (28)

Because we are examining an electrostatic wave, we have ~E k k.
Without loss of generality, we can take ~E 2 R (this merely sets the
wave phase), so that ~ec ¼ ŷ . Then, our wave action is given from
Eq. (20) by
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I ¼ j
~E
y
c j
2

8px
; (29)

and our dispersion function is given from Eq. (22) by

D ¼ 1%
x2

pe

x2 % ip
x2

pe

k2
@ge0
@vy

****
xr=k

; (30)

from which

x2
r ¼ x2

pe: (31)

C ¼ %p
x3

r

k2
@ge0
@vy

****
xr=k

: (32)

Because this problem is homogeneous and 1D, the action conser-
vation equation (23) takes the simple form,

@I
@t
¼ %CI : (33)

Thus, when @ge0=@vy < 0, the action will decay, consistent with
Landau damping. As long as the wave amplitude is small enough for
the quasilinear theory to be valid, the action will asymptotically
approach 0.

For this problem, we can easily calculate the components of both
the Minkowski and electromagnetic EMTs. Since this is an initial value
problem with no spatial variation, we ignore the flux terms S and P.
Our Minkowski energy and momentum are given by

WM ¼
j~Ey

c j
2

8p
pyM ¼

ky
xr

WM: (34)

Meanwhile, our electromagnetic energy and momentum are given by

WEM ¼
j~Ey

c j
2

16p
pyEM ¼ 0: (35)

Thus, the Minkowski energy of the wave is double the electromagnetic
energy of the wave, and the wave has Minkowski momentum, but no
electromagnetic momentum.

To see how this plays out physically as the wave damps, we can
make use of our closed systems and conservation relation in Eq. (3).
From the closed EMT in Eq. (25), we find

DWRP ¼WM0 DpyRP ¼ pyM0; (36)

while from the closed EMT in Eq. (4), we find

DWP ¼WEM0 DpyP ¼ pyEM0; (37)

where the D indicates the change in the quantity once the wave has
completely damped, and the subscript 0 represents the initial value.
Together, these imply a relation for the nonresonant particles NP,

DWNP ¼ DðWP %WRPÞ ¼ %DWRP=2 (38)

DpyNP ¼ DðpyP % pyRPÞ ¼ %DpyRP: (39)

Thus, as the wave damps, all the Minkowski energy and momentum
in the wave end up as physical energy and momentum in the resonant
particles. To be consistent with overall energy and momentum conser-
vation of the electromagnetic-particle closed system, the nonresonant
particle must lose energy and gain momentum equal and opposite to

the resonant particle momentum. The nonresonant momentum shift
thus cancels out the current driven in the resonant particles.

The loss of energy from the nonresonant particles can be under-
stood as the loss of “sloshing” motion associated with the wave, rather
than some sort of thermal cooling. The resulting “negative diffusion”
in energy space, which also arises in more detailed quasilinear calcula-
tions, was a source of consternation in the plasma waves community
for some time, until it was shown to be consistent with energy and
momentum conservation in this way.77

This simple example of Landau damping of a uniform plane elec-
tron Langmuir wave in a homogeneous unmagnetized plasma demon-
strates both the power and limitations of the Minkowski energy-
momentum, and the dangers of considering only the resonant particles
when evaluating effects, such as current drive and momentum damp-
ing. Understanding the relationships between the various forms of
momentum and the behavior of the nonresonant particles is thus key
to understanding rotation and current drive.

IV. A SIMPLE MODEL OF WAVE INJECTION
We now turn our attention to the boundary value problem. We

design our overall model to make maximal use of the conservation
properties of our system, while avoiding calculational complexity
wherever possible.

The coordinate system and model of wave injection we use
throughout the paper are shown in Fig. 2. We work in a slab geometry,
with all gradients along the “radial coordinate” x and a magnetic field
along the “axial” or “toroidal” coordinate z, with y taking the place of
the “poloidal” coordinate.

Our simple model is motivated by the coupling of waveguides for
lower hybrid current drive.72,73 For such waves, an evanescent wave in
a vacuum region converts into a plasma slow wave (also known as the
extraordinary wave or X-mode) as the plasma density ramps up past
the point where jxpej > jxj. To avoid the calculational complexity
associated with the slowly ramping density, which often necessitates
numerical full-wave calculations, we instead consider a Fresnel-type
model, where an evanescent wave in a homogeneous vacuum region
converts into a propagating slow wave at a sharp boundary to a dilute
plasma region. This reduces the coupling calculation to a boundary-
matching condition, dramatically simplifying the mathematics.

In the physics of lower hybrid coupling, assuming we have cho-
sen a wave with k2zc

2=x2 > 1þ x2
pe=X

2
ce, as the plasma density ramps

up, the wave continues to propagate until it hits the lower hybrid reso-
nance layer, where jxj ¼ jxLH j ¼ ðx%2pi þ jXeXij%1Þ%1=2, with Xs

¼ qsB0=msc the cyclotron frequency. At this point, the wave mode-
converts into an outward-propagating lower hybrid wave.72,78 We
incorporate this process in our model by having a region of gradually
ramping density, where we will make use of the action conservation
both in the region where geometric optics applies and in balancing
action going into and out of the mode conversion layer.

It is this mode-converted lower hybrid wave that interacts with
the resonant particles strongly. In order to simplify our analysis of the
resonant particles, we will assume that resonant particles only exist in
a uniform region in the middle the density ramping region. This will
allow us to use our closed system from Eq. (25) easily, though it is not
actually essential to our final result. We assume that there are enough
resonant particles to completely deplete the energy in the wave, so that
no wave energy propagates back out of the plasma after entering.
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What we will show in Sec. V, is that for this system in steady
state, the x-directed fluxes of electromagnetic energy SxEM and y and z
momentum Pyx

EM and Pzx
EM for the evanescent wave in the vacuum

region, are equal to the x-directed fluxes of Minkowski energy SxM and
y and zmomentum Pyx

M and Pzx
M for the propagating slow wave in the

dilute plasma region. Via action conservation, these are the same
energy and momentum that eventually end up in the resonant par-
ticles. In other words, the energy and momentum that are transferred
to the resonant particles is supplied by electromagnetic energy and
momentum through the waveguide–plasma gap.

