
Finite-difference multiple fluid solution
for source-driven rotation in highly
magnetized linear plasma device

Cite as: Phys. Plasmas 28, 122303 (2021); doi: 10.1063/5.0070292
Submitted: 5 September 2021 . Accepted: 2 December 2021 .
Published Online: 21 December 2021

T. Rubin,a) E. J. Kolmes, I. E. Ochs, M. E. Mlodik, and N. J. Fisch

AFFILIATIONS

Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey 08544, USA

a)Author to whom correspondence should be addressed: trubin@princeton.edu

ABSTRACT

The rotation profile of a magnetized plasma cylinder composed of multiple fluids is investigated analytically, expanding on previous results.
The analytic steady-state solution is used as a benchmark for a time-dependent multiple-fluid finite-difference code, MITNS: Multiple-Ion
Transport Numerical Solver. Magnetic field evolution is taken into account, both analytically and numerically. Its details are shown to be of
importance when particles are allowed out of the domain. MITNS reproduces the asymptotic expansion results for a small parameter dn 1.
For

ffiffiffiffiffiffiffiffiffiffiffiffiffi
me=mi

p
� d� 1, a slightly different regime, dominated by viscosity-induced transport of ions, is found numerically and analytically.

This verification supports the use of this code for more complex time-dependent calculations in the future. Additionally, we derive the angu-
lar velocity profile of each species due to radial particle and charge fluxes of various strengths.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0070292

I. INTRODUCTION

A cylindrical plasma geometry is used in fusion applications,
such as mirrors,1,2 z-pinches,3 MagLIF,4–7 and in some centrifugal
fusion concepts,8–12 as well as mass separation applications, such as
plasma centrifuges.13–26 Investigation of classical transport effects is a
first step in modeling of these devices.

Literature regarding the classical transport in plasma, employing
Braginskii27 transport equations, or equivalent formulations for multi-
species multi-fluid plasmas,28 is extensive, containing predictions for
flow profiles,29 currents,30 and impurity pinches11,31 expected in
multi-fluid plasmas. The rotation profile in such devices affects the
centrifugal force and shear stress, and through them the ion density
profiles,11 and viscous heating.32 Radial and azimuthal currents
depend on the rotation profile as well.30 Differential rotation of ion
species results in ion–ion frictional heating and enhanced heat trans-
port33 (Ettingshausen effect).

A multiple-fluid model of classical cross field transport involves
solving 4N partial differential equations, for the densities, momenta
and energies for the N fluids. This equation set is complemented by
14N boundary conditions (2N particle fluxes, 4N momenta fluxes, 2N
energy fluxes, in addition to 4N momenta diffusion terms, and
2N heat diffusion terms), in addition to 4N possible volumetric
source terms, such as particle injection, wave-driven body forces or
laser heating. The evolution of such plasma is nonlinear and complex.

Tailoring the rotation profile might result in enhanced device perfor-
mance, but the number of boundary conditions and source terms requires
a numerical tool able to take these terms into account all together.

There are many plasma simulation codes. Some solve the Braginskii
single ion and electron fluid,34 or add neutral species.35,36 Some solve
anomalous transport N-fluid models with a common temperature pro-
file,37–42 and others solveN-fluid unmagnetized plasma.43–45

MITNS: Multiple-Ion Transport Numerical Solver,46 is just such a
numerical tool, solving an arbitrary number of one-dimensional coupled
ion-fluid equations—for species specific density, velocity and pressure—
in addition to Faraday’s law for magnetic field evolution, and the electron
pressure equation. Electron density and velocity are taken into account
using an MHD-like approximation, which enforces quasi-neutrality to
the order of the square of the ratio of Alfv�en speed and the speed of light.

In this paper, we extend the slab code MITNS to a cylindrical
geometry. This code is used to numerically verify the previous results
from Kolmes et al.,30 discuss the validity of some assumptions present
there, and explore a different equation ordering.

Kolmes et al.30 ordered the momentum equations of ion–electron
plasma and categorized three physical mechanisms for cross field
radial current in magnetized plasma. Additionally, they derived the
leading order angular velocity profile of the plasma from Ohm’s law
and discussed the possibility of tailoring the rotation profile of the
plasma, assuming a temperature profile can be imposed.
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This code is capable of evolving not only the ion continuity and
momentum equations, and the magnetic field equation, but also the
pressure equation for all species. This enables detailed simulations,
accounting for the differences in actuation mechanisms (e.g., boundary
driven systems vs source driven systems, etc.), and the different result-
ing regimes (e.g., magnetic field dynamics, heating).

Potential use cases for this code are the time evolution of laser-
heated plasma columns, which partition the heat to the electrons more
so than the ions, and the tracking of impurities in such scenarios. Or
solving for the heat dissipation and pressure buildup of counter-
flowing fluxes, as would occur in steady-state fusion devices.

This paper is organized as follows: in Sec. II, we present the model
equations. In Sec. III we discuss the previous solution, and add to it the
magnetic field equation. In Sec. IV we compare simulation results to a
steady-state solution, and in Sec. V we re-derive the angular velocity
profile of each species of a multi-species plasma, expanding on Kolmes
et al.30 treatment of a two-fluid plasma, by accounting for different mag-
nitudes of radial particle and current fluxes.

