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ABSTRACT

The Rotamak is a proposed thermonuclear fusion device which employs rotating magnetic fields (RMF) to generate an azimuthal current to
produce a field-reversed configuration. The efficiency of the currents that produce the field reversal by RMFs was debated some 40 years ago.
The debate revolved around whether the currents would incur dissipation by the conventional Spitzer perpendicular resistivity, or whether
some other relation between current and dissipation would be more appropriate. By employing an electron–ion pitch-angle scattering model,
we find that the dissipation is non-Spitzer in nature. However, curiously, there appears to exist a regime where the power dissipated to
maintain the current becomes vanishingly small.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0070425

I. INTRODUCTION

The Rotamak is a proposed device for thermonuclear fusion
which uses a rotating magnetic field perpendicular to an axial mag-
netic field driving an azimuthal current.1,2 The azimuthal current gen-
erates an axial field that tends to cancel the imposed axial magnetic
field. This cancellation allows a field-reversed configuration (FRC)
which has certain advantages for confining plasma. Experimental
examples of this concept include the works of Hugrass et al.,3 Slough
and Miller,4 Furukawa et al.,5 Guo et al.,6 and Cohen et al.7

The accepted picture for the generation of the azimuthal current
is that highly magnetized electrons are tied to the magnetic field lines,
so the electrons will rotate with the transverse rotating magnetic field
(RMF). On the other hand, ions are not so magnetized, so they are left
behind, thus leaving a net azimuthal current. This discrepancy
between the electrons and ions is characterized by the two dimension-
less parameters for each species,

p ¼ qB0

mx
;

w ¼ qB?
mx

;

(1)

where q and m are the charge and mass of the particle, B0 is the fixed
axial field, B? is the rotating field strength, and x is the angular

frequency of the RMF. Due to the difference in mass between electrons
and ions, it is possible to achieve large values for pe, we while having
small values for pi, wi to achieve this net azimuthal current.

The aim of this paper is to determine the power dissipated in the
plasma as it is driven by the RMF to form the azimuthal current. In
the considerations here, the RMF is assumed to penetrate the plasma
fully, so that it is simply given as the vacuum rotating field. The matter
of field penetration, though not considered here, will of course be of
concern in a realistic setting.8 However, even with this simplification,
the power dissipated is still not trivially calculated.

For our discussions, it will be useful to define the dimensionless
efficiency parameter E relative to the classical Spitzer resistivity,

E ¼
gSpJ

2
h

PD
; (2)

where PD is the power dissipated, Jh is the azimuthal current, and
gSp ¼ me�ei

ne2 indicates the classical Spitzer resistivity with electron–ion
collision frequency �ei, which is defined later in Eq. (31). The contro-
versy of efficiency of current drive by rotating waves revolves around
how large/small this parameter is. The larger this parameter is, the
more efficient the current drive.

Hugrass and Klima9–12 originally argued that as long as the RMF
field strength jwej � 1� wi is observed, then the electrons will
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undergo “flux preserving motion”13 which effectively allows us to pic-
ture the electron fluid as frozen-in and rotating near-synchronously
with the rotating field, while the ion fluid remains static. This, com-
bined with a sufficiently low electron–ion collision rate relative to the
gyrofrequency in relation to the rotating field (i.e., allowing a few
orbits to occur before a collision event), Hugrass–Klima arrived at an
efficiency cap of

EHK � 1; (3)

which would be consistent with the picture of an electron fluid being
dragged along with the RMF incurring Ohmic resistivity. Equality
would only hold as the “slip” between the RMF and electron fluid rota-
tion went to zero.

Fisch and Watanabe14 instead suggested that the picture of tying
electrons to field lines in calculating an Ohmic-like power dissipation
is an oversimplification. Taking into account that the electrons in a
rotating field have coherent oscillatory energy, much greater than the
average drift energy, could lead to larger randomized energy and
power dissipation. That the electrons can have a large oscillatory
energy is based simply on solving the equations of motion between
collisions,15–17 which have analytic solutions. They found that good
azimuthal current generation only occurs in the w2

e � jpej � 1 elec-
tron regime (with both ion quantities being small), and that its corre-
sponding efficiency of

EFW ¼
1
jpej
� 1; (4)

is far smaller than the classical Spitzer picture, suggesting that the rota-
mak concept may be impractical for current drive.