The correspondence between the electromagnetic momentum
and the momentum that ends up in the resonant particles strongly
suggests that the nonresonant momentum should disappear in the
purely boundary-value problem. However, there is still a possibility
that the wave would induce rearrangement of momentum within the
plasma, perhaps locally canceling the resonant momentum but trans-
ferring an equivalent amount of momentum elsewhere. Thus, in
Sec. VI, we will explicitly calculate the momentum balance within the
resonant damping region using a warm fluid theory for the particles
and show how the absence of a nonresonant response is consistent
with momentum conservation. This warm fluid theory is capable of
explaining both the initial value problem and the boundary value
problem, demystifying questions of momentum conservation in cur-
rent and rotation drive.

V. VACUUM ELECTROMAGNETIC ENERGY AND
MOMENTUM FLUX END UP IN RESONANT PARTICLES
A. Vacuum: Energy and momentum flux relation

Our problem has two symmetry directions: ŷ and ẑ . In this sec-
tion, we will show that for any electromagnetic wave in a vacuum,
either propagating or evanescent along the non-symmetry direction x̂ ,
the fluxes of electromagnetic energy and momentum are related by

Pyx
EM ¼

ky
x
Sx Pzx

EM ¼
kz
x
Sx: (40)

Since this is the same relation as exists between the Minkowski energy
flux SxM and momentum flux Pix

M , this will mean that we only have to
demonstrate the equivalence of the vacuum electromagnetic energy
flux and Minkowski energy flux to show the equivalence of the
symmetry-direction momentum fluxes as well.

We will begin by rotating our coordinate system about the x axis
to a new set of coordinates (x, u, v), so that the wavevector lies in the
x-u plane. Explicitly, we take û k kyŷ þ kzẑ and v̂ ¼ x̂ ! û. Then,
defining the refractive index n ¼ kc=x, the dispersion relation is given
from Fourier transforming Maxwell’s equations as

1% n2u nxnu 0

nxnu 1% n2x 0

0 0 1% n2x % n2u

0

B@

1

CA
~E
x

~E
u

~E
v

0

BB@

1

CCA ¼ 0: (41)

Taking the determinant of the left matrix leads to the single dispersion
relation for electromagnetic waves in a vacuum,

D ¼ 1% n2x % n2u ¼ 0: (42)

Any such waves will be a linear combination of two possible polariza-
tions: the p polarization, given by

~Ec;p ¼ nuE0x̂ % nxE0û; (43)

and the s polarization, given by

~Ec;s ¼ E0v̂; (44)

where E0 is an arbitrary complex constant. Note that no assumption
has been made as to whether the components of n are real or complex.
From Faraday’s Law, ~Bc ¼ n! ~E, so the magnetic field components
corresponding to the p and s polarizations are

~Bc;p ¼ %ðn2x þ n2uÞE0v̂ ¼ E0v̂ (45)

~Bc;s ¼ nuE0x̂ % nxE0û: (46)

FIG. 2. Coordinate system and wave injection model used throughout the paper. The coordinates x, y, and z correspond to radial, azimuthal, and axial/toroidal directions,
respectively. Darker color represents higher density. A vacuum evanescent wave (black), consisting of a forward-decaying “incident” wave (dotted gray) and backward-
decaying “reflected” wave (dashed gray), converts to a “transmitted” slow wave at the plasma/vacuum interface. This slow wave then continues to propagate inward as the
plasma density increases until it hits the lower hybrid resonance, where it mode converts into an electrostatic lower hybrid wave (blue). Wave action is conserved during the in-
plasma propagation and mode conversion. This wave then propagates back to a uniform region containing resonant particles, where it damps.
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As we calculate the relation between the energy and momentum
fluxes, we will focus only on the p polarization. The reason that we are
able to do this is that we can easily show that the same relations hold if
the wave is in s polarization. To see this, note that the above relations
imply that

~Ec;s ¼ %~Bc;p ~Bc;s ¼ ~Ec;p: (47)

These in turn imply that

Es ¼ %Bp Bs ¼ Ep: (48)

Thus,

SEM;s ¼
Es ! Bs

4p
¼
ð%BpÞ ! Ep

4p
¼

Ep ! Bp

4p
(49)

¼ SEM;p (50)

PEM;s ¼ %
1
4p

EsEs %
1
2
E2
s Iþ BsBs %

1
2
B2
s I

! "
(51)

¼ % 1
4p

BpBp %
1
2
B2
pIþ EpEp %

1
2
E2
pI

! "
(52)

¼ PEM;p; (53)

and it is sufficient to prove the relation only for the p polarization.
From here, the proof is very short. In general, there will be an

“incident” wave I, with ImðnxIÞ > 0, and a “reflected” wave R, with
ImðnxRÞ < 0 (we use this terminology because it is familiar from
Fresnel calculations in introductory electromagnetism79,80) It is impor-
tant to consider both these fields together, rather than independently,
because it will turn out to be the interplay between the incident and
reflected wave fields that allow power to flow through the vacuum.
The refractive indices of the incident and reflected waves satisfy
nxR ¼ %nxI and nuR ¼ nuI * nu. Furthermore, as u is a symmetry
direction, nu is purely real. From these two relations, Eq. (19), and the
definitions of ~Ec;p and ~Bc;p, it follows that

Ex
p ¼ Re %nuI ! E0I eikI (x%ixt % nuR ! E0I eikR(x%ixt

% &+ ,
(54)

¼ %nuBv
p: (55)

We can now calculate the components of the stress tensor in the (x, u,
v) coordinate system. Recalling that nu ¼ kuc=x, we have

Pux
EM ¼ %

1
4p
hEuExi ¼ ku

x
c
4p
hEuBvi ¼ ku

x
SxEM (56)

Pvx
EM ¼ 0: (57)

Rotating our coordinate system to (x, y, z) recovers the relation in
Eq. (40).