II. MULTIPLE FLUID EQUATIONS FOR CYLINDRICAL
PLASMA DEVICE

In this section, we present the model equations for an N-fluid
system with imposed temperature profiles, using the closure by
Zhdanov.28 The treatment is confined to cylindrical coordinates, with
gradients only in the radial direction. Using these equations, a leading
order solution to the angular velocity profile, density, and magnetic
field is derived.

For a fluid plasma composed of several species, the continuity
and momentum equations for each species are

@ns
@t
þr � ðnsvsÞ ¼ ss; (1)

@

@t
ðmsnsvsÞ þ r � msnsvsvsð Þ þ r � ps þrps

¼ Zsens Eþ vs � Bð Þ þmsssv
src
s þ

X
s0

Rss0 þ f ss0ð Þ: (2)

Quantities with a subscript s represent a species-dependent quantity,
such as ns, the number density of particles of species s. The symbol t
denotes the time, and v denotes the vector fluid velocity. The quantity
s denotes a particle source, while m is the particle mass, p refers to the
viscous stress tensor, p denotes the pressure, Z is the charge number, e
is the elementary charge, and E and B are the vector electric and mag-
netic fields. The term msvsrc represents a momentum source due to
injection of particles with initial average (fluid) velocity vsrc.

The friction body force Rss0 and the thermal friction (“Nernst”)
body force f ss0 between species s and s0 are expressed as

Rss0 ¼ msns�ss0 ðvs0 � vsÞ; (3)

f ss0 ¼
3
2
msns�ss0

ZsZs0eB
b̂ � Zs0ms0TsrTs � ZsmsTs0rTs0

msTs0 þms0Ts
; (4)

where �ss0 is the collision frequency between species s and s0, B is the
magnitude of the magnetic field, b̂ is a unit vector in the direction of
the magnetic field, and T is the temperature (in units of energy).

The magnetic field is taken to be in the perpendicular ẑ direction.
The resultant viscous stress tensor divergence, using the Braginskii27

and Zhdanov28 closure, is
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@
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The coefficients gs1 and gs3 are expressed as

gs1 ¼
ps
4X2

s

X
s0

ffiffiffi
2
p

msms0�ss0

ðms þms0 Þ2
6
5
ms0

ms
þ 2� 4

5
Xs

Xs0

� �
; (6)

gs3 ¼
ps
2Xs

; (7)

where Xs denotes the signed Larmor frequency for species s.
In Cartesian coordinates, the divergence of the viscous stress is a

diffusion of linear momentum, Ps ¼ msnsvs. The second and third
lines in Eq. (5) take the form of a diffusion term for r� Ps, the angular
momentum, and r � Ps, the mass flux. Specifically, it is not a diffusion
term formsnsvsr andmsnsvsh. More details are discussed in Sec. V.

The magnetic field evolution is determined by Faraday’s law,

@B
@t
¼ �r� E: (8)

Alternatively, the magnetic field can be determined in steady state
from Ampère’s law,

r� B ¼ l0j; (9)

with j being the current density and l0 being the permeability of free
space.

III. SOURCE-DRIVEN ROTATION

In a recent paper, Kolmes et al.30 ordered the steady-state velocity
terms in Eqs. (2) in powers of

d¼: E
rXiB

; (10)

�¼: �ie
Xi
; (11)

with respect to the E� B flow velocity, which is taken to be leading
order in Braginskii’s expansion. In this paper, the symbol “¼: ” in used
in the meaning of “defined as,” for nonstandard expressions. Their
solution to the (single) ion and electron fluids was expressed in terms
of the ion particle flux,

CiðrÞ¼
:
rnivir ¼ CiðriÞ þ

ðr
ri

rsidr; (12)

and the electric charge source,

CðrÞ¼: rjr ¼ e
X
s

ZsCs: (13)

Here, we use the subscript i for the ion fluid, and e for the elec-
tron fluid. The subscript p is used for a reference proton fluid.

One might note that in cylindrical geometry with @
@t ¼ @

@z
¼ @

@h ¼ 0, electric charge conservation dictates C � 0. The case C 6¼ 0
can only be interpreted as a proxy for a charge transport process
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outside of the radial classical transport scope of this work, such as a
kinetic or wave-driven phenomenon. Alternatively, one can think of it
as a proxy for the axial variation, see Appendix A.

Using ~X to denote a dimensionless quantity corresponding to a
physical quantity X, the ordinary differential equations (ODEs)
describing the leading order dimensionless rotation ~xrot and density
profiles have been derived [Eqs. (28) and (48)] in Ref. 30,

~xrot ¼
: � E

rB
R

vthi0
; (14)

~r3~g ~x 0rot ¼ ~r2QP~C ~xrot þ I
ð~r

0
~r 0~C~Bð~r 0Þd~r 0; (15)

