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ABSTRACT

In strong electromagnetic fields, unique plasma phenomena and applications emerge whose description requires recently developed theories and
simulations [Y. Shi, Ph.D. thesis, Princeton University (2018)]. In the classical regime, to quantify effects of strong magnetic fields on three-wave
interactions, a convenient formula is derived by solving the fluid model to the second order in general geometry. As an application, magnetic res-
onances are exploited to mediate laser pulse compression, whereby higher intensity pulses can be produced in wider frequency ranges, as con-
firmed by particle-in-cell simulations. In even stronger fields, relativistic-quantum effects become important, and a plasma model based on scalar
quantum electrodynamics (QED) is developed which unveils observable corrections to Faraday rotation and cyclotron absorption in strongly
magnetized plasmas. Beyond the perturbative regime, lattice QED is extended as a numerical tool for plasma physics, using which the transition
from wakefield acceleration to electron-positron pair production is captured when laser intensity exceeds the Schwinger threshold.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0043228

I. INTRODUCTION

Strong electromagnetic (EM) fields, which are known to exist
near compact astrophysical bodies,1 have become increasingly accessi-
ble in a laboratory due to the advancement of high energy density
(HED) laboratory drivers.2 In the astrophysical context, magnetic
fields greater than 1012 G are found near neutron stars. In such strong
fields, electron cyclotron energy �hjXej � 10 keV is larger than the
star’s temperature and is non-negligible compared to electron’s rest
energy mec2 � 511 keV, so quantum and relativistic effects are both
important. Describing dynamical processes near neutron stars and
relating them to observable signals remains a challenging task3

and will likely require further development of theoretical models and
numerical tools. Although the physics is less extreme in 106–109 G
magnetic fields that have recently become available in laboratory,
modeling magnetization effects in HED plasma remains a largely open
research field. In addition to modifying hydrodynamics, radiation, and
transport properties,4,5 strong magnetic fields also change laser-plasma
interactions.6 Understanding these phenomena is crucial for magneto-
inertial fusion concepts,7 which strive to combine both confinement

approaches to achieve ignition. Apart from quasi-static fields, transient
strong fields are available in laboratory during beam-laser8–10 and
beam-beam11 collisions. Boosted by the high energy of an electron
beam, the field of a tightly focused laser or another highly charged
bunch may approach the Schwinger field Es ¼ m2

e c
3=ðe�hÞ � 1018 V/m,

where quantum electrodynamics (QED) becomes nonperturbative.
Studying processes in this regime may shed light on other nonperturba-
tive interactions like the nuclear force and may also unveil physics
beyond the standard model.

In this invited paper, we review recent developments of theories
and simulations related to the Marshall N. Rosenbluth Outstanding
Doctoral Thesis Award.12,13 We focus on elucidating the key physics
and bring additional insights beyond what is contained in previous
publications where detailed results can be found. This paper is orga-
nized as follows. In Sec. II, effects of a strong magnetic field on coher-
ent three-wave interactions are discussed in the classical regime.
Starting from megagauss (MG) fields, scattering of lasers becomes
manifestly anisotropic (Sec. IIA). A convenient formula for the three-
wave coupling coefficient is derived from the second-order solution of
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the fluid model in general geometry (Sec. II B). Using the formula, spe-
cial angles are unveiled where laser scattering is either enhanced or sup-
pressed due to magnetization (Sec. IIC). For a given coupling
coefficient, the three-wave interaction problem is intrinsically quantum,
which is shown to be solvable using quantum computers (Sec. IID). As
an application of classical three-wave interactions, we exploit magne-
tized resonances to improve plasma-mediated laser pulse compression
(Sec. II E). Using the additional degrees of control, more intense pulses
can be generated in wider frequency ranges, as corroborated by parti-
cle-in-cell (PIC) simulations. In Sec. III, to describe plasmas beyond the
classical regime, scalar QED is extended to include nontrivial dynamical
background fields, which capture effects of collective plasma dynamics
(Sec. IIIA). As an example, the background field theory is used to study
plasma waves by computing their 1-loop effective action (Sec. III B),
from which the QED-modified dispersion relation is extracted (Sec.
IIIC). Applying the formulas to neutron-star conditions, anharmonic
cyclotron absorption and anomalous Faraday rotation are unveiled,
which may also be observable in a laboratory. Beyond the perturbative
regime, lattice QED is extended into a plasma simulation tool (Sec.
IIID), which is uniquely suited when collective scales overlap with
QED scales. A variational algorithm is developed and applied to simu-
late laser-plasma interactions (Sec. III E), and the transition from wake-
field acceleration to electron-positron pair production is demonstrated
when the laser intensity exceeds the Schwinger threshold.

II. MAGNETIZED THREE-WAVE INTERACTIONS

Coherent three-wave coupling is the lowest-order nonlinear
interaction in plasmas. While generic three-wave interactions are well
understood,14 the presence of a background magnetic field changes
the coupling coefficient and substantially proliferates the ways in
which the resonance conditions kl

1 ¼ kl
2 þ kl

3 can be satisfied, where
kl
i ¼ ðxi; kiÞ is the four-momentum of the ith participating mode. In
an unmagnetized two-species plasma, although there are only three
eigenmodes—the gapped degenerate EM waves, the gapped Langmuir
wave (P), and the gapless acoustic wave (S)—the possible combina-
tions are already numerous.15 Once the plasma becomes magnetized,
there are many more eigenmodes available for resonant nonlinear
interactions. For example, in magnetized two-species warm-fluid
plasma, there are six linear eigenmodes, including two gapped EM
waves, which are now nondegenerate, one gapped hybrid wave, and
three gapless waves, which become the three magnetohydrodynamics
(MHD) waves in the long wavelength limit. Moreover, in magnetized
kinetic plasmas, there are infinite ladders of Bernstein waves, and the
possible number of resonant interactions explodes. In order to simplify
the analysis, previous attempts in the literature were usually restricted
to some specific wave triads and focused on the special geometry
where waves propagate either parallel or perpendicular to the back-
ground magnetic field.16–21 However, as we will discuss below, the
physics that governs magnetized three-wave interactions is not as
complicated as it seems and is in fact generally applicable to arbitrary
geometry. Once we understand the underlying processes, we can
exploit them to benefit applications such as plasma-mediated laser
pulse compression.

A. Effects of magnetization

Before introducing any equation, it is helpful to point out qualita-
tive ways in which magnetization affects the strength of nonlinear

three-wave coupling. First, magnetization changes the wave dispersion
relation and therefore the kinematics of resonant interactions. Since
the coupling, which can be related to the scattering cross section,
depends on the phase space volume, kinematic changes alone could
affect the strength of the coupling. Second, magnetization changes the
polarization of eigenmodes and, therefore, the overlap of incoming
and outgoing wave states. Since the coupling depends on the scattering
matrix, its strength is affected by changes in polarization, which in
general acquires both longitudinal and transverse components when
magnetized. Finally, and perhaps most importantly, magnetization
changes the energy partition between the field and particle degrees of
freedom. Since three-wave coupling is nonvanishing only inside
charged medium, the response of the medium is what determines the
strength of the interactions. Compared to the unmagnetized response,
where wave energy is only distributed between the oscillating EM
fields and the quivering charged particles, in the magnetized case, gyro
motion also carries energy. Therefore, when waves couple via gyrating
particles, energy can now flow through additional channels. Since
three-wave interaction is a phase-sensitive process, the interference
between different channels determines the overall strength of the inter-
action, which can either be enhanced or suppressed compared to
unmagnetized cases.

A manifestation of magnetization effects is the anisotropy of the
interaction strength in the absence of any gradient because the back-
ground magnetic field already defines a special direction. In the
unmagnetized case, backscattering, where the two smaller wave vectors
are antiparallel, usually dominates side and forward scattering.
However, this is no longer the case when the plasma becomes magne-
tized, in which the coupling has intricate angular dependence. As a rule
of thumb, magnetized coupling is comparable to its unmagnetized
value, with the possibility of being a few times larger, except at special
angles where the following three mechanisms suppress the coupling.6

First, the coupling may be polarization suppressed, which occurs when
the incoming and outgoing wave states have poor overlap so that every
interaction channel is weak. Second, the coupling may be interference
suppressed, which occurs when different interaction channels, albeit
strong individually, destructively interfere to cancel the overall scatter-
ing. Third, the coupling may be energy suppressed, which occurs when
the energy participation radio is small in the sense that the wave energy
is largely carried by degrees of freedom that provide little coupling.