With this proof in hand, we now only need to show the equiva-
lence of SxEM in the vacuum to SxM in the plasma. Once this is estab-
lished, the equivalence of Pix

EM and Pix
M for i 2 fy; zg follows

automatically from Eqs. (16)–(18) and (40).

B. Fresnel equations for vacuum-plasma transition
Showing the equivalence of the electromagnetic and Minkowski

energy fluxes requires relating the electric fields in the vacuum and in
the plasma using boundary matching conditions at the interface,
which we now turn to.

We are interested in calculating wave propagation through the
vacuum, which we denote region 1, and the dilute boundary region of
the plasma, which we denote region 2 (Fig. 2). In these regions, a cold
plasma model is sufficient. For the slow waves that eventually become
lower hybrid waves, we have jxj" jXej, and we choose the plasma
density at the edge such that jxj! jxpej. For such a wave, the S-P-D
susceptibility tensor of Stix35 becomes

! ¼
1 0 0

0 1 0

0 0 P

0

B@

1

CA P * 1%
x2

pe

x2 : (58)

Note that in the vacuum, this susceptibility tensor still works; we sim-
ply have P1 ¼ 1.

From this susceptibility tensor, the dispersion relation is given
from

ðninj % n2dij þ "ijÞEj ¼ 0: (59)

Taking the determinant gives two dispersion branches. The slow wave
branch that we are interested in is

n2x þ n2y þ Pn2z ¼ P: (60)

Plugging this back to the dispersion relation matrix equation in gives
the polarization,

~E
x
c ¼

nx
n?

E0; ~E
y
c ¼

ny
n?

E0; ~E
z
c ¼ %

1
P
n?
nz

E0; (61)

where n? ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2x þ n2y

q
, and we take the root that is either positive or

positive imaginary. This polarization applies to both the wave in the
vacuum, where P1 ¼ 1, and in the plasma, where P2 < 0.

The dispersion relation can be put in the form

n2? ¼ Pð1% n2zÞ: (62)

Thus, in order for the plasma wave to propagate (n2? > 0) in the
plasma, where P2 < 0, we must have n2z > 1. Furthermore, because y
and z are symmetry directions, ny and nz stay constant throughout the
problem. Thus, we must have n2? < 0 in the vacuum, implying that nx
is imaginary, and the wave is evanescent. This switching of the wave
from evanescent to propagating at the boundary reflects the crossing
of the P¼ 0 cutoff at the boundary.35

For the evanescent wave in the vacuum, we can decompose the
electric field into an “incident” wave with ImðnxIÞ > 0, and a
“reflected” wave with nxR ¼ %nxI . Thus, the complex amplitudes of
the vacuum wave components take the form

~EI ¼
nxI
n? I

E0I x̂ þ
ny
n? I

E0I ŷ %
n? I
P1nz

E0I ẑ (63)

~ER ¼ %
nxR
n? I

E0Rx̂ þ
ny
n? I

E0Rŷ %
n? I
P1nz

E0Rẑ : (64)

In the plasma region, there will be a single propagating “transmitted”
wave, with nT > 0, with complex wave component amplitudes,

~ET ¼
nxT
n? T

E0T x̂ þ
ny
n? T

E0T ŷ %
n? T
P2nz

E0T ẑ : (65)

As before, the magnetic field amplitude is given from the electric field
amplitude in each case by ~B ¼ n! ~E.
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For a boundary in the y-z plane at x¼ 0, the boundary matching
conditions for materials with magnetic permeability l ¼ 1 are79,80

"1;xj~E
j
1 ¼ "2;xj~E

j
2 (66)

~E
i
1 ¼ ~E

i
2 i 2 fy; zg (67)

~B
i
1 ¼ ~B

i
2 i 2 fx; y; zg: (68)

Plugging our waveforms into these equations, Eq. (67) and the x com-
ponent of Eq. (68) yield

E0I þ E0R ¼ aE0T ; a * n? I
n? T

; (69)

while Eq. (66) and the y component of Eq. (68) yield

E0I % E0R ¼ bE0T ; b * nxT
nxI

n? I
n? T

: (70)

The z component of Eq. (68) is trivially satisfied, since ~B
z ¼ 0. Note

that a is a pure imaginary number, while b is a pure real number. The
solution to these coupled equations is

E0R ¼
a% b
aþ b

E0I (71)

E0T ¼
2

a% b
E0I : (72)

These equations take the exact same form as that for p-polarized light
for an isotropic dielectric in introductory electromagnetism,79 except
for the redefinition of a and b.