P~C ¼ ~r
~ni~ne

~T
3=2
e

~B
2

1þ Zime

mi

� �
~r ~x2

rot �
~p0i þ ~p0e

~ni
þ 3
2
Zi~T

0
e

" #
; (16)

with Eq. (16) being a correction to Eq. (28) in Ref. 30, in which the
~r ~x2

rot term is erroneously multiplied by ~T i. Here, vthi0¼:
ffiffiffiffiffiffiffiffiffiffiffiffiffi
T0=mi

p
is

the reference ion thermal velocity.
The dimensionless viscosity, viscosity ratio, particle, and source

and current, as well as the dimensionless primary small parameter, are
given by

~g¼: ~nffiffiffiffiffi
~T i

p
~B
2 ; (17)

Q¼: 10
ffiffiffi
2
p

�ie0
3�ii0

; (18)

P¼: 1
n0q2

i0�ie0
CðRÞ; (19)

I ¼: 10
ffiffiffi
2
p

R
3Zien0q3

i0�ii0
CðRÞ; (20)

d ¼ qi0

R

~E

~r~B
2 : (21)

Quantities with the subscript 0 are constant reference quantities.
The reference ion Larmor radius is defined as qi0¼

:
vthi0=Xi0, and the

dimensionless qi0 is defined as q� ¼
:

qi0=R.
The solution to Eq. (15) is given as

~xrotð~rÞ ¼ eQP
Ð ~r

1
ð~C=~xgÞd~x ~xrot j~r¼1 þ I

ð~r

1

e
�QP

ð~r 0

1
ð~C=~xgÞd~x

~r 03gð~r 0Þ

2
664

�
ð~r 0

0
~y ~Cð~yÞ~Bð~yÞd~y~r 0

3
75: (22)

One might notice that in order to keep P; I � Oð1Þ, the source
terms must scale as~si � q2

�;
P

s Zs~ss � q3
�.

Using Ampère’s law, we can derive the ODE for the magnetic
field strength to the same order of accuracy,

~B
0 ¼

~ni~r ~x2
rot � ~p0i þ ~p0e

� �
~v2A~B

: (23)

Here, the normalized Alfv�en speed is defined as

~v2A¼
: B2

0

n0T0l0
¼ 2

b
: (24)

Equation (24) also shows the relation between ~v2A and the
plasma b.

Equation (23) can be integrated to yield

~Bð~rÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~B
2j~r¼0 þ

2

~v2A

ð~r

0
~ni~r ~x2

rot � ~p0i þ ~p0e
� �� �

d~r

s
; (25)

where the constant of integration might be selected to satisfyÐ 1
0

~B~rd~r ¼ 1=2, corresponding to a radial rearrangement of a mag-
netic field with initial uniform strength ~B ¼ 1.

The boundary condition for (19) might be also selected for a set
particle number ~N ¼

Ð 1
0 ~ni~rd~r ¼ 1=2, also corresponding to a radial

rearrangement of a uniform particle density ~ni ¼ 1.
Kolmes et al.30 plot (Fig. 3) the steady state normalized density,

angular velocity, and viscosity distributions for four temperature pro-
files, for the case of uniform ion an electron particle sources
(~C ¼ ~r2; ~C ¼ ~r2), with P ¼ 1; I ¼ �1 and Q ¼ 0:1556—corre-
sponding to a proton fluid. That figure contains an error which Fig. 1
corrects.

IV. SIMULATION IN MITNS

As mentioned above, MITNS46 is a numerical tool, capable of
evolving the first three fluid moments for an arbitrary number of ion
species, as well as Faraday’s law.

A. Code details

It should be noted that the equation set solved by MITNS is
somewhat different than the full model described in Sec. II; MITNS
takes electrons into account only algebraically, as discussed in
Appendix B, and so the electron inertial terms in the momentum
equation do not appear. Electron viscosity is dropped as it is smaller
than the ion viscosity by a factor Z3me=mi for the g0 term,47,48 by a
factor of Z2me=mi for the g3 term, and by a factor of Z4ðme=miÞ3=2
for the g1 term.28 We concern ourselves with ionization numbers
Z< 5. At larger values of Z, ionization/recombination effects might
become relevant, and these are out of the scope of this work.

MITNS implements Eqs. (1)–(8) for the ions and the magnetic
field, taking g0 � 0. The g0 term ends up being q2

� smaller than the
pressure gradient term in the radial momentum equation.

MITNS evaluates ~ns; ~vsh; ~ps, and ~Bz and their time derivatives at
cell centers and as such avoids the coordinate singularity at r¼ 0, in
the divergence terms divV ¼ 1

r
@
@r rVr , and ðdivTÞ � ĥ ¼ 1

r ½ @@r rTrh

þThr 	, for a vector quantity V and a tensor quantity T. For vr, since
vrð0; tÞ ¼ 0 due to axisymmetry, there is no need to evaluate
@
@t vrð0; tÞ. For the viscous stress tensor, writing

r3
@

@r
vh

r
¼ r2v0h � rvh; (26)

eliminates the need to evaluate vh=r at r¼ 0 in order to compute the
viscous stress on the cell adjacent to r¼ 0.