B. Computing coupling coefficient

To compute the three-wave coupling coefficient in the weak-
coupling regime, a systematic approach is to solve plasma models to the
second order in the perturbation series.22 This perturbative picture
respects the permutation symmetry between the participating waves
and allows profound simplifications that are obscured in the parametric
picture, in which a pump wave is singled out on whose background the
nonlinear dispersion relation of decay products is calculated. In either
picture, the lowest-order solutions are linear waves. Suppose the first-
order electric field is expanded by E1 ¼ 1

2

P
k2K1
E1;keihk , where the

summation is over a discrete spectrum K1 and hk ¼ k � x � xkt is the
wave phase, then the Fourier amplitude satisfies the matrix equation

DkE1;k ¼ 0: (1)

In order for this equation to have nontrivial solutions, detD ¼ 0 must
be degenerate, from which the linear dispersion relation x ¼ xðkÞ
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and the unit polarization vector e ¼ eðkÞ, with E ¼ Ee and e†e ¼ 1,
can be found. The key quantity for linear waves is therefore the disper-
sion tensor

D
ij
k ¼ ðx

2
k � c2k2Þdij þ c2kikj �

X
s

x2
psF

ij
s;k: (2)

Here, dij is the Kronecker delta, x2
ps ¼ e2s ns0=e0ms is the plasma fre-

quency of species s, and the forcing operator F is related to the linear
susceptibility v by x2

kvs;k ¼ �x2
psFs;k . While v is more frequently

used for linear waves, F is more useful for nonlinear interactions
because it captures the response of individual particles to the wave
electric field. Notice that in a cold unmagnetized plasma, F ¼ I is sim-
ply the identity operator. Therefore, magnetization and thermal effects
are manifested by a forcing operator that deviates from unity.

In the perturbative picture, the second-order electric-field equa-
tion also has an elegant form. Due to nonlinearities in plasma models,
the usual perturbation series, in which only fields are expanded, is
plagued by secular terms that grow indefinitely instead of oscillating
with bounded amplitudes. To remove this pathological behavior, a
commonly used technique called multi-scale perturbative expansion
can be used, which additionally expands spacetime xl ¼ xl

ð0Þ þ xl
ð1Þ=e

þxl
ð2Þ=e

2 þ � � �. Here, the small parameter e is the same auxiliary
parameter that is used to expand, for example, the electric field
E ¼ E0 þ eE1 þ e2E2 þ � � �, and xl

ðnþ1Þ is the scale slower than xl
ðnÞ by

a factor of e. The scale separation is assumed to be sufficiently large
such that one can treat @ðaÞ� xl

ðbÞ ¼ dl
�d
ðaÞ
ðbÞ. The multi-scale expansion

technique has an intuitive interpretation: Assuming nonlinearities are
weak, linear waves maintain their dispersion relation and polarization,
but their amplitudes slowly evolve. After tedious but otherwise rigor-
ous manipulation of the equations, the second-order electric-field
equation can be put into a simple form23

X
k2K2

DkE2;keihk þ i
X
k2K1

@Dk

@xk
@
ð1Þ
t �

@Dk

@k
� rð1Þ

� �
E1;keihk

¼ i
2

X
p;q2K1

Sp;qe
ihpþihq : (3)

The first term has the same structure as linear waves, except that the
dispersion tensor Dk is nondegenerate for second-order Fourier
amplitude E2 ¼ 1

2

P
k2K2
E2;keihk , which has a different spectrum K2.

The second term captures the slow advection of wave envelope E1;k

on the xl
ð1Þ scale. Notice that the advection transports wave energy,

which is manifested by the appearance of the linear-wave Hamiltonian
H ¼ 1

x
@D
@x . Also notice that the advection projects out changes of the

polarization vector and preserves DE1 ¼ 0 because dD=dk
¼ vg@D=@xþ @D=@k, where vg ¼ @x=@k is the wave group veloc-
ity. Finally, the term on the right-hand side (RHS) is the scattering
strength, which encapsulates key physics of nonlinear three-wave
interactions.

While the vector form of the scattering strength may look nonin-
tuitive, its scalar form is much more insightful. To obtain the scalar
equations, which are known as the three-wave equations,14 it is impor-
tant to recognize the exact action conservation law E1 � S�2;�3=x

2
1

¼ E�2 � S�3;1=x
2
2 ¼ E�3 � S1;�2=x2

3 when the three waves satisfy the reso-
nance condition kl

1 ¼ kl
2 þ kl

3 . Here, we have used the notation
�k

l ¼ �kl for four-momentum and �Z ¼ Z† for complex vectors. The

action conservation law can be proven rigorously using the nontrivial
identity22 ðx2 � x1ÞF1F2 ¼ x2F1 � x1F2 for the cold-fluid forcing
operator. Then, multiplying �E on both sides of Eq. (3), resonant wave
triads satisfy the canonical form of three-wave equations: dta1
¼ �Ca2a3=x1; dta2 ¼ C�a1a

†
3=x2, and dta3 ¼ C�a1a

†
2=x3, where

d ¼ @t þ vg � r is the convective derivative at respective wave group
velocities, a ¼ eEu1=2=ðmecxÞ is the normalized scalar wave ampli-
tude, and the coupling coefficient is given by the concise formula22

C ¼
X
s

Zsx2
psH

s

4Msðu1u2u3Þ1=2
: (4)

Here, Zs ¼ es=e and Ms ¼ ms=me are the normalized charge and
mass of species s, and u ¼ 1

2 e
†He is the dimensionless wave energy

coefficient. The scalar electromagnetic scattering strength Hs contains
six permutations Hs ¼ Hs

1;�2�3 þHs
�2;�31 þHs

�3;1�2 þHs
1;�3�2 þHs

�3;�21
þHs

�2;1�3 , which corresponds to the six ways of performing Wick con-
tractions when computing the Feynman diagram

¼ i
esx2

ps

2msc
Hs

1;�2�3 ; ð5Þ

Hs
i;jl ¼

1
xj
ðcki � f s;jÞðei � f s;lÞ: (6)

In the above formula, f s;j ¼ Fs;jej, and the Feynman diagrams arise
from the interaction Hamiltonian HI;s ¼ Pi

sð@iAlÞJ ls due to the
second-order response of species s, where P is the displacement opera-
tor, A is the vector potential, and J is the current operator. The above
formulas can be derived purely classically from fluid-Maxwell equa-
tions or obtained from the Lagrangian using techniques in quantum
field theory (QFT).22 Notice that the strength of each scattering chan-
nel is complex, and the total strength Hs is determined by the interfer-
ence between all six channels. In warm-fluid plasma, additional
scattering channels arise due to thermal nonlinearities, and the pure
electromagnetic scattering Hs is replaced by Hs ! Hs þ Us, where Us

arises entirely from fluid nonlinearities.23 Since Us / u2s =c
2, where us

is the thermal speed of species s, the correction is usually negligible at
nonrelativistic temperature. The above formula is of course also appli-
cable to unmagnetized cases: For cold Raman scattering, the species-
agnostics Hs ¼ � ck3

x3
ðe†2 � e1Þ, where waves “1” and “2” are transverse

EM waves and wave “3” is the Langmuir wave. Similarly, for warm
Brillouin scattering, Hs þ Us ¼ ck3

x3
ĉ2s;3ðe†2 � e1Þ, where “3” is now the

acoustic wave and ĉ2s;3 ¼ 1=ð1� b̂
2
s;3Þ with b̂

2
s;3 ¼ u2s k

2
3=x

2
3. Notice

that unmagnetized couplings are zero when the EM modes e1 and e2
are orthogonal. In contrast, magnetized couplings are usually nonzero
for orthogonal modes because what enters the formula is f s;j instead of
ej. This is due to the fact that gyration introduces additional velocity
components to charged particles, which no longer predominantly
oscillate along the wave electric field.