C. Electromagnetic energy flux in the vacuum
We are now in a position to calculate the electromagnetic energy

flux in the vacuum. Since ~B
z ¼ 0, we have

SxEM ¼ %
c
4p
hEzByi: (73)

The relevant fields are given by

Ez ¼ Re % n? I
nz
ðE0IeikxI x þ E0Re%ikxIxÞeikyyþikzz%ixt

' (
(74)

By ¼ Re
nxI

nzn? I
ðE0IeikxI x % E0Re%ikxI xÞeikyyþikzz%ixt

' (
: (75)

The average of two quantities A and B oscillating at the same fre-
quency is given by hABi ¼ ReðA)BÞ=2. Thus

SxEM ¼
c
8p

Re
n? I
nz
ðE0IeikxI x þ E0Re%ikxIxÞ

' ()(

! nxI
nzn? I

ðE0I eikxIx % E0Re%ikxI xÞ
' ()

(76)

¼ c
8p

Re
nxIn)? I
n2zn? I

-

! ðE0IE)0I e
%2ImðkxÞx % E0RE)0Re

2ImðkxÞxÞ
h

þð%E)0IE0Re
%2iReðkxÞx þ E0IE)0Re

2iReðkxÞxÞ
i.
: (77)

Here, we have separated out the terms in parentheses; the first paren-
theses contain a purely real quantity, and the second parentheses con-
tain a purely imaginary quantity. For a propagating wave in vacuum
(as is considered in boundary value problems in introductory electro-
magnetism), nxI is real, and it is the first set of parentheses that matter;
we can recognize these as the energy fluxes associated with the inci-
dent and reflected waves, respectively. However, when nxI is imagi-
nary, as for our vacuum evanescent wave, it is the cross-amplitudes in
the second set of parentheses that determine the energy flux. Thus,
using the fact that nxI and n? I are pure imaginary, we have

SxEM ¼ %
c

4pn2z
ImðnxIÞIm E)0IE0R

% &
: (78)

Now, we make use of Eq. (71), and the fact that a is imaginary
and b is real. We have

Im E)0IE0R
% &

¼ Im E)0IE0I
a% b
aþ b

! "
(79)

¼ Im að Þ
2b

b2 % a2
E)0IE0I : (80)

Plugging this back in, using the definitions of a and b and the fact that
n2? T=n

2
? I ¼ P2 yields

SxEM ¼
c

2pn2z

nxT
P

E)0IE0I
b2 % a2

: (81)

D. Minkowski energy flux in the plasma
The Minkowski energy flux in the plasma is given from Eq. (16)

by

SxM ¼ xIvxg : (82)

The group velocity is given by vxg ¼ %ð@D=@kxÞ=ð@D=@xÞ, with

D ¼ n2x þ n2y þ 1%
x2

pe

x2

! "
n2z % 1
% &

; (83)

which yields

vxg ¼ PcnxT P2n2z þ n2? T
% &%1

: (84)

From Eq. (20), we have

I ¼ 1
16px2

~E
i)
T

@

@xr
x2

1 0 0
0 1 0

0 0 1%
x2

pe

x2

0

BB@

1

CCA

0

BB@

1

CCA~E
j
: (85)

¼ 1
8px

~E
i)
T

~E
j
T : (86)

Plugging in our definition for ~ET in Eq. (65), and recalling that nxT is
real, we find

I ¼ 1
8px

P2n2z þ n2? T
n2zP2

~E
)
0T

~E0T : (87)

We can evaluate E)cTEcT using Eq. (72). Recalling that a is imagi-
nary and b real, this gives
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E)0TE0T ¼
4

b2 % a2
E)0IE0I : (88)

Putting this all together, we find

SxM ¼
c

2pn2z

nxT
P

E)0IE0I
b2 % a2

; (89)

so that SxM ¼ SxEM .

E. Energy-momentum flow to resonant particles
From Eq. (23), we have

@

@x
vigI
/ 0

¼ %CI : (90)

Thus, as the wave travels from the dilute plasma region to the mode
conversion layer, the quantity vigI remains constant. At the mode con-
version layer, the action flux magnitude is conserved, but the direction
flips sign. Then, vigI is constant again until the edge of the uniform
region with the resonant particles. Because x, ky, and kz are constant
throughout, this means in turn that the final quantities (upon entering
the uniform region) SxMf ; Pyx

Mf , and Pzx
Mf are equal in magnitude and

opposite to their initial signs at the interface with the vacuum.
In the uniform region with resonant particles, the action starts to

spatially decay, and eventually disappears. However, we know that
over this region, the conservation equation (25) holds. We can calcu-
late the energy transfer rate to resonant particles by taking the flux
terms SRP and PRP in the resonant particle EMT to be 0. Then, Eq.
(25) becomes

@

@t

WRP

pyRP
pzRP

0

B@

1

CA ¼ %
@

@x

SxMf

Pyx
Mf

Pzx
Mf

0

BB@

1

CCA: (91)

Now, we integrate over the uniform region volume, assuming that the
damping is strong enough that the wave has completely damped out
by the low-x edge of the uniform region. Thus, integrating over an
area A in the y-z plane, and using our derived relations between the
Minkowski and electromagnetic momentum, we find

@

@t

URP

Py
RP

Pz
RP

0

B@

1

CA ¼ A

SxEM
Pyx

EM

Pzx
EM

0

B@

1

CA; (92)

where URP and PRP are the volume-integrated resonant particle ener-
gies and momenta, respectively. Thus, we see that in the boundary-
value problem, the energy and momentum that end up in the resonant
particles are ultimately supplied by the electromagnetic field.

Now, it is still possible that in spite of this, there is a response of
nonresonant particles in the plasma to the wave. However, because the
electromagnetic momentum and energy that enters the plasma is all
accounted for in the resonant particles, such a response could only
lead to a rearrangement of energy and momentum within the wave
region. Thus, the net force (or net torque in a cylindrically symmetric
system) on the plasma all results from flow of electromagnetic
momentum through the vacuum bordering the plasma and is consis-
tent with the total force/torque on the resonant particles.

While it is important to know the net force on the plasma vol-
ume, it is also often important to know the local force, and thus to see
if a momentum rearrangement within the plasma due to a nonreso-
nant response does in fact take place. In Sec. VI, we will show that no
such momentum rearrangement takes place, at least within the uni-
form region. Thus, the local force on the resonant particles will be
shown to constitute the total local force on the plasma.