A monotonized-central Van-Leer49 flux limiter is employed for
the particle and momentum fluxes, as well as the magnetic field flux,
in an upwind scheme in order to avoid spurious oscillations.
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B. Simulation details

In order to verify MITNS’ solution in cylindrical coordinates, we
attempt to simulate the same scenario as was presented in Kolmes et al.30

That paper dealt with the momentum equation only for an electron and
proton fluids, in steady state. As long as the temperature remains close to
the reference temperature, rather than gain or lose factors of q�, the
asymptotic expansion in Kolmes et al.30 holds, and the momentum equa-
tion describes adequately the momentum and charge transport, for given
a temperature profile. To do so, the pressure equation was disabled in
MITNS, and a temperature profile was prescribed, Tp ¼ Te ¼ Tðr; tÞ.
Here, we consider a singly ionized electron-proton plasma, and use the
subscript p for the proton fluid. The momentum equation and the conti-
nuity equation for a proton fluid were integrated in time.

The initial conditions for the simulation were ~np � 1; ~vpr
� 0; ~vph � 0, and ~Bz � 1.

Volumetric sources and conditions: the proton and electron tem-
peratures profiles were prescribed as ~Tpð~t ;~rÞ ¼ ~Teð~t ;~rÞ ¼ 1
þT�tanh4ðt=triseÞe�20ð~r�0:5Þ

2

, with the parameter T� 2 f0; 0:5;
�0:5;�0:9g for the four cases presented in Fig. 1.

The volumetric proton source term uniform across the computa-
tional box and had the same time dependence ~spðtÞ ¼ ~s�tanh

4ðt=triseÞ
for a value of~s� such that P ¼ 1 according to Eq. (19).

The electron source term affects the radial electron velocity, as dis-
cussed in Appendix B, in Eq. (B4). It was set such that~jr ¼ ~jr�~r tanh

4ð5t=
triseÞ for a value of~jr� such that C ¼ �1 according to Eq. (20).

The proton and electron injection velocities, ~vsrc, as appearing in
the momentum source in Eq. (2), were zero.

The boundary conditions were: the proton velocity was deter-

mined through the flux, ~Cpð~t ; 1Þ ¼
Ð 1
0 ~r 0~spð~t ;~r 0Þd~r 0, that is, the pro-

ton and electron, (due to quasi-neutrality) total number was kept
constant—the adjective flux out of the computational box was
matched to the volumetric particle source. The radial velocity at ~r ¼ 0
is ~vsrð~t ; 0Þ � 0 due to axisymmetry.

A zero advective magnetic field flux boundary condition was set
on the outer radius of the domain, such that the total magnetic flux in
the domain remains constant.

These boundary conditions and source terms were evolved until
a steady state was achieved.

The dimensionless parameters realized in this simulation are
summarized in Table I.

The results of these simulation are of a driven steady state, with
(constant) proton and electron source terms that result in a (station-
ary) radial current. This current produces a constant j� B torque,
which is balanced by ion viscosity.

FIG. 1. Several solutions of the rotation profile, density, and viscosity coefficient corresponding to some steady state temperature profiles, P ¼ 1; I ¼ �1; Q ¼ 0:1556.
Comparison between MITNS results, for reference normalized ion Larmor radius q� ¼ 0:01. Markers (?) are placed every 30 grid points for MITNS solution, q� ¼ 0:01 for
visibility. Notice the agreement between the normalized (first order) angular velocity from the ODE set (full line) and the angular velocity profile from MITNS (dashed line with
markers) at the bottom-left plot.
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The pressure equation is not solved in this simulation, even
though it is included in MITNS, as the purpose of this work is to test
the numerical solution against an analytic one, which present a solu-
tion to the momentum equation. The steady state velocity profiles dis-
cussed in this paper would generate viscous and frictional heating. We
assume that the temperature can be controlled via some external
mechanism, such as tailoring the injected particles temperature, or
some form of radiative cooling. The effects involving the heating chan-
nels and the pressure evolution will be pursued in a future work.

C. Magnetic field evolution

The magnetic field evolution in MITNS is determined by
Faraday’s law,

@Bz

@t
¼�1

r
@

@r
rEh¼�

1
r
@

@r
r verBzþ

X
s

me�es
e
ðvsh� vehÞþ

fes
ene

� �" #
;

(27)

where the electric field is determined by the electron momentum equa-
tion, as seen in the second line of Eq. (27).

In steady state, the verBz term and the friction and Nernst force
terms balance each other. In this simulation, particles are injected in to
the simulation domain, which generates radial particle fluxes. These
radial particle fluxes generate torques, which then produce angular
velocity in the fluids. This means that before steady state is established,
the advection term, which depends on the radial electron flux, is larger
than the azimuthal term in (27), and magnetic field is pushed out
initially.

Without imposing zero magnetic field flux out of the outer
radius, this would lead to some magnetic field leaving the computation
domain, and thus being lost. Electron-ion friction provides magnetic
field diffusion and prevents it from piling up at edge of the domain in
steady state.

The steady state radial current produces a steady state (and
larger) azimuthal current. This current would keep Bz nonuniform.

It is possible to have an annular domain and inject particles only
through the inner boundary instead of volumetrically. In that case, an
appropriate set of coils around the inner electrode could ensure the
edge source of electrons carry magnetic field into the domain, which
would replenish the initial magnetic field loss. This setup would pro-
duce a different torque on the plasma s ¼ r� ðj� BÞ / Bz rather
than / r2Bz , which would be balanced by a different viscous stress
profile, and hence a different angular velocity profile.