C. Examples at oblique angles

The coupling coefficient can be evaluated at arbitrary propaga-
tion angles for any three resonant waves. Unlike previous attempts in
the literature, we derive the general formula in a coordinate-
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independent way, and the inputs for Eq. (4) are simply the wave fre-
quencies, the wave vectors, and the polarization vectors. In any given
reference frame, one can then evaluate the forcing operator, which is
proportional to the linear susceptibility tensor, from which the scatter-
ing strength Hs and the wave energy coefficients u can be determined.
The only demanding step during the evaluation is matching the reso-
nance condition, which requires numerical root finding. Consider
scattering experiments, where the pump frequency x1, the pump
direction k̂1, and the probe direction k̂2 are given by the experimental
setup. To determine the kinematics, we first solve for the pump wave
vector k1, such that the wave dispersion relation x1 ¼ x1ðk1k̂1Þ is sat-
isfied. Second, we match the resonance condition by numerically solv-
ing for k2 from the equation x1 ¼ x2ðk2k̂2Þ þx3ðk1k̂1 � k2k̂2Þ.
Finally, we compute the unit polarization vectors by solving the degen-
erate matrix equation De ¼ 0. Notice that the complex phase of e is
indeterminate, so is the phase of the coupling coefficient C.
Nevertheless, only the relative phases between the three waves are of
physical importance, and the relative phase is controlled by the experi-
mental setup.

From the coupling coefficient, one can compute observable quan-
tities such as the linear growth rate. Assuming pump depletion is neg-
ligible, a seed wave grows exponentially at a rate c0 ¼ jCa1j=

ffiffiffiffiffiffiffiffiffiffiffi
x2x3
p

.
This expression can be symmetrized by normalizing the growth rate
with that of unmagnetized Raman backscattering cR ¼

ffiffiffiffiffiffiffiffiffiffiffi
x1xp
p ja1j=2.

Then, c0 ¼ cRM, where the dimensionlessM is given by

M ¼ 2
jCj
x2

p

x3
p

x1x2x3

 !1=2

: (7)

In the absence of damping, M is invariant when scaling x! nx and
k ! nk, if we also scale the plasma density by ns ! n2ns and scale the
magnetic field by B0 ! nB0 while keeping the plasma temperature con-
stant.24 As an example, consider a pump laser with x1 ¼ 75 Trad/s
and propagating at hk1;B0i ¼ 30� in the left-handed elliptically polar-
ized eigenmode (L). One scattering mode [Fig. 1, inset] is that the laser
excites an upper-hybrid (UH)-like plasma wave (P) and decays into
the whistler-like fast wave (F). The frequency downshift Dx

¼ x2 � x1 and the normalized growth rate M are shown in Fig. 1,
where the magnetic field is B0 ¼ 2:5 MG, the plasma density is
ne ¼ ni ¼ 1018 cm�3, the plasma temperature is Te ¼ Ti ¼ 3:2 keV,
and the warm-fluid polytropic index is adiabatic. Here, the mass ratio
mi=me ¼ 5 is artificial such that all frequencies are on the same scale.
For realistic ionmasses, numerical root findingmay take additional iter-
ations to converge, but there is no additional difficulty when evaluating
the formulas.

D. Simulation on quantum computer

That the coupling coefficient can be computed both classically
and quantum mechanically using Feynman diagrams hints at the
quantum origin of three-wave interactions. Although plasmas are usu-
ally considered classical, they possess the same cubic nonlinearity that
is known to give rise to nonlinear quantum optical phenomena.25 In
quantum optics, the degree of quantumness, which can be measured
by the extent to which wave correlations violate the classical
Cauchy–Schwarz inequality, increases as the flux decreases toward the
single photon limit. Although the low-flux limit is likely overwhelmed
by background noise in hot plasmas, the cubic interaction remains an
intrinsically quantum process. In the quantum version, the complex
wave amplitudes are promoted to operators

ffiffiffiffiffi
xi
p

ai ! Âi that satisfy
the canonical commutation relations ½ÂiðtÞ; Â

†
j ðt0Þ� ¼ dijdðt � t0Þ,

where we have used the units �h ¼ 1. The three-wave equations are
then the Heisenberg equations dtÂ ¼ i½Ĥ ; Â� with a cubic
Hamiltonian Ĥ ¼

Ð
dtðig�Â1Â

†
2Â

†
3 � igÂ

†
1Â2Â3Þ, where g ¼ C=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x1x2x3
p

. This quantization approach turns the problem of classical
Hamiltonian dynamics, which is not unitary in general, into a quan-
tum dynamics problem in the Fock space where the unitary evolution
can be simulated by quantum computers. The quantum problem
approaches the classical problem in the limit of large photon numbers.

It turns out that quantum computers can be programed to simu-
late the quantum version of the three-wave interaction problem,26 a
first-of-the-kind example that plasma physics may benefit from advan-
ces in quantum information science. To map the problem to quantum
computers, a convenient basis is spanned by the simultaneous eigens-
paces of the quantized action operators Ŝ2 ¼ n̂1 þ n̂3 and
Ŝ3 ¼ n̂1 þ n̂2, where n̂ ¼ Â

†
Â is the number operator. In this basis,

since Ŝ2 and Ŝ3 commute with Ĥ , the nonlinear three-wave interac-
tion problem is mapped to a Hamiltonian simulation problem where
the Hamiltonian matrix is block diagonal. Within each block, the sub-
space is finite dimensional and can be readily mapped to the memory
of quantum computers. As a proof-of-principle demonstration, a
three-dimensional block is recently implemented on quantum hard-
ware to solve the Schr€odinger equation i@t jwi ¼ Hjwi, where jwi
¼ a0j2; s� 2; 0i þ a1j1; s� 1; 1i þ a2j0; s; 2i and jn1; n2; n3i is the
Fock state of the three waves. The quantum hardware is programed to
evolve the quantum states according to the unitary operator
U ¼ exp ð�iHDtÞ, where Dt is the time step size. Using the standard
approach, the unitary operator is realized by a sequence of standard
gates, and the results (Fig. 2, cyan) track the exact solutions (Fig. 2,
orange) up to N � 10 time steps. As a more efficient approach, the
unitary operator is also compiled as a single customized gate, and the
results (Fig. 2, blue) are significantly improved, making it promising to
use near term quantum hardware to simulate problems of physical
interest.

FIG. 1. Frequency downshift (a) and normalized growth rate (b) when an L wave
(xpe=x1 � 0:75) decays to P and F daughter waves (insets) in a plasma with
jXej=xpe � 0:8 and vA=cs � 4, where vA is the Alfv�en speed and cs is the sound
speed. The L wave propagates at hk1;B0i ¼ 30�, while the P wave propagates at
polar angle h2 and azimuthal angle /2. Notice that backscattering is not the stron-
gest, and special angles exist where the coupling is zero. [Reproduced with permis-
sion from Y. Shi, Phys. Rev. E 99, 063212 (2019). Copyright 2019 American
Physical Society.]
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E. Magnetized laser pulse compression

Now return to the realm of classical physics; magnetized three-
wave interactions can be exploited to improve laser pulse compression
as an application.27 Similar to unmagnetized cases,28,29 magnetized
plasma waves can mediate the energy transfer from a pump laser to a
seed pulse via stimulated scattering. The seed pulse is amplified and
shortened in the pump depletion regime, thereby achieving effective
compression of the pump laser. Plasma-based pulse compression can
in principle produce pulses that are much more intense than what is
achievable using solid-state media,30 where the intensity is limited by
ionization and thermal damage. In comparison, the much higher
intensity attainable in plasmas is limited by relativistic effects,31 in the
absence of which three-wave coupling remains the dominant nonline-
arity. However, realistic plasma sources suffer from nonuniformities
and laser heating, which spoil the ideal phase matching conditions and
hence limits the performance attainable in experiments.32–40

Moreover, even for an ideal plasma target, three-wave interactions
compete with other processes, including modulational instability,
wave breaking, and wave damping. These competing processes limit
the parameter regime where pulse compression can be carried out effi-
ciently.41,42 Now, with the addition of a magnetic field, plasma condi-
tions may be better regulated, and competing effects may be better
controlled. With the extra degrees of freedom, magnetization can
potentially improve the performance of laser pulse compressors and
produce higher intensity pulses in wider frequency ranges.