VI. WARM-FLUID MODEL OF THE ELECTROSTATIC
WAVE

We will now shift our focus to the uniform regime in Fig. 2 and
the mode-converted electrostatic wave that damps on the resonant
particles there. We will employ a warm-fluid model to describe the
bulk plasma response. Of course, the resonant particles cannot be
described by this fluid model; thus, we will assume that the resonant
particle damping is calculated already and appears as a “given” imagi-
nary portion of the dispersion relation. In light of Eq. (25), this infor-
mation immediately tells us the energy and momentum transfer to the
resonant particles. Our focus in this section will be the momentum
transferred to the nonresonant particles at the same time.

Our goal is to show that the momentum conservation principle
from the closed system in Eq. (4) is ultimately consistent with the
absence of a nonresonant force along the symmetry directions in
steady-state lower hybrid current and rotation drive. Crucially, we
want to accomplish this in a theory that also captures the momentum
cancelation result for the initial value problem. We will thus proceed
fairly slowly, calculating each component of the tensor from the first
principles presented, and showing that the familiar fluid equations
respect this momentum conservation. We will then perform a quasi-
linear analysis of these equations to show how the nonresonant force
vanishes, leaving only the resonant force.

Our analysis here is similar in spirit to that in Refs. 58, 81, and
82. However, in contrast to the former, our analysis will incorporate
wave dissipation and the transfer of energy and momentum to the res-
onant particles, and will not assume an E! B radial fluid velocity. In
contrast to the latter, our warm fluid analysis gives a finite group veloc-
ity, which allows us to relate the spatial action gradients to the magni-
tude of the damping. This in turn enables a comparison of the
resonant forces, which depend on the damping, to the nonresonant
forces, which depend on the gradients. The vanishing of the nonreso-
nant response in the boundary-value problem thus requires evaluating
the problem to this order.

A. Preliminaries: Electrostatic wave dispersion
For any electrostatic wave, our starting point is the Poisson

equation,

%r2/ ¼ 4p
X

s

qsns: (93)

Generally, we assume quasineutrality, wherein the 0th-order charge
densities of the various species cancel. Thus, the charge density is
determined by the first-order densities n1,

%r2/1 ¼ 4p
X

s

qsns1: (94)

Fourier transforming in x and t, we find
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k2~/ ¼ 4p
X

s

qs~ns: (95)

This gives us the dispersion function,

D * 1þ
X

s

D s (96)

D s * %
4pqs
k2

~ns

~/
: (97)

To get Ds, we will, in general, have to solve the fluid or Vlasov equa-
tions; however, for deriving the general form of the force on the
plasma in terms of the dispersion relation, the above form is sufficient.

It will be useful to separate the dispersion function into compo-
nents that are real (Dr) and imaginary (Di) when evaluated at real x
and k. We define xi * ImðxÞ; j * ImðkÞ. In the eikonal limit
jxi=xr j" 1; jji=kij" 1, our dispersion relation becomes

0 ¼ D r (98)

¼ 1þ
X

s

D rs (99)

0 ¼ xi
@

@xr
þ j ( @

@k

! "
D r þ D i (100)

¼
X

s

xi
@

@xr
þ j ( @

@k

! "
D rs þ D is

' (
; (101)

where Drs and Dis are the real and imaginary parts of Ds evaluated at
real x and k. Because I -j/j2, we have @I=@t ¼ 2xiI and
@I=@xi ¼ %2jiI , and Eq. (100) can be seen to be equivalent to Eqs.
(23) and (24).

We note that since k and x now have imaginary components,
there can be some confusion in the definition of the tilde quantities
from Eq. (19). We will choose the convention that includes the imagi-
nary parts,

/ ¼ Re ~/eikr (x%ixr te%j(xþxi t
% &

: (102)

Thus, the local amplitude /a of the wave will be given by

j/aj ¼ j~/je%j(xþxi t ; (103)

where ~/ is constant in space and time. Then, the electromagnetic
energy density is given by

WEM ¼
k2r j/aj

2

16p
/ e%2j(xþ2xi t: (104)

This convention makes taking derivatives straightforward, but can be
a little confusing.

B. Wave action and resonant particle force
We will start by calculating the wave action and resonant par-

ticle force in the electrostatic theory. This will allow us to clearly
disambiguate resonant and nonresonant forces later in the
problem.

The wave action is given from Eq. (20) by

I ¼ 1
16px2

~E
i) @

@xr
x2"H;ij
% &

~E
j
e%2j(xþ2xi t : (105)

To calculate this for electrostatic waves, we will have to relate
the species susceptibility vijH to the dispersion function D rs.
Using the Fourier-transformed charge continuity equation,
and the definition35 of the susceptibility ~ji ¼ %ixvH;ij~E

j
=4p, we

have

k2Drs
~/ ¼ 4p~q s ¼ %4p

km~jm
x
¼ kmvH;mnk

n~/: (106)

Using this in our action equation, we find

I ¼WEM

X

s

@D rs

@x
¼WEM

@Dr

@x
: (107)

Consider the conserved Minkowski-resonant particle system,
specifically, the i 2 ðy; zÞ components of Eq. (3), for T in Eq. (25).
Using Eqs. (21), (107), and (100), we find the simple result,

@piRP
@t
¼ % @pM

@t
% @

@xj
Pij

M (108)

¼ %ki @I
@t
þ @

@xj
vjgI
/ 0! "

(109)

¼ %2ki xi þ jj
@D r=@kj

@D r=@x

 !