D. Comparison of analytic transport theory with MITNS

A comparison between the solution to Eqs. (15) and (16), pro-
duced as an asymptotic expansion in small parameters d; �, and the
steady-state results of a simulation in MITNS is presented in Fig. 1.
The small parameter q� is set by specifying the domain size in
MITNS, and d Eq. (10), depends on it, together with the electric and
magnetic fields produced as a result of the applied sources and bound-
ary conditions. A comparison between the magnetic field given by Eq.
(25), and the one solved for in MITNS is shown in Fig. 2, for the same
simulations presented in Fig. 1.

There is a good agreement between the ODE set solution and the
steady-state MITNS result for q� ¼ 0:01,as evidenced by the closeness
of the dashed and full lines in Figs. 1 and 2. The small parameter,
jdðrÞj, in this case was<0.002.

V. ANGULAR-MOMENTUM TRANSPORT VIEW
OF RADIAL CURRENTS

Interestingly, comparing the expression �E=rB evaluated by
MITNS, as shown in Fig. 3, to the angular velocity profile in Fig. 1
shows there are some differences between them, when solving the sys-
tem of equations for a small but finite q�. The E� B azimuthal drift
discussed in Kolmes et al.30 is recovered in the limit of q� ! 0.

For the q� ¼ 0:01 case, the most visible features in Fig. 3 are the
nonzero derivative at r¼ 0, and the nonmonotonicity of the green
curve, even though the angular velocity profile is monotonic in Fig. 1.
This means that the solution to Eq. (15) contains information about
the diamagnetic drift as well as�E=rB.

In this section, we aim to expand upon the ordering of the equa-
tions of motion for N-fluids, derive the angular velocity and density
profiles in terms of the cross field particle fluxes, and show the solution
presented in Sec. III is a particular solution obtained for a specific
ordering of the particle flux magnitude. The small parameters in the
expansion presented in this section are formally constants, rather than
a function of the solution, which is easier to handle. Additionally, we
explicitly keep the inner boundary terms such as in Eqs. (29), (36), and
(37), which are set to zero in Kolmes et al.30 Eq. (48), for example.

TABLE I. Dimensionless parameters. Knudsen number, Kn ¼ vth0=�L, depends on
the length L of the cylinder (along field lines), which is not used and can be arbitrarily
long.

Parameter Symbol Value

Proton normalized Larmor radius q� 0.01
Proton–proton Hall parameter Xp=�pp 14
Proton–electron Hall parameter Xp=�pe 433
Plasma b B 0.002
Reynolds number Re 35
Magnetic Reynolds number Rm 220

FIG. 2. Comparison between Eq. (25) and MITNS solution for the dimensionless
magnetic field, for the same cases presented in Fig. 1, using ~v2A ¼ 1000.
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These boundary terms would be useful in annular geometries used for
homopolar generators or some mass filter applications.

Writing the equations of motion in term of angular momentum,
rather than linear momentum, casts the viscous torque term in a diffu-
sion form. This form enables the angular momentum equation to be
written in a finite-volume form, which is computationally conservative
scheme.

The continuity equation and the radial particle flux,

@ns
@t
þ 1

r
@

@r
Cs ¼ ss; (28)

Cs ¼ rnsvsr ¼ CsðriÞ þ
ðr
ri

ss �
@ns
@t

� �
r0dr0; (29)

are the driving mechanisms for the system dynamics, and they are a
reasonable boundary condition to experimentally impose.

The angular momentum conservation equation,

‘s¼: rmsnsvsh ¼ r� Ps � ẑ ; (30)

@‘s
@t
þ 1

r
@

@r
‘sCs

ns
þ ZseCsBz

¼
X
s0

�s0s‘s0 � �ss0‘sð Þ þ 1
r
@

@r
r3 gs1x

0
s � gs3

@

@r
Cs

r2ns

� �� �

þ r
X
s0

fss0h þ ‘srcs ; (31)

is written here as an advection–diffusion equation for each species,
with source terms corresponding to the Lorentz torque on the left-
hand side, and the friction and Nernst torques on the right-hand
side. The last term, ‘srcs , indicates other sources of angular momen-
tum, such as the injection of particles with nonzero angular veloc-
ity. In that case, ‘srcs ¼ r2msssxsrc

s . We shall take this term to be zero
from now.

The radial component of the momentum equation, for
Psr ¼: msnsvsr ,

@Psr
@t
þ 1
r
@

@r
rPsrvsr þ p0s ¼

1
r
‘sxs þ Zsens Er þ rxsBzð Þ

þ
X
s0

�s0sPs0r � �ss0Psrð Þ þ @

@r
gs0
3r

@

@r
rvsrð Þ

� �

þ 1
r2
@

@r
r3 gs1

@

@r
vsr
r

� �
þ gs3x

0
s

� �
þ Psrc

sr ;

(32)

can be written in a form such that the viscosity is a diffusion term.
However, writing this equation in that form introduces source terms
relating to the pressure, momentum, and the g0 component of
viscosity.