Let us take pulse compression mediated by the upper-hybrid
(UH) wave as an example to elucidate the benefits of magnetization.27

The UH mediation is the magnetized version of Raman compression,
which is mediated by the Langmuir wave. Consider experiments where
the pump laser (wave “1”) and seed laser (wave “2”) are fixed, and one
adjusts the plasma conditions to optimize the output intensity. In
order to resonantly couple the two lasers, plasma parameters need to
be selected such that the detuning x3 ¼ x1 � x2 matches the
frequency of a plasma eigenmode (wave “3”). For UH mediation,

the two lasers propagate perpendicular to the magnetic field, and

x3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

p þ X2
e

q
is the upper-hybrid frequency. Then, as one ramps

up the magnetic field B0, the plasma density n0 needs to be ramped
down to keep x3 fixed. When the plasma density is reduced, the three-
wave coupling coefficient decreases, so the amplification rate c0
¼ xp

2

ffiffiffiffi
x1
x3

q
ja1j is smaller. This may seem disadvantageous because a

longer plasma is then required to achieve the same amplification.
However, at the expense of a longer plasma, the output pulse intensity
can be increased beyond the saturation value limited by the modula-
tional instability, which introduces unwanted phase shift that spoils
the phase matching conditions. The key physics that enables a larger
saturation value is that the growth rate of the modulational instability

cM ¼
x2

p

8x2
ja2j2 is proportional to n0, unlike c0 / n1=20 . In other words,

as the density decreases, cM decreases faster than c0, so the demanded
pulse compression process gains a relative advantage and the
unwanted modulational instability is relatively suppressed. As corrob-
orated by 1D PIC simulations,43 the net consequence of this setup is
that the seed pulse grows slower, but the saturation occurs later at

FIG. 3. Compression of 1-lm laser using (a) upper-hybrid wave mediation with
x3=x1 � 0:1. The peak intensity of the seed pulse grows slower, but the satura-
tion due to modulational instability is delayed. The final intensity increases with B0
before it reaches the optimal value (cyan), after which the performance degrades
due to wavebreaking and wakefield excitation. [Adapted with permission from Phys.
Plasmas 24, 093103 (2017). Copyright 2017 AIP Publishing LLC.] (b) Using magne-
tized low frequency (MLF) waves to mediate pulse compression (orange), the
amplification rate is significantly larger than unmagnetized Raman (blue) and
Brillouin (red) when the laser frequency is close to the electron gyro frequency. Due
to synergistic actions of MLF waves, the bandwidth is ultra-wide (inset), so the
attainable pulse duration is significantly shorter. [Adapted with permission from
Edwards et al., Phys. Rev. Lett. 123, 025001 (2019). Copyright 2019 American
Physical Society.]

FIG. 2. Occupations of basis states after N simulation steps when solving the quan-
tum three-wave problem in a three-dimensional block. When U ¼ exp ð�iHDtÞ is
compiled as a sequence of standard gates (cyan), results follow the exact solutions
(orange) up to N � 10. The quantum coherence is more efficiently utilized when U
is compiled as a single customized gate (blue), using which N � 100 steps can be
carried out before results are corrupted by noise. [Adapted with permission from
Shi et al., arXiv:2004.06885 (2020). Copyright 2020 Author(s), licensed under an
arXiv.org perpetual non-exclusive license.]
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higher intensity [Fig. 3(a)]. This mechanism is also at play when lasers
propagate at other angles with respect to the background magnetic
field.44

While substituting n0 by a moderate B0 increases the output
intensity, pulse compression is inefficient in a plasma that is too tenu-
ous.43 A major limitation is the excitation of wakefield by the amplified
seed pulse: When the plasma density is too low, it becomes too easy
for the ponderomotive force to expel plasma electrons. This process
destroys the coherent eigenmode structure, which is required to medi-
ate efficient pulse compression. Even before ponderomotive expulsion
kicks in, the UH wave may already loss coherence due to wave break-
ing.27 Wave breaking occurs when the quiver velocity of electrons
vq ¼ eE3x3=mex2

p ¼ ca3x3=xp exceeds the phase velocity vp ¼ x3=
k3 of the plasma wave. Since vp is approximately fixed, decreasing the
plasma density makes the plasma wave easier to break. Using the
Manley-Rowe relation for three-wave interactions, the maximum
plasma wave amplitude a3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1=x3

p
a1. Therefore, in order to avoid

breaking the plasma wave, the pump intensity is limited to
a1 	 xpffiffiffiffiffiffiffiffi

x1x3
p vp

c . Therefore, as the plasma density decreases, the pump

intensity is capped at an ever smaller value. When the pump becomes
too weak, the growth no longer dominates damping, and pulse com-
pression becomes inefficient and eventually cease to work.

When the magnetic field strength is chosen appropriately, UH
mediation not only increases the output intensity, but also allows for
the compression of shorter wavelength lasers by alleviating wave
damping.27 Notice that damping is more severe for shorter wavelength
lasers because in order to avoid wave breaking, one must increase xp

for larger x1. However, in a denser plasma, damping is stronger,
which now becomes the major limiting effect. For collisional damping,
the coherent quiver motion of charged particles is randomized by
interspecies collision. Consequently, the fraction of wave energy that is
carried by particles is dissipated to heat. The dissipation rate is propor-
tional to the collision frequency, which scales as n20 due to the binary
nature of collisions. Therefore, when substituting n0 by B0, UH media-
tion suffers significantly less collisional damping. The other way to
reduce collisional damping is increasing the plasma temperature T0
because the collision frequency roughly decreases as 1=v3T in thermal
plasmas, where vT is the electron thermal speed. However, increasing
T0 unwittingly increases collisionless damping, a major mechanism
that dissipates the plasma wave. For collisionless damping, trapped
particles, whose velocity is near vp, irreversibly exchange energy with
the wave through phase mixing. The wave is damped when more par-
ticles gain energy than loss energy, which occurs as long as the distri-
bution function falls off near vp. Although the presence of B0
complicates the process,45–49 the single-species nature of phase mixing
causes the collisionless damping to roughly scale with n0, which is
reduced at lower density. Therefore, compared with unmagnetized
case, where both n0 and T0 can neither be too large nor too small, UH
mediation opens up the n0-T0 parameter window, in which efficient
pulse compression may be achieved. The benefit of magnetization is
more pronounced for shorter wavelength lasers, and the window for
UH mediation remains open until the x-ray range beyond the reach of
unmagnetized schemes.50–52

In addition to the UH wave, a large variety of other magnetized
waves can also be used to mediate pulse compression. To select a
mediating wave, one chooses laser propagation angles with respect to
B0 and detunes the seed frequency from the pump to match plasma

resonances. By choosing a different wave, what is essentially changed
is the energy partition between field and particle degrees of freedom.
Consequently, the coupling coefficient, the damping rates, and the
growth rates of competing instabilities are changed, so is their relative
importance. For example, as an analogue to unmagnetized Brillouin
compression, which is mediated by the ion acoustic wave or quasi-
mode, pulse compression can be mediated by magnetized low fre-
quency (MLF) waves,53 which are the short-wavelength extensions of
MHD waves. An immediate advantage of using low frequency plasma
waves is that the required laser detuning is small, so the pump and
seed beams can be derived from a single oscillator, which simplifies
the experimental setup. However, in the unmagnetized case, the
growth rate of Brillouin amplification is substantially smaller than that
of Raman, roughly by a factor of ðme=miÞ1=2 where mi is the lightest
ion mass because nearly half of the acoustic wave energy is carried by
slow ions, which are ineffective for providing three-wave coupling. In
other words, in weakly damped regimes, Brillouin is usually not com-
petitive with Raman in electron-ion plasmas.54,55 The situation is dras-
tically changed with the addition of an oblique magnetic field, whose
strength is such that x1;2 � jXej 
 xp. In this regime, a large fraction
of the pump and seed energy is carried by the resonantly driven elec-
tron gyro motion. In other words, for the same laser intensity, elec-
trons now oscillate at much higher velocity, which compensates for
the reduced energy share of electrons in low frequency waves. This
effect greatly enhances the three-wave coupling via MLF waves, which
provide large amplification rates that are even grater than Raman.
Moreover, mediation via MLF waves has significantly larger band-
width, which allows the seed pulse to reach much shorter duration.
The ultra-wide bandwidth partly comes from the large growth rates.
But perhaps more importantly, it comes from the synergistic action of
all three branches of MLF waves, which can be excited simultaneously
when their frequencies are close [Fig. 3(b)]. The frequencies of the
three branch are roughly xp cos h3; csk3, and Xi, where cs is the sound
speed. Therefore, at near perpendicular angle, all three branches have
comparable frequencies, which allows their bandwidths to overlap,
giving rise to an ultra-wide total bandwidth. It is worth noting that h3
cannot be too close to 90� because at perpendicular angle, energy in
MLF waves is largely spent on compressing the magnetic field, so the
three-wave coupling is energy suppressed and the amplification rates
diminish.