WEM
@Dr

@x

! "
(110)

¼ 2WEMkiD i: (111)

It is then clear that the species-specific resonant force is

@piRP;s
@t
¼ 2WEMkiD is: (112)

C. EMT-consistent force from oscillating electric field
With the force on the resonant particles established, we now turn

to the momentum-conservation-consistent total force on the particle
distribution. The total electromagnetic force on the plasma is given
from the closed system equation (4) as

@piP
@t
þ @

@xj
Pij

P ¼ %
@piEM
@t
% @

@xj
Pij

EM : (113)

Now, an electrostatic wave does technically have a small magnetic field
associated with it, and thus nonvanishing momentum piEM . This can
be seen by Lorentz boosting the truly electrostatic solution in the frame
traveling at the wave phase velocity to the observer frame. However,
for a wave traveling at phase velocity vp ¼ jxr=kr j" c, this magnetic
field is Oðvp=cÞ smaller than the electric field, and thus the momen-
tum from Eq. (7) is Oðv2p=c2Þ smaller than the stress terms and can be
ignored. Thus, the total force from the wave on the plasma, which we
denote FEM , can be written

Fi
EM ¼ %

@

@xj
Pij

EM : (114)

We are ultimately interested in the average effect of the wave on
the plasma, rather than the oscillations themselves. This requires cal-
culating the average value of the electromagnetic stress tensor over one
of the symmetry directions y or z. To the lowest order in jj=kj, we
have
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hPij
EMiy ¼ %

1
4p

EiEj % 1
2
dijE2

1 2

y
; (115)

¼ % e%2j(xþ2xi t

8p
Re ~E

i)~E
j % 1

2
dij~E

m)~Em

' (
; (116)

¼ %2WEM

k2r
kirk

j
r %

1
2
dijk2r

! "
; (117)

where we used ~E
i ¼ %iki~/ and Eq. (104). Taking the derivative to

obtain the force thus yields [using the scaling in Eq. (104)]

hFi
EMi ¼ %4

WEM

k2r
jj kirk

j
r %

1
2
dijk2r

! "
: (118)

Of course, we are often interested in calculating the specific force
FEM;s the plasma exerts on each species s in the plasma. To do this, we
need to calculate the average correlation between the density of s and
the electric field,

hFi
EM;si ¼ hE

iqsnsi (119)

¼ 1
2
Re ~E

i)
qs~ns

h i
(120)

¼ 2
WEM

k2r
Im ki)k2D s

+ ,
; (121)

where we have used Eqs. (97) and (104). Now, keeping only to the
lowest order in j, we can Taylor expand around real x; k as in Eq.
(101) to find

hFi
EM;si + 2WEMkir D is þ jk @

@kk þ xi
@

@xr

! "
Drs

' (

þ 4
WEM

k2r
jj kirk

j
r %

1
2
k2rd

ij

! "
Drs: (122)

Here, the term with Dis is the resonant force, and all other terms are
the nonresonant force. If we sum this over all species and make use of
Eqs. (99) and (101), we find hFEMi ¼

P
shFEM;si, showing that this

electric force is (as expected) consistent with the momentum conserva-
tion law.

Equation (122) also shows why a warm fluid model is, in general,
necessary to demonstrate that vanishing of the nonresonant pondero-
motive force to the order of the resonant force. Consider a wave inter-
acting with only a single species. In steady state, from Eq. (101), we see
that for this wave,

D is ¼ %jk @Drs

@kk : (123)

Thus, the nonresonant force contribution from Dis is of the same order
as the nonresonant force term involving @D rs=@kj, which is usually 0 in
the cold fluid model. Thus, the warm fluid model is actually the simplest
model which can calculate the nonresonant force to the correct order.

D. Fluid equations from particle EMT
In order to calculate the total force on a plasma fluid element, we

plug a fluid ansatz into the EMT components for the particle distribu-
tion in Eqs. (11)–(14). The ansatz we use is typically a position-
dependent Maxwellian,

fsðx; vÞ ¼
nðxÞ

ð2pTsðxÞ=msÞ3=2
e%msðv%usðxÞÞ2=2TsðxÞ; (124)

though this shape is not essential so much as the fact that the distribu-
tion is primarily located in a region with v" vp.

Plugging this ansatz into Eqs. (11) and (12), we find to the lowest
order inmc2 that for species s,

WPs ¼ msc2ns (125)

SPs ¼ msc2nsuis: (126)

The EMT conservation equation (3) for component i¼ 0 thus gives a
mass-weighted sum over the familiar fluid continuity equations for
each species,

X

s

ms
@ns
@t
þ @

@xj
ðnsujsÞ

' (
¼ 0: (127)

Of course, we take each species’ continuity equation to be individually
satisfied.

We also have

pPs ¼ msnsuis; (128)

Pij
Ps ¼ msnsuisu

j
s þ Psd

ij; (129)

with Ps ¼ nsTs, so that the EMT conservation equation (3) for compo-
nents i¼ 1–3 gives the sum over the momentum equations,

X

s

@

@t
ðmsnsuisÞ þ

@

@xj
ðnsuisu

j
sÞ þ

@Ps
@xi

' (
¼ % @

@xj
Pij

EM : (130)

Because the separate species only interact through the influence of the
electric field, and because the electric forces sum to the electromagnetic
stress tensor, this equation is simply the sum of the individual momen-
tum equations,

@

@t
ðmsnsuiÞ þ

@

@xj
ðnsuiujÞ þ

@Ps
@xi
¼ Fi

EM;s: (131)

Often, this is combined with the continuity equation to obtain

msns
@

@t
þ ujs

@

@xj

! "
uis þ

@Ps
@xi
¼ Fi

EM;s: (132)

Thus, the standard fluid momentum equation is consistent with
our momentum conservation law, as expressed in the closed system
in Eq. (4).

We close this system of equations with an adiabatic expression
for the pressure evolution,

@

@t
þ uj

@

@xj

! "
Ps
ncs
s

! "
¼ 0; (133)

where cs is the adiabatic index for species s.