Using

Ms¼: rmsnsvsr ¼ r � Ps ¼ msCs; (33)

the conservation equation forMs is

@Ms

@t
þ 1

r
@

@r
MsCs

ns
þ r2ps

� �

¼ 2ps þ
MsCs

r2ns
þ xs‘s þ Zsensr Er þ rxsBzð Þ

þ
X
s0

�s0sMs0 � �ss0Msð Þ þ 1
r
@

@r
r3 gs1

@

@r
Cs

r2ns

� �
þ gs3x

0
s

� �

þ 1
r
@

@r
rgs0
3

@

@r
Cs

ns

� �� �
� 2gs0

3r
@

@r
Cs

ns

� �
þMsrc

s : (34)

The integral form of the Eq. (31) is

@

@t

ðr
ri

‘sr
0dr0 þ ‘sCs

ns

				
r

ri

þ Zse
ðr
ri

CsBzr
0dr0

¼
X
s0

ðr
ri

�s0s‘s0 � �ss0‘s þ fss0hr
0� �
r0dr0

þr3 gs1x
0
s � gs3

@

@r
Cs

r2ns

� �� �r
ri

; (35)

where integrals of the form
Ð r
ri
� r0dr0 should be understood as volume

average in the annular volume bounded by ri and r.
Summing over all species in steady state, the friction forces can-

cel, and the electric field term drops off due to quasi-neutrality.

X
s

msr
2xsCsjrri þ

ðr
ri

CBzr
0dr0

¼
X
s

r3 gs1x
0
s � gs3

@

@r
Cs

r2ns

� �� �r
ri

; (36)

X
s

1
r
@

@r
msC

2
s

ns
þ r2ps

� �

¼
X
s

2ps þ
msC

2
s

r2ns
þ xs‘s

� �

þ
X
s

Zsensr
2xsBz þ

X
s

1
r
@

@r
r3 gs1

@

@r
Cs

r2ns

� �
þ gs3x

0
s

� �

þ
X
s

1
r
@

@r
rgs0
3

@

@r
Cs

ns

� �� �
�
X
s

2gs0
3r

@

@r
Cs

ns

� �
: (37)

FIG. 3. MITNS calculated dimensionless �E=rB for the same cases presented in
Fig. 1. Large disagreements between the dimensionless first-order rotation fre-
quency in Fig. 1 and the resultant electric field here.
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These equations do not depend on the electric field, and we will
show their equivalence to Eqs. (15) and (16). The leading order x,
even though it must be of O E

rB

� �
, by the choice of the Braginskii trans-

port coefficients may contain information from other particle drifts.

A. Nondimensionalization

Nondimensionalizing the equations of motion would factor out
small parameters that would be used in an asymptotic expansion.

Denoting X ¼ X0~X , with X0 being a reference quantity,

m0¼: mp; (38)

v0¼:
ffiffiffiffiffiffiffiffiffiffiffiffiffi
T0=mp

q
; (39)

r0¼
:
R; (40)

C0¼: Rn0v0; (41)

C0¼: eRn0v0; (42)

g30¼
: n0T0

Xp0
; (43)

g10¼
: n0T0�0

X2
p0

; (44)

g00¼
: n0T0

�0
; (45)

Rss00¼
:
m0n0�0v0; (46)

fss00¼:
n0�0T0

Xp0R
¼ m0n0�0v0q� (47)

with R being the outer domain radius.
The dimensionless equations feature the two small parameters

q� ¼
:

v0=Xp0R and �¼: �0=Xp0. They are ordered such that
1
 �
 q�.

The steady-state dimensionless angular momentum for a single
fluid species is

~ms~r
2~Cs ~xsj~r~r i þ

1
q�

ð~r

~r i

Zs~r
0~Cs~Bzd~r 0

¼ q�~r
3 �~gs1 ~x0s � ~gs3

@

@~r

~Cs

~r2~ns

 !" #
j~r
~r i

þ�
ð~r

~r i

X
s0

1
q�

~Rss0h þ ~f ss0h

� �
~r 02d~r 0: (48)

The equation for the entire plasma isX
s

~ms~r
2Cs ~xsj~r~r i ¼ q��~r

3
X
s

~gs1 ~x 0sj
~r
~r i

�q�~r
3
X
s

~gs3
@

@~r

~Cs

~r2~ns

 !
j~r
~r i
� 1

q�

ð~r

~r i

~r 0~C~Bzd~r 0:

(49)

We shall order the angular velocity and source terms in the two

small parameters using ~X ¼
P

a;b qa
��

b ~X
ða;bÞ

and restrict ~xs such that

its leading term is ~xð0;0Þs .
Equation (48), when expanded toOðqk

�Þ; k ¼ �1; 0, yields

ð~r

~r i

Zs~r
0~C
ðkþ1;0Þ
s

~Bzd~r 0 ¼ 0; (50)

~C
ð0;0Þ
s ¼ ~C

ð1;0Þ
s ¼ 0: (51)

ToOðq�1� �Þ,

Zs
~C
ð0;1Þ
s

~Bz ¼
X
s0

~ms~ns~� ss0~rð~xð0;0Þs0 � ~xð0;0Þs Þ þ ~f
ð�1;0Þ
ss0h


 �
~r : (52)

Here, ~f
ð�1;0Þ
ss0h is understood as the dimensionless (4) with dimension-

less temperature gradients ofOðq�1� Þ.
ToOð�Þ,ð~r

~r i

X
s0

~r ~ms~ns~� ss0 ð~xð1;0Þs0 � ~xð1;0Þs Þ þ ~f
ð0;0Þ
ss0h


 �
~r 02d~r 0

¼ ~r2 ~ms
~C
ð0;1Þ
s ~xð0;0Þs

h i~r

~r i
þ
ðr
ri

Zs~r
0~C
ð1;1Þ
s

~Bzd~r 0: (53)

This equation is the equivalent to Eq. (16), assuming the leading order
~Cs is ~C

ð1;1Þ
s .