III. SCALAR QED PLASMA MODEL

The megagauss-level magnetic fields required to affect three-wave
coupling are large, but they still keep the plasma in the classical regime,
which may no longer be the case in even stronger fields.
Experimentally, gigagauss-level magnetic fields have been reported.56,57

There, the quantized electron perpendicular energy �hjXej � 10 eV is
larger than the photon energy of optical lasers, so the quantum nature
of electrons starts to manifest. At the same time, the intense lasers
accelerate electrons to high energy, so the plasma is relativistic in addi-
tion to being quantum. These conditions created in laboratory are thus
reminiscent of extreme astrophysical environments, for which the clas-
sical plasma model may no longer be sufficient.

The classical plasma model, which assumes point-like charged
particles and wave-like EM fields, breaks down when the wave nature
of charged particles and the particle nature of EM excitations are
resolved. In the later regime, instead of making incremental
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modifications to classical plasma models, a completely different frame-
work is required, especially when the wave-particle duality of both
electrons and EM fields are important. For a few electrons and pho-
tons, it is well known that the fundamental theory is quantum electro-
dynamics (QED). The question is then how to extend QED to
describe collective effects. As a toy model, we consider scalar QED,
which is described by the Lagrangian density

L ¼ ðDl/Þ�ðDl/Þ �m2/�/� 1
4
Fl�F

l�; (8)

where / is a complex scalar field with mass m and charge e, Dl

¼ @l � ieAl is the covariant derivative, and Fl� ¼ @lA� � @�Al is
the field strength tensor. Here, we have used the natural units
�h ¼ c ¼ 1 and omitted the self-coupling k

2 ð/
�/Þ2. The complex scalar

field describes spin-0 charged bosons, instead of spin-1/2 fermions.
Nevertheless, the usual plasma physics takes no account of the spin-
statistics of charged particles, and the scalar QEDmodel is sufficient to
demonstrate that quantum field theory (QFT) can be extended to
incorporate collective many-body effects. With the implied under-
standing that charged particles are bosons, we will refer to them as
electrons and positrons for simplicity. The approach we discuss below,
which has since been adapted to spinor QED plasmas,58,59 is comple-
mentary to other approaches including finite temperature field
theories,60,61 statistic Green’s function theories,62,63 and quantum
hydrodynamics.64,65

A. Field theory with nontrivial backgrounds

To incorporate plasma effects into scalar QED, we decompose
the bosonic fields into classical backgrounds and quantum excitations:
/ ¼ /0 þ u and Al ¼ �Al þAl. In usual QFT, /0 ¼ 0 and �Al ¼ 0,
and one studies fluctuations on the vacuum background. Now to
describe plasmas, /0 and �Al are allowed to be nonzero. These back-
ground fields, which are not necessarily constants or Bose–Einstein
condensates, can be dynamical. The only conditions they need to sat-
isfy are the classical field equations

ð�Dl �Dl þm2Þ/0 ¼ 0; (9)

@l�Fl� ¼ �J �0 : (10)

Here, �Dl ¼ @l � ie�Al is the background gauge covariant derivative,
�Fl� ¼ @l �A� � @� �Al is the background field strength, and �J l

0 ¼ e
i

½/�0ð�D
l/0Þ � c:c:� is the total background current, which is summed

over all particles when the model include multiple charged species. It
is obvious that the classical vacuum /0 ¼ 0 and �Al ¼ 0 is a trivial
solution. In more general cases where the solutions are nontrivial, the
fields �Fl� are the usual classical EM fields, whereas the bosonic field
/0 is formally related to the symmetrized many-body wave function
by /0ðxÞ ¼

Ð ffiffiffiffi
V
p

U0ðx; x2;…; xNÞ, where V ¼ d4x2 � � � � � d4xN is
the volume form.

On a given nontrivial background, quantum excitations u and
Al interact via additional vertices that are absent in vacuum field the-
ories.66 To obtain the Lagrangian that describes the excitations, we use
classical field equations [Eqs. (9) and (10)] in the action integral
S ¼

Ð
d4xL. After integration by part, the Lagrangian density can be

decomposed asL ¼Lu þLA þLI , where

Lu ¼ ð�DluÞ�ð�DluÞ �m2u�u; (11)

LA ¼ �
1
4
Fl�F

l� þ e2/�0/0AlA
l; (12)

LI ¼ �ð�jl þ �glÞAl þ e2ð/0u
� þ /�0uþ u�uÞAlA

l: (13)

The first term Lu describes the free u field. Here, free is in the sense
that u does not interact with Al, but u clearly feels the influence of
the classical field �Al through the background gauge covariant deriva-
tive. Likewise, the second term LA describes the free Al field, with
Fl� ¼ @lA� � @�Al. The Al field gains a mass term through /0,
which can have spacetime dependencies.67 Finally, LI includes all
interaction terms. In particular, �jl ¼ e

i ðu� �D
lu� c:c:Þ is the current

due to vacuum excitation, and �gl ¼ e
i ð/

�
0
�Dluþ u� �Dl/0 � c:c:Þ is

the currents due to plasma excitation. The background field theory
defined by Eqs. (11)–(13) is an extension to Furry’s picture that is
commonly used in strong-field QED,68 which includes �Al but not /0.

B. Wave effective action

Using the background field theory, we study properties of Al

excitations in scalar QED plasmas.66 Unlike classical fields, which sat-
isfy the field equations, quantum uncertainty allows off-shell fluctua-
tions, which are usually captured in QFT using second quantization or
path integration. Here, we use path integral to integrate out charged
degrees of freedom. What remains is then the effective action for Al,
which includes plasma dressing effects. Using perturbation theory, the
effective action can be written as

SA ¼
1
2

ð
d4xAlðxÞð@2gl� � @l@�ÞA�ðxÞ

þ 1
2

ð
d4xd4x0AlðxÞRl�

2 ðx; x0ÞA�ðx0Þ þ Oðe3Þ; (14)

where gl� is the Minkowski tensor, and the higher order terms in
Oðe3Þ describe three-wave interactions and so on. To e2 order, plasma
and vacuum responses decouple, and the linear response tensor is
Rl�
2 ¼ Rl�

2;bk þ Rl�
2;vac. The background plasma response is due to the

excitation of on-shell particles

Rl�
2;bkðx; x0Þ ¼ þ

¼ 2e2/0/
�
0dðx � x0Þgl� þ iPl�

2;bkðx; x
0Þ: (15)

The first term is the photon mass term, and the second term is the
plasma polarization tensor Pl�

2;bkðx; x0Þ ¼ h�gl ðxÞ�g�ðx0Þi ¼ e2½/�0 �Dl

�ð�Dl/0Þ��½/00 �D0�� � ð�D0�/00Þ�G� c:c. For simplicity, we have used
the notation /0 ¼ /0ðxÞ; /00 ¼ /0ðx0Þ; G ¼ Gðx; x0Þ; G0 ¼ Gðx0; xÞ,
and so on. Here, Gðx; x0Þ is the electron propagator, or Green’s func-
tion, which satisfies ½�DlðxÞ�DlðxÞ þm2�Gðx; x0Þ ¼ �idðx � x0Þ. In
comparison, the vacuum response is due to virtual electron-positron
pair excitation, and

Rl�
2;vacðx; x0Þ ¼ þ

¼ 2e2huu�idðx � x0Þgl� þ iPl�
2;vacðx; x0Þ: (16)

The first term gives rise to photon mass renormalization, and the
second term is the vacuum polarization tensor Pl�

2;vacðx; x0Þ
¼ h�jlðxÞ�j�ðx0Þi ¼ e2½G0 �Dl � ð�D�lG0Þ�ð�D 0��GÞ þ c:c. Notice that to
e2 order, /0 does not directly affect Rl�

2;vac, and only enters indirectly
via �Al through the self-consistency conditions [Eqs. (9) and (10)].
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Using the above gauge-independent formulas, the e2-order effective
action can in principle be evaluated once the background fields /0 and
�Al are specified. Notice that unlike what is usually encountered in
plasma physics, the e2-order effective Lagrangian that corresponds to
Eq. (14) depends on two spacetime coordinates x and x0, which is due
to the nonlocal nature of plasma and vacuum responses in the QED
regime.