E. Linearizing the fluid equations
To study waves, we must linearize these equations. To clean the

notation, we will suppress the subscripts s in this section. Now when
we linearize, we take the standard approach of decomposing into an
average contribution n0, u0, and P0, and a smaller oscillating portion
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n1, u1, and P1. For simplicity, we take u0 ¼ 0, corresponding to the
application of torque to a non-rotating plasma; however, the results
can be easily generalized, if desired.

To the first order, from Eqs. (127), (132), and (133), we get the
familiar warm fluid equations,35

@n1
@t
¼ %n0

@uj1
@xj

(134)

mn0
@ui1
@t
¼ % @P1

@xi
þ qn Ei þ 1

c
"ijku1jB0k

! "
(135)

@P1
@t
¼ cT0

@n1
@t

; (136)

where T0 ¼ P0=n0.
At the second order, we obtain our quasilinear theory. We will

use the original form [Eq. (131)] of the momentum equation here,
obtaining the average force on the plasma, which we define as the time
change in the average momentum,

Ffluid *
@hpiPi
@t
¼ % @

@xj
Pij

Rey þ hFEM;si: (137)

Here, the average momentum in the plasma is given by

hpiPi ¼ mn0ui0 þmhn1ui1i; (138)

and we have identified the Reynolds stress,

Pij
Rey ¼ mn0hui1u

j
1i ¼

1
2
mn0Re ~ui

1~u
j
1

h i
e%2j(xþ2xi t : (139)

We will show that for the lower hybrid wave in steady state, this
Reynolds stress cancels with the electromagnetic force FEM;s in just
such a way as to leave only the force on the resonant particles. Note
crucially that the factor of @=@xi out front of the stress term implies a
factor of the decay rate ji; thus, in order to calculate the force to the
same order as the electromagnetic EMT, i.e., the first order in ji, we
need only calculate the tensor in brackets to 0th order in jjj=jkj.

F. Lower hybrid wave solution
Equations (94) and (134)–(136) can be Fourier transformed and

solved to yield both the dispersion function Ds [from Eq. (97)],

D s ¼ %
x2

ps

k2
k2?

x2 % X2
s

þ k2z
x2

 !
Cs; (140)

and fluid velocities ~ui
s for species s:

~ux
s ¼

qs
ms

kxxþ ikyXs

x2 % X2
s

Cs
~/ (141)

~uy
s ¼

qs
ms

kyx% ikxXs

x2 % X2
s

Cs
~/ (142)

~uz
s ¼

qs
ms

kz
x
Cs

~/; (143)

where k2? ¼ k2x þ k2y , and Cs captures the thermal corrections and is
given by

Cs ¼ 1%
csðk2x þ k2yÞv2ths

x2 % X2
s

%
csk

2
zv

2
ths

x2

 !%1
; (144)

where vths *
ffiffiffiffiffiffiffiffiffiffiffiffi
Ts=ms

p
.

The warm lower hybrid dispersion relation can be recovered if
we take jXij" jxj" jXej; vthi " jx=kj; vthe " jXe=kj, and
jkz=kj" jx2=ðx2 % X2

s Þj 8s. This can be shown to agree with the
kinetic dispersion relation when ce ¼ 3=4 and ci ¼ 3.83 In this limit,

Cs + 1þ
csðk2x þ k2yÞv2ths

x2 % X2
s

þ
csk

2
zv

2
ths

x2 : (145)

G. Total force on fluid for magnetized electrostatic
wave

Now we are in a position to calculate the force on a fluid element.
To calculate the quasilinear force, first note that Eq. (122) can be
rewritten as follows:

hFi
EM;si + 2WEM kirD is % jiD rs þ

kir

k2
jk @

@kk þ xi
@

@xr

! "
k2Drs

% &
" #

:

(146)

Focus on the term involving the derivative with respect to k,

hFi
EM;s;ki *

kir

k2
jk @

@kk k2D rs

% &
: (147)

For our problem, we only need to consider k ¼ x. Thus, using Eq.
(140), we have

hFi
EM;s;ki¼%4WEM

kirk
x
r

k2
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x2
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x2%X2
s

1þ 2cv2ths
k2?

x2%X2
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 ! !
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(148)

Now we calculate the Reynold’s stress. Plugging Eqs. (141)–(143)
into Eq. (139), we find

Pix
Rey ¼ 2WEM

x2
ps

x2 % X2
s

kikx

k2
C2
s þ dix

X2
s

ðx2 % X2
s Þ
k2?
k2

C2
s

" #

: (149)

Examining the force along the symmetry directions, we take i 2 ðy; zÞ.
By taking the x derivative using Eq. (104), we find

% @

@x
Pix

Rey ¼ %hF
i
EM;s;ki: (150)

Thus, summing the electromagnetic and Reynolds stress forces, the
total force on the fluid element along the symmetry directions is

hFi
tot;si ¼ 2WEMkir D is þ xi

@D rs

@xr

' (
; i 2 ðy; zÞ: (151)

Equation (151) captures the behavior of the plasma in both the
1D initial value problem and in the steady-state multidimensional
boundary value problem. For the 1D IVP, ji ¼ 0, and from Eq. (100)
we see that the sum of all resonant and nonresonant forces on the
plasma is 0. Thus, the nonresonant particles recoil, canceling out the
momentum transferred by the wave to the resonant particles. For
the steady-state multidimensional BVP, meanwhile, xi ¼ 0, and thus
the force on the plasma is precisely equal to the force on the resonant
particles; in other words, the recoil response on the nonresonant
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particles vanishes. Thus, the behaviors of both the IVP and BVP are
shown to arise from a consistent, coherent, energy- and momentum-
conserving framework.

VII. DISCUSSION
The topic of flow drive by waves in plasma, and more broadly of

ponderomotive forces in plasma, has been a subject of research for
many years. Thus, we begin our discussion with a comparison of our
results to some of the existing literature.