Equation (49), when expanded toOðqk
�Þ; k ¼ �1; 0; 1, yieldð~r

~r i

~r 0~C
ðkþ1;0Þ~Bzd~r 0 ¼ 0; (54)

~C
ð0;0Þ ¼ ~C

ð1;0Þ ¼ ~C
ð2;0Þ ¼ 0; (55)

and when expanded toOðq��Þ,

~r2
X
s

~ms
~C
ð1;1Þ
s ~xð0;0Þs þ ~C

ð0;1Þ
s ~xð1;0Þs

h i~r

~r i

¼ ~r3
X
s
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� ~r3
X
s
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@
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~C
ð0;1Þ
s

~r2~ns

 !
j~r
~r i

�
ð~r

~r i

~r 0~C
ð2;1Þ~Bzd~r 0: (56)

Equation (56) is the differential equation for ~xð0;0Þs , assuming
~C ¼ q2

��
~C
ð2;1Þ

, and ~Cs ¼ q��~C
ð1;1Þ
s , are known functions. If ~r i ¼ 0, it

reduces to (15).
ToOðq2

��Þ,

~r2
X
s

~ms
~C
ð2;1Þ
s ~xð0;0Þs þ ~C

ð0;1Þ
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¼ ~r3
X
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0

s j~r~r i � ~r2
X
s
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s ~xð0;1Þs

h i~r

~r i
: (57)

This becomes the differential equation for ~xð1;0Þs , assuming
~C ¼ q2

��
~C
ð2;1Þ

, and ~Cs ¼ q��~C
ð1;1Þ
s , are known functions,

X
s

~ms
~C
ð1;1Þ
s ~xð1;0Þs
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The dimensionless steady-state mass flux equation for a single
fluid species is

1
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To leading order,Oðq�1� Þ,

~pð�1;0Þ
0

s ¼ Zs~ns ~E
ð0;0Þ
r þ ~r ~xð0;0Þs

~Bz


 �
; (60)

where ~pð�1;0Þ
0

s is understood as resulting from temperature gradients
that are ofOðq�1� Þ.

Equation (60) is deceptive, as it seems to imply the leading order
rotation is an E� B drift. However, one arrives at this equation after
solving for ~xð0;0Þs . This equation actually defines the electric field pro-
file. This assertion is reflected in Fig. 4, which compares ~xrot , the elec-
tric field (appears in Fig. 3) and the pressure gradient terms (appears
in Fig. 5 and must be multiplied by q� to convert from ~p0=~r~n~B to
~pð�1;0Þ

0
=~r~n~B). The sum of the nonmonotonic pressure gradient and

electric field terms cancel each other such that the remainder is the
monotonic angular velocity everywhere except right next to the origin.

ToOð1Þ, subtracting Eq. (59) for s ¼ s0 from itself with s¼ s,

~xð1;0Þs0 � ~xð1;0Þs ¼
~ps0
0ð0;0Þ

Zs0~ns0~r~Bz
� ~ms0 ~x
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s0

Zs0~Bz
�

~ps
0ð0;0Þ

Zs~ns~r~Bz
þ ~ms ~x

ð0;0Þ2
s

Zs~Bz
;

(61)

allows us to achieve a nonambiguous expression, to be substituted in
Eq. (53).

The dimensionless form of Eq. (37) is
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(62)

To leading order, using Ampère’s law, this is an equation for the
magnetic field,

X
s

~ps
0 þ ~r ~xð0;0Þ

2

s

X
s

~ms~ns ¼ l�10
@~B
ð1;0Þ
z

@~r
~Bz: (63)

In this section, we derived the leading and first-order correction
equations for the angular velocity profile, and the leading order equations
for the density and magnetic field. We have shown how different particle
flux magnitudes affect the solution, and suggested an interpretation of the
relation between the leading order rotation and the electric field.

VI. CONCLUSION

The code MITNS, Multiple-Ion Transport Numerical Solver, was
expanded to include a cylindrical coordinate mode and used to vali-
date the first-order solution to the rotation frequency and density dis-
tribution in a source-driven, axially magnetized, rotating two-fluid
plasma cylinder presented in Kolmes et al.30

First, simulation results pointed to the error in the plotting script
for Fig. 3 in Ref. 30, and we were able to correct it in Fig. 1.

Second, we have shown the approach to steady-state should be
performed carefully, with appropriate magnetic boundary conditions,

FIG. 4. Comparison between ~xrot , electric field and the pressure gradient terms
from Eq. (60), as calculated by MITNS for the same cases presented in Fig. 1. FIG. 5. ODE set calculated dimensionless diamagnetic angular velocity.
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or else particle fluxes out of the simulation domain will deplete the
magnetic field.