As an example, we obtain an explicit formula for the dispersion
tensor in a cold uniformly magnetized plasma.66 Using the transna-
tional symmetry, Rðx; x0Þ ¼ RðrÞ only depends on the coordinate sep-
aration r ¼ x � x0, so the Fourier-space effective action is simplified:
SA ¼ 1

2

Ð
d4k
ð2pÞ4 Âlð�kÞDl�ðkÞÂ�ðkÞ þ Oðe3Þ. Here, Dl�ðkÞ ¼ klk�

�k2gl� þ Rl�
2 ðkÞ is the dispersion tensor, and R̂

l�
2 ðkÞ ¼

Ð
d4reikr

Rl�
2 ðrÞ. To evaluate Eqs. (15) and (16), we use the symmetric gauge

for �Al and solve for the Green’s function G. Additionally, we specify
the plasma background by constructing a symmetrized many-body
wave function U0 from single-particle wave functions. The wave func-
tion U0 depends on the plasma distribution function, which is now
Landau quantized in the direction perpendicular to the background
magnetic field B0. For neutron star magnetosphere1 where the plasma
temperature kBT � 1

4 �hXe is cold, all particles are in the lowest Landau
level. We further assume for simplicity that all particles stream along
B0 at the same velocity. Then, in the rest frame of the plasma, and in
the coordinate system xl where B0 is along the x3 direction, compo-
nents of the plasma response tensors are66

R̂
kr
2;bkðkÞ ¼

mx2
p

m0
gkr � 1

2

X
1¼61

ðjþ 1.Þkðjþ 1.ÞrKð0Þ1

" #
; (17)

R̂
ab
2;bkðkÞ ¼

mx2
p

2m0

X
1¼61

eacebdjcjdð2Kð1Þ1 � Kð0Þ1 Þ
n

�j2
1 dabKð1Þ1 6i1eabðKð1Þ1 � Kð0Þ1 Þ
h io

; (18)

R̂
ka
2;bkðkÞ ¼ R̂

ak
2;bkð�kÞ ¼

mx2
p

2m0

X
1¼61

ðjþ 1.Þk

� �jaKð1Þ1 6i1eabjbðKð1Þ1 � Kð0Þ1 Þ
h i

; (19)

where k; r ¼ 0; 3 and a; b ¼ 1; 2. Here, m0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ jeB0j

p
is the

ground state mass, and the summation over 1 ¼ 61 corresponds to
the s-channel and the t-channel Feynman diagrams. Since B0 breaks
the symmetry, two-dimensional Levi-Civita symbol eab appears, and
the upper (lower) sign of 6 corresponds to eB0 > 0 (eB0 < 0). Effects
of Landau quantization are encapsulated in special functions

KðnÞ1 ¼ Kðj2
1 � n; j2Þ, where the K-function is related to the confluent

hypergeometric function by Kðx; zÞ ¼ 1
x1F1ð1; 1� x;�zÞ. The argu-

ments of the K-function are j2
1 ¼ j2

0 � j2
3 þ 1.0j0 and

j2 ¼ j2
1 þ j2

2, where jl ¼ r0kl=2 and .l ¼ r0ðm0; 0; 0; 0Þ are nor-

malized by the magnetic de Broglie wavelength r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�h=eB0

p
. Here,

�h is displayed explicitly to highlight the quantum nature of the plasma
response. The above formulas make intuitive sense because heuristi-
cally from the Feynman diagram, the plasma polarization is
P̂2;bk � e2j/0j2ðk=MÞ2, where /0 �

ffiffiffiffiffiffiffiffiffiffiffi
n0=m

p
, k is the energy scale of

Al excitations, and M is the energy scale of the electron

propagator. In magnetized plasmas, the two intrinsic energy
scales are the electron mass m and the gyro frequency
X ¼ eB0=m. We see unless B0 approaches the Schwinger field
Bc ¼ m2=e or the photon energy approaches m, plasma response
usually dominates the vacuum response, which heuristically
scales as P̂2;vac � e2k6=M4 and is given exactly by the
Euler–Heisenberg effective Lagrangian.69,70

C. Modified wave dispersion relations

From the wave effective action, the dispersion relation can be
extracted. The dispersion tensor has complementary interpretations in
QFT and in plasma physics. In QFT, the propagator of the A field is
schematically i=D up to some gauge fixing condition. The poles of D

then give rise to peaks in cross sections. The energy of each peak is
usually identified as the mass of a particle in the field theory, and the
width of the peak is associated with the lifetime of the particle. In com-
parison, in plasma physics, one looks for nontrivial A that satisfies
Dl�Â� ¼ 0. Due to gauge invariance, only three components of this
matrix equation are linearly independent. In temporal gauge, Eq. (1) is
recovered, and the dispersion relation x ¼ xðkÞ is again solved from
detDij ¼ 0, where Dij is the spatial block of the Lorentz-covariant
Dl� . For a real-valued k, x may have an imaginary part, which is usu-
ally identified as the wave damping rate. The above field theoretical
picture and the plasma physics picture are consistent if we regard
plasma waves as quasi-particles.

The dispersion relation is simplified for wave propagation per-
pendicular to the magnetic field, in which case QED effects give rise to
anharmonic cyclotron absorption features observed for x-ray

FIG. 4. Perpendicular wave dispersion relations in a magnetized cold plasma, with
immobile ions as neutralizing background. In a QED plasma (solid), the extraordi-
nary wave (X, blue) hybridizes with cyclotron resonances, which are redshifted due
to relativistic effects. Notice that in this example, where xpe=jXej ¼ 0:7 and
jXej=me ¼ 0:1, the 5th resonance occurs near 4jXej instead of 5jXej. The hybrid-
ization is absent in a classical plasma (dashed), in which only the upper-hybrid
(UH) wave remains. While QED modifications to the X wave is significant, and lead
to anharmonic cyclotron absorption features for x-ray pulsars, the ordinary wave
(O, red) is only slightly modified with a redshifted cutoff frequency. [Reproduced
with permission from Shi et al., Phys. Rev. A 94, 012124 (2016). Copyright 2016
American Physical Society.]
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pulsars.66 In this geometry, one eigenmode is the ordinary (O) wave
(Fig. 4, red), whose electric field is polarized along B0. The O wave sat-
isfies the simple dispersion relation x2 ¼ x2

p0 þ k2?, where
x2

p0 ¼ m
m0

x2
p. For O wave, magnetization effects only enter through

the modified ground state mass m0: Due to Landau quantization, the
zero-point energy in magnetic field increases the electron mass from
m to m0, so the plasma frequency is reduced. The QED dispersion
relation (solid) is close to the classical dispersion relation (dashed),
unless the magnetic field is comparable to the Schwinger field. The
other eigenmode is the extraordinary (X) wave (Fig. 4, blue), whose
electric field is perpendicular to B0. Since the X wave imparts both
energy and angular momentum to electrons, it causes electrons to
jump between Landau levels. At nonresonant frequencies, the jump is
virtual and the wave-particle coupling is weak. However, when the
wave frequency matches the energy difference between two Landau
levels, the x � k transverse vacuum mode hybridizes with the x �
xn longitudinal excitation, and a bandgap is opened, giving rise to
QED analogues of plasma Bernstein waves. Notice that in contrast to
what happens in classical plasmas, finite band gaps exist even when
the QED plasma is cold. Classically, electrons stop gyrating when
T0 ! 0, in which case Bernstein waves vanish and only the UH wave
remains. However, quantum mechanically, electrons cannot stop
gyrating because ½p1; p2� ¼ �ieB0 no longer commutes, where pl

¼ �i�Dl is the kinetic momentum operator of electrons in background
fields. Due to quantum uncertainty, cold electrons continue to gyrate at
zero-point energy, and cyclotron resonances persist. In a cold plasma,
the resonance frequency is xn ¼ En �m0, where En
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ jeB0jð2nþ 1Þ

p
is the energy of the nth Landau level. In weak

magnetic field, xn ’ njXej is harmonic. However, in strong magnetic
fields, xn < njXej due to relativistic effects. The relativistic redshift is of
order unity, namely, xn < ðn� 1ÞjXj when n >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2me=jXej

p
� 9:4

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1012G=B0

p
. We see the anharmonicity of cyclotron resonances is

significant for neutron stars and has already been observed for a num-
ber of x-ray pulsars.71–74