It has long been known that the electromagnetic EMT of a propa-
gating electromagnetic wave in vacuum are the same as the
Minkowski momentum of that wave.71 Thus, for plasma waves which
arise from propagating vacuum electromagnetic waves, such as high-
frequency jxj > jxpej modes, our result in Sec. V would be trivial.
Our result differs from this historical result precisely because the vac-
uum wave is evanescent rather than eikonal and thus has no defined
Minkowski EMT, so that a comparison of EMTs across regions was
required.

Section VI bears more similarity to the existing literature. The
key role played by the off diagonal component of the Reynolds stress
has been noted in several papers employing a fluid theory. In the study
of low-frequency electrostatic turbulence, similar results for poloidal
flow generation58 and parallel momentum transport59 have been
obtained; however, an early theorem used in these results relied on
assuming an E! B radial velocity urs ¼ EhBz , which is certainly not
the case for the ions in the lower-hybrid waves we considered here. In
addition, consideration of the different forces on resonant and nonres-
onant particles are only considered in the paper on parallel momen-
tum transport,59 not the paper on poloidal momentum damping,58

making it difficult to compare the results to theories incorporating
only the resonant particles. Here, we have clearly distinguished reso-
nant and nonresonant forces for both the parallel and perpendicular
forces, making clear the deep parallels between current drive and rota-
tion drive via cross field charge extraction.

The importance of the Reynolds stress was also noted in several
papers examining the nonresonant current and flow drive in the cold-
fluid theory.81,82 These papers established the cancelation between the
electromagnetic force on the nonresonant particles and the Reynolds’
stress to zeroth order in v2th. However, as discussed in Sec. VI, the reso-
nant forces actually appear at Oðv2thÞ, so it is necessary to work to this
order to establish that the nonresonant forces vanish in steady state. In
addition, these references did not consider the possibility of time-
dependence in the problem, and so could not show consistency with
the initial value problem result.

In addition to the fluid theory, the Reynolds stress has appeared
in magnetized hot-plasma kinetic theories as well.61–65 These theories
do not require a guess for the adiabatic index cs, and are capable of
tackling waves, such as Bernstein waves, which do not satisfy the
ordering requirements for fluid waves. However, this ability comes at
the price of significant computational complexity, since calculating
PRey requires evaluating the evolution of the second-order distribution
function f2 in a multi-dimensional magnetized plasma. Thus, none of
these papers attempt the time-dependent initial value problem and
thus cannot establish consistency with the conventional quasilinear
theory of Landau damping. Even with this simplification, the calcula-
tions are plagued with subtle difficulties. For instance, it was only
recently established67–69 that the classic Kennel–Engelman theory of

quasilinear diffusion incorrectly gyro-averaged the diffusion tensor
rather than the whole quasilinear equation and thus missed the per-
pendicular momentum input into the resonant particles. Similarly, the
sudden turning on of the wave fields at t¼ 0 used to calculate f2 in
Refs. 61 and 62 was shown to yield incorrect forces in the cold-fluid
limit, an error ultimately coming from the fact that jxi=xrj" 1 was
not satisfied.66

In summation, this paper fulfills a valuable role, providing a rela-
tively simple theory that captures the behaviors of both the initial- and
boundary-value problems in magnetized and unmagnetized plasmas,
while establishing that when nonresonant forces vanish, they do so at
the order of the resonant forces.

In identifying this gap in the literature, it is important to note
that we do not claim that existing theories of hot particle extraction by
alpha channeling2,3,7–25 are incorrect. These theories simply focused
exclusively on the resonant particles, and thus were not positioned to
answer questions that depended sensitively on the response of the
nonresonant particles. For those papers which did focus on rotation
drive while neglecting nonresonant particles,26,27 it turns out fortu-
itously that the relevant nonresonant response vanishes in steady-
state, making the alpha channeling rotation drive scheme possible in
practice.

Finally, we note that there is a whole other approach to the calcu-
lation of nonresonant ponderomotive forces, using the variational the-
ory of the oscillation center.84 Such methods begin with an action
principle for the single particle and then transform to a set of oscilla-
tion center coordinates. These methods are deep and powerful, espe-
cially when combined with Weyl transform methods that allow for
consistent handling of plasma nonuniformities,76 and come with self-
consistent energy and momentum conservation theorems built in.
However, such theories are intrinsically kinetic, and self-consistency
involves a Lagrangian coordinate calculation of the oscillation center
dynamics. In addition, the physical currents present in the system are
often buried in the transformation from physical to oscillation center
coordinates and can be difficult to extract and integrate over the
plasma distribution. A detailed comparison of cross field charge trans-
port in the oscillation center and warm fluid pictures is outside the
scope of the present paper and will be left for future work.

VIII. CONCLUSION
In this paper, we have shown that the conventional explanation

for momentum conservation in steady-state current drive applies only
in the case of an initial value problem, which is generally not the case
of interest in present devices, in which wave power is brought into the
device from a boundary. In steady state, the nonresonant particle recoil
response does not get transferred into ions via collisions or even get
transferred directly into the ions by the wave; it simply does not exist.
This absence of a nonresonant response was shown to be consistent
with global energy-momentum conservation, through the use of a
Fresnel model which identified the electromagnetic energy and
momentum flux in the vacuum with the Minkowski momentum in
the plasma. It was also shown to be consistent with local energy-
momentum conservation, via the use of a simple electrostatic warm
fluid model. This model recovered both the behavior of the 1D initial
value problem, where a recoil reaction does exist, and the multidimen-
sional steady-state boundary-value problem, where no recoil occurs.
The absence of the recoil response in the boundary value problem
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allows not only for current drive, but also for the extraction of the
charge associated with the resonant particles, and thus for rotation
drive via alpha channeling, along with all the advantages that rotating
plasmas provide.
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