Third, after requiring a constant magnetic flux in the cylinder,
the results of the MITNS code and the ODE set solution were shown
to be congruent in the limit of small Larmor radius over domain size.
This lends credibility to the MITNS code and its cylindrical coordi-
nates mode.

Finally, we derived the rotation frequency, density, and magnetic
field equations and suggested an interpretation to the relation between
the electric field and rotation profile.
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APPENDIX A: USING THE PARTICLE SOURCE-TERM
AS A PROXY FOR THE AXIAL DIMENSION

In a steady state, azimuthally symmetric cylinder and in the
absence of particle source terms, the continuity equation can be
written as

r � ðnsvsÞ ¼
1
r
@

@r
ðrnsvsrÞ þ

@

@z
ðnsvszÞ ¼ ssources ; (A1)

in the presence of fusion or ionization/recombination processes.
ssources should be understood as a charge preserving in the senseP

s Zsssources ¼ 0. This would lead to CðrÞ � 0 in a cylinder or
CðrÞ / 1=r in an annulus, as defined in Eq. (13).

We are interested in the result of radial variation, so we can
treat the @

@z part of the divergence as an additional source term,

1
r
@

@r
ðrnsvsrÞ ¼ ss ¼ ssources � @

@z
ðnsvszÞ: (A2)

Identifying part of the source term with out-of-plane flow allows
for charge/current source, where the electric charge weighted sum
of electron and ion sources and sinks does not sum to zero.

Similarly, for the momentum equation, we have a degree of
freedom in vsrcs . Noticing the @

@z component of nsðvs � rÞvs is
nsvz

@vs
@z , we can choose vsrcs such that

vsrcs ¼ v þ nsvsz
@
@z ðnsvszÞ � ssources

@v
@z
¼ v � nsvsz

ss

@v
@z
: (A3)

Interpretation of the particle and velocity source terms as Eqs.
(A2) and (A3) allows us to solve for 2d “slices” of a long cylindrical
device. This is a method of getting an electric current source term
that is large and entirely described by classical transport.

It is also possible to interpret the volumetric radial current
source as being produced by a wave-particle interaction. In this pic-
ture, the wave is not modeled using the electromagnetic fields, due
to its fast time scales, and only pushes a current. Its ponderomotive
force might appear as a momentum source term.

Another interpretation to the current source might be an
externally imposed shift in the magnetic field, which carries with it
the electron fluid before friction is able to diffuse the field back.

APPENDIX B: RESOLVING RADIAL CURRENT IN A
1D MAGNETO-HYDRODYNAMIC MULTIPLE FLUID
SIMULATION

The equations solved in MITNS, (1) and (2), are “MHD-like.”
Fast time scales are discarded, such as the electric field term in
Ampère’s law, in addition to the electron density and inertia terms.

Without the time derivatives in the electron continuity and
momentum equations, the electron fluid density and velocity are
evaluated algebraically from quasi-neutrality,

ne ¼
X
s6¼e

Zsns; (B1)

and form Ampère’s law,

l0eneve ¼ l0

X
s6¼e

Zsensvs �r� B: (B2)

Quasi-neutrality makes Gauss law inapplicable for a nonzero
electric field. Instead, the electric field is determined from the
inertia-less and nonviscous electron momentum equations. This
electric field is also used to evolve the magnetic field.

MITNS has a one-dimensional domain, which restricts the
allowed variations to the radial direction, If @

@h ¼ @
@z ¼ 0,

r� B � r̂ � 0; (B3)

and no current can flow in the radial direction.
In order to explore radial plasma conductivity in this frame-

work, that is, to look at the relation between jr and the other physi-
cal quantities in the system, we must ignore Eq. (B3), and instead
implement a current on the entire domain, similarly to a body force
(such as gravity),

ver ¼
X
s6¼e

Zsens
� ��1 � X

s6¼e
Zsensvsr � jrðr; tÞ

� �
: (B4)

The function jrðr; tÞ has to be specified either as a local Ohm’s
law, or as an a priori driving force.

The algebraic nature of the MHD-like electric field prevents an
application of boundary conditions to the electron momentum
equation or to the electric field.

Azimuthal current can be injected into the simulated domain
by applying a boundary condition to the magnetic field.

This solution adds to the electron velocity perpendicularly to
the magnetic field. This does not represents a cross field transport
of the electrons, as the magnetic field would be advected by the
moving electron fluid. Adding the current to the electrons is numer-
ically simple, and its effects are automatically implemented in the
friction terms and magnetic field evolution. It also avoids changing
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the accurate ion momentum equations. Attempting to add the
imposed current to the ion velocities would require some partition
of the current among an arbitrary number of ion fluids.

It is possible to evaluate, in post processing, the departure
from quasi-neutrality using Gauss law by taking the divergence of
the electric field calculated using Ohm’s law. The current relates to
the displacement current by

r � j ¼ �e0
@

@t
r � E; (B5)

jr ¼
rijrðriÞ

r
� e0

@

@t
Er �

riErðriÞ
r

� �
; (B6)

which would be a small, of Oðv2A=c2Þ, with vA being the Alfv�en
speed and c the speed of light.
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