The wave dispersion relation is also simplified for wave propaga-
tion parallel to the magnetic field, in which case QED effects give rise
to anomalous Faraday rotations.66 In this special geometry, transverse
and longitudinal dynamics decouple, and the dispersion relation
recovers the familiar form in plasma physics: The transverse modes
are the right-handed (R) and left-handed (L) circularly polarized EM
waves, with n2k ¼ R (Fig. 5, black) and n2k ¼ L (Fig. 5, blue); The longi-
tudinal modes are the electrostatic plasma waves with P¼ 0 (Fig. 5,
red). Here, we have used the conventional notation in plasma physics,
where R ¼ Sþ D and L ¼ S� D, and the permittivities are related to

the plasma response tensor by x2ðS� 1Þ ¼ R̂
11 ¼ R̂

22
; �ix2D

¼ R̂
12 ¼ �R̂

21
, and x2ðP � 1Þ ¼ R̂

33
. For parallel propagation,

QED effects enter through two mechanisms. The first is that magneti-
zation increases the ground mass, so the plasma frequency xp ! xp0

is reduced, as we have seen for the perpendicular case. The second
mechanism is recoil, namely, when a wave interacts with a particle, the
momentum of the particle is transiently increased by �hk. This mecha-
nism is also at play at other propagation angles, but is isolated from
other effects for parallel propagation. To see how recoil comes into
play, notice that for an electron with parallel momentum kk its energy

is En;kk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ jeB0jð2nþ 1Þ þ k2k

q
. A ground-state electron can

resonantly interact with an R-wave photon when the photon

frequency is x ¼ E1;kk �m0. The resonance frequency can be written
as xr ¼ m

m0
jXj þ j, where j ¼ ðk2k � x2Þ=2m0 > 0 is the recoil

momentum.We see recoil increases the photon energy that is required
to excite the particle, and xr ! jXj recovers the classical cyclotron
resonance in the absence of QED effects. Now, with QED effects
included, the classical R-wave permittivity, which is given by Rc

¼ 1� ðx2
p=x

2Þ=ð1� jXj=xÞ in a single-species plasma, is replaced

by R ¼ 1� ðx2
p0=x

2Þð1� j=xÞ=ð1� xr=xÞ. This formula, which
is derived rigorously, makes intuitive sense: The denominator gives
rise to the expected resonance, and the numerator is such that R! Pc
¼ 1� x2

p0=x
2 recovers the unmagnetized limit. Similarly, a ground-

state electron can resonantly interact with the L wave. Notice that reso-
nant interaction not only requires the correct energy, but also the
correct angular momentum. Unlike an R-wave photon, which has the
correct angular momentum to excite gyrating electrons, the L wave
has the opposite angular momentum. To flip the sign, an anti-L-wave
photon, namely, a negative frequency mode, is required. By replacing
x! �x, the L-wave permittivity is then L ¼ 1� ðx2

p0=x
2Þ

ð1þ j=xÞ=ð1þ xr=xÞ. Finally, a ground-state electron can also res-
onantly interact with the P waves, which are longitudinally polarized
and therefore have zero angular momentum. Since the P waves cannot
change electron’s perpendicular motion, the resonance condition
becomes x ¼ E0;kk �m0, which can be written as x ¼ j. Using the
condition that Pð�xÞ ¼ PðxÞ is time even, the rigorous formula
P ¼ 1� ðx2

p0=x
2Þð1þ j=2m0Þ=ð1� j2=x2Þ makes intuitive sense:

It has the correct pole and recovers Pc in the classical limit. To see why
the numerator arises, we can use the condition that the wave cutoff

FIG. 5. Parallel wave dispersion relations in a cold magnetized plasma. In this
geometry, longitudinal plasma modes (red), which include both the Langmuir wave
and the acoustic wave, decouple from the transverse modes, which include the
right-handed (R, black) and left-handed (L, blue) circularly polarized waves. For var-
ious effects to be visible on the same scale, we choose xpe=jXej ¼ 0:7; jXej=me
¼ 0:1, and mi=me ¼ 3 in this example. The classical (dashed) and the QED (solid)
dispersion relations differ due to two effects: ground-state mass shift, which affects
the cutoff frequencies at kk ! 0, and relativistic-quantum recoil, which affects reso-
nances when kk ! 1. Since the R and L waves are modified differently, Faraday
rotation is changed by QED effects. [Reproduced with permission from Shi et al.,
Phys. Rev. A 94, 012124 (2016). Copyright 2016 American Physical Society.]
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frequency is unchanged by recoil, which vanishes at kk ¼ 0 where the
wave carries no momentum. An observable consequence of QED
effects is the modification of Faraday rotation. Since the eigenmodes
are R and L waves, the polarization angle h of a linearly polarized EM
wave rotates at the rate kdh=dz ¼ pDn, where k ¼ 2pc=x is the vac-
uum wavelength and Dn ¼ nL � nR is the difference in refractive
indexes between the L and R waves of the same frequency. In electron-
ion plasmas where mi 
 me, electron contributions dominate, and

n2R=L ’ 1� mX
x2 �

mx2
p

2m0x2 7 m0
x 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mX
x2 þ

mx2
p

2m0x2 6 m0
x

� �2
7

2mx2
p

x3

r
. Since R

and L waves are modified differently, the QED theory predicts a differ-
ent Faraday rotation rate than the classical theory. The difference is
more pronounced further away from the light cone and is observable
for typical radio pulsars.75 Moreover, at conditions feasible in a labora-
tory, the difference is as large as �10% when one measures Faraday
rotation in a plasma with density n0 � 1017 cm�3 and magnetic field
B0 � 108 G using a 1-lm probe laser. The discrepancy becomes even
larger when the ratio jXej=xpe increases, and should be accounted for
when using optical probes to diagnose strongly magnetized plasmas.6

D. Lattice QED simulation

As is the case for most nonlinear theories, the QED plasma
model is analytically solvable only in a few special cases, and numerical
simulations are required to make predictions beyond the perturbative
regime. For QED, the ab initio numerical approach is lattice gauge the-
ory, from which observables can be extracted by computing expecta-
tion values of relevant operators using numerical path integration. In
usual lattice QED, what is of interest are fluctuations about the vac-
uum, so the numerical path integral mostly samples field configura-
tions that are close to the classical vacuum /0 ¼ 0 and �Al ¼ 0. In
contrast, when studying plasmas, we are interested in nontrivial field
configurations that satisfy the classical field equations: A particular
solution to these equations corresponds to a particular situation of
interest to plasma physics. For example, by specifying /0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n0=2m

p
exp ðimtÞ and �Al ¼ 0, one will be studying a uniform unmagnetized
plasma with density n0 where all particles are in the ground state.
Having specified the classical backgrounds, one can then use numeri-
cal path integration to study quantum fluctuations in the background
field theory [Eqs. (11)–(13)]. However, before we can do that, a non-
trivial task is to determine the self-consistent background fields /0

and �Al, which usually requires numerically solving the classical field
equations [Eqs. (9) and (10)] for given initial and boundary
conditions.

While the classical gauge field �AlðxÞ can usually be regarded as a
single-body wave function, the classical scalar field /0ðxÞ is associated
with an N-body wave function U0 as discussed earlier. Exactly solving
the many-body problem is challenging, and some approximations are
usually necessary. For example, one can take the commonly used
ansatz that the bosonic many-body wave function is the symmetrized
product of single-body wave functions: U0ðx1;…; xNÞ /

P
r2SN wrð1Þ

ðx1Þ;…;wrðNÞðxNÞ, where the summation is over the permutation
group SN. Similar constructions can be made for fermionic fields using
the Slater determinant. Then, for given initial and boundary condi-
tions, one solves for single-body wave functions wi under the influence
of the mean field �Al, and self-consistently advance �Al using the

Maxwell’s equations, in which the current density �J l is summed over
all particles.

To numerically solve the coupled classical field equations, we
develop a variational algorithm76 based on discrete exterior calculus
(DEC), which ensures good conservation properties. To simplify the
notation, we denote wi ! / and �A ! A, with the implied under-
standing that all fields are single-body wave functions associated with
the classical background fields. In DEC, with a discretized spacetime
manifold, the scalar field / is a differential 0-form, and hence lives on
vertices. In comparison, the gauge field �A, as well as the covariant
derivative D/, are differential 1-forms, and hence live on edges.
Finally, the field strength tensor F ¼ dA is the exterior derivative of A,
and lives on faces as a differential 2-form. With the above discretiza-
tion scheme, which respects the geometric structure of DEC, the algo-
rithm automatically guarantees d2A ¼ 0, namely, the two Maxwell’s
equationsr � B ¼ 0 andr� E ¼ �@B=@t. Moreover, the discretiza-
tion scheme preserves the U(1)-gauge symmetry /! /eiev and
Al ! Al þ @lv, so the discretized equations satisfy local charge con-
servation exactly. To obtain the discretized equations, we use the prin-
ciple of least action to find field configurations that extremize the
discretized action Sd ¼

P
c VcLc. Here, the summation is over all cells

of the discretized spacetime manifold, Vc is the volume of the cell, and
Lc is the discretized Lagrangian density within each cell, which
depends on the discretized /v and Ae, where the subscripts v and e
denote vertices and edges, respectively. The condition dSd=d/v ¼ 0
gives the discretized Klein–Gordon equation, which can be used to
advance /v in time. Similarly, taking variation of Sd with respect to Ae

on space-like edges, we obtain the discretized Ampère’s law, which can
be used to advance Ae in time. These two dynamical equations are
coupled and require self-consistent initial conditions. The condition is
satisfied by solving the discretized Gauss’s law, which is obtained by
taking variation of Sd with respect to Ae on time-like edges. Finally, the
two dynamical equations have an excess degree of freedom due to the
U(1)-gauge symmetry. After gauge fixing, a unique solution for given
initial and boundary conditions can then be found, which gives a self-
consistent classical field configuration. It is noteworthy that the discre-
tized equations satisfy exact local energy-momentum conservation77

in the limit e! 0, namely, when / and A decouple.

E. Lattice simulations of laser-plasma interactions

Using lattice QED simulations, we can study, for example, laser-
plasma interactions.76 Compared to PIC codes, which are perhaps the
most important workhorse for short-pulse laser-plasma interactions
nowadays, lattice simulations treat both collective plasma effects and
high-energy QED processes self-consistently within a single frame-
work. Since PIC codes are designed to capture plasma effects only up
to relativistic field strengths,78–83 additional Monte Carlo modules
need to be turned on in order to capture specific QED processes.84–87

For example, to study laser induced electron-positron pair production,
QED source terms are required. These source terms are usually com-
puted from cross sections. that are based on improved local-constant-
field approximations (LCFA).88–91 The LCFA requires that the forma-
tion lengths of QED processes is much shorter than the characteristic
length scales of EM fields. For an optical laser colliding with an elec-
tron beam, the condition is violated when the beam energy exceeds
�10 GeV, whereby the Lorentz-boosted laser wavelength becomes
comparable to the Compton wavelength. As another example, to
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capture processes that produce energetic photons, such as bremsstrah-
lung and inverse Compton scattering, PIC codes need to track photons
as additional particles. This treatment becomes questionable when the
spectrum of energetic photons is not well-separated from the spectrum
of plasma fluctuations, in which case PIC codes face the difficult choice
of whether to treat photons as subgrid-scale particles or as grid-scale
waves. Additionally, QED-PIC codes have difficulties in ensuring
energy-momentum conservation: It is far from obvious how particles
should recoil92–94 and how EM fields should redistribute when QED
processes occur in the PIC framework. These difficulties are overcome
in lattice QED simulations by fully resolving all relevant scales. The
required resolution, which is at sub-Compton scales, is of course very
high and may only be possible on upcoming exascale supercomputers
or anticipated quantum computers. Nevertheless, the ab initio
approach is what it takes to capture the physics correctly when collec-
tive and QED processes have overlapping scales.

Fortunately, instead of requiring full path integrals, we can
already learn a lot about laser-plasma interactions by solving the classi-
cal field equations. This is because laser and plasma contain a large
number of on-shell particles that interact only weakly, so the classical
field dynamics dominate quantum fluctuations.95,96 As an example,
we consider a plane wave laser colliding with a slab of neutral beam
and carry out 1D simulations in the beam frame.76 Suppose the laser
frequency is boosted to the gamma-ray range x0 ¼ 0:7m, which is
not yet high enough for two photons to produce electron-positron
pairs. Moreover, we use immobile ions whose only role is to provide a
smooth neutralizing background that confines the electrons, which are
chosen to be initially in the ground state. By using a smooth potential

well instead of a lattice of spiky Coulomb-like potentials, we ignore
electron-ion collisions and hence subsequent effects such as brems-
strahlung. We choose the plasma density n0 ¼ m3, which corresponds
to xp ¼ 0:3m. Although this ultra-high density is unlikely achievable
in experiments, it allows interesting phenomena in 1D simulations
that demonstrate the unique capabilities of lattice QED. When the
laser intensity is relativistic, namely, when the normalized field
strength a ¼ eE=mx0c > 1, lattice simulations recover well-known
phenomena [Figs. 6(a) and 6(c)]: When the laser hits the plasma, the
ponderomotive force compresses the plasma, and laser photons are
redshifted to x < x0. Once the laser enters the plasma, it excites
plasma waves, from which the laser is both forward and backward
scattered, giving rise to characteristic peaks in the spectrum at
xþ nxp, where n are integers. In addition to Raman scattering, non-
linear plasma responses generate harmonics at nx, and a small frac-
tion of electrons are accelerated irreversibly to high energy, leaving the
plasma slab together with the laser. Beyond recovering well-known
phenomena, lattice QED is capable of capturing effects at quantum
intensity a > mc2=�hx [Figs. 6(b) and 6(d)]: In the high-density
plasma, the laser excites electrostatic waves whose amplitudes exceed
the Schwinger field Ec ¼ m2=e, wherein electron-positron pairs are
produced via the Schwinger mechanism. Additionally, interactions
between ultra-intense electrostatic and EM waves also produce and
accelerate pairs, causing a large fraction of positrons to leave the
plasma slab in the backward direction. In the meantime, many posi-
trons cannot make their way out of the plasma in 1D simulations and
annihilate with electrons to produce gamma photons. By annihilating
accelerated electrons and positrons, energetic photons at energy much
higher than mc2 are produced, leading to a significantly broadened
spectrum after the laser exists the plasma.

IV. CONCLUSIONS

In the early days of plasma physics, it was not uncommon to
encounter researchers, who were trained in other branches of physics,
to bring perspectives from the broader physics community and to con-
tribute ideas in return.97–100 However, with its core mission to deliver
magnetic confinement fusion and to understand astrophysical phe-
nomena, plasma physics was quickly narrowed down to focus on clas-
sical electrodynamics and nonequilibrium statistical mechanics. This
situation was challenged by inertial confinement fusion and low tem-
perature plasma physics for which quantum mechanics is important.
Moreover, with recent advances in HED laboratory drivers and high-
intensity lasers, more assumptions made in conventional plasma phys-
ics need to be scrutinized.

In this paper, we show that effects of magnetization on laser-
plasma interactions can no longer be ignored for megagauss-level
fields in which collective laser scattering becomes manifestly aniso-
tropic. The anisotropy is quantified using a general formula, which we
derive using the classical plasma model. Apart from the anisotropy,
magnetized plasmas support additional modes, which we exploit to
improve laser pulse compression. Beyond the classical regime, we
show that quantization effects on laser propagation can no longer be
ignored in gigagauss fields for which we develop a plasma model based
on QED. Due to quantum and relativistic modifications, we show that
the classical cyclotron resonance and Faraday rotation receive observ-
able corrections. Moreover, even without strong static fields, QED pro-
cesses can be induced by ultra-intense lasers interacting with plasmas

FIG. 6. Charged density qeðx; tÞ=em3 [(a) and (b)] and spectral power of trans-
verse fields Sðk; tÞ=Smax [(c) and (d)] in lattice QED simulations, where a plane
wave gamma-ray laser (x ¼ 0:7m) collides with an underdense 1D plasma slab
(xp ¼ 0:3m). At relativistic intensity a> 1 [(a) and (c)], familiar results are recov-
ered: The laser compresses the plasma via pondermotive force, excites plasma
waves via parametric processes, and accelerates electrons out of the plasma slab.
At the same time, the laser is refracted, its frequency is redshifted due to decom-
pression, and characteristic peaks are generated in the spectrum due to Raman
scattering and harmonics generation. At quantum intensity a > mc2=�hx [(b) and
(d)], additional phenomena arise: Electron-positron pairs are produced during the
interaction between EM and plasma waves. Notice that in this example, most posi-
trons (qe > 0) emerge in the laser reflection direction. Additionally, positrons anni-
hilate with electrons to produce gamma photons, and the EM spectrum is
substantially broadened. [Adapted with permission from Shi, et al. Phys. Rev. E 97,
053206 (2018). Copyright 2018 American Physical Society.]
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for which we develop lattice QED simulations to capture processes
outside the classical framework.

With advances in the field, we startlingly find ourselves returning
to the old days when plasma physics is more intertwined with other
branches of physics. Having developed in relative isolation over many
decades, the infusion of cross disciplinary ideas may enable us to
address challenges from answering fundamental scientific questions,
such as the nature of the dark matter,101,102 to developing practical
technologies, such as next-generation powerful lasers. This paper only
touches a small fraction of what is possible, and much remains to be
done in these exciting research directions.
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