Hugrass disagreed with this method. His main criticism of
Fisch–Watanabe was that their single particle orbit theory failed to
take into account the relation between momentum and energy transfer
during collisions as outlined by Klima.11,12 This would mean that one
cannot simply conclude that the oscillating part of the electron orbits
would all be lost due to collisions. On top of this, Hugrass9 also criti-
cized the fact that Fisch–Watanabe did not consider all possible initial
conditions in their analysis, instead opting to pick a specific orbit to
represent the whole system.

In this paper, we follow the single-particle approach of
Fisch–Watanabe but apply a more complete single-particle analysis, in
which all electrons orbits are considered and undergo multiple sto-
chastic isotropic pitch-angle scatterings with a fixed background of
ions. Hence, instead of associating an oscillatory energy with an aver-
age single electron (as was done in Fisch–Watanabe), we actually con-
sider the properties of many electrons over many collisions. We find
that, in contrast to Fisch–Watanabe, that neither the use of a single
representative average orbit nor the assumption of the oscillating
energy being dissipated captures the actual power dissipation.

In considering multiple collisions and working in the
w2
e � jpej � jwej � 1 regime to guarantee good current generation,

it will turn out that a collection of electrons tends to a preferred
speed-radius ratio, the dynamics of which determining short-term
expansion-cooling/contraction-heating within a few collision times.
After the system of electrons has settled into this preferred state, there
will only remain very slow heating and expansion, resulting in a high
current drive efficiency which greatly outperforms the Spitzer resistiv-
ity with an efficiency of

E � jpej � 1: (5)

In the first section, we begin by re-deriving and solving the equations
of motion for a single particle in an RMF. Second, we introduce an
electron–ion scattering model which treats electron pitch-angle scat-
tering as instantaneous events which conserve energy and isotropize
velocity. Considering all possible initial conditions, in the third section
we calculate analytically how the average radius and speed of a large
population of randomized electrons evolves under these collisions and
compare this result with direct simulation. We then recover the overall
long-term heating rate and azimuthal current, from which we can
derive a novel resistivity law. We will find, in fact, a regime in which
the power dissipation is far less than what either Fisch–Watanabe or
Hugrass–Klima would predict.

II. SINGLE PARTICLE ORBITS IN A ROTATING
MAGNETIC FIELD
A. Equations of motion

We will first re-derive the equations of motion found in the Fisch
and Watanabe paper14 of a particle in an RMF with an axial magnetic
field. A rotating magnetic field, B, that is constant in the z-direction
can be described as

B ¼ B?ðcos ðxtÞ x̂ þ sin ðxtÞ ŷÞ þ B0 ẑ ; (6)

where B? is the magnitude of the rotating magnetic field, B0 is the
constant axial magnetic field in the z-direction, and x is the angular
frequency of rotation.

We can find the RMF’s consistent E-field by using the Maxwell
equations in a vacuum in SI units, two of which read

r � E ¼ 0;

r� E ¼ �@tB:
(7)

Assuming no static E-field in the background this implies

E ¼ xB?ðx cosxt þ y sinxtÞ ẑ : (8)

However, there are two more Maxwell equations. The first is about the
zero divergence of the magnetic field r � B ¼ 0, which is respected.
The other (vacuum)Maxwell equation,

r� B ¼ 1
c2
@tE; (9)

is not respected. In order to satisfy the Ampère-Maxwell law correc-
tions need to be made to the electromagnetic fields on order of
ðxr=cÞ2 in relative size, where r is the radial distance to the z-axis. We
will work in the non-relativistic limit and ignore these corrections.

The Lorentz force equation on a particle of mass m and charge q
gives

m€r ¼ qEþ q _r � B; (10)

where we use the dot notation for the time t derivative. This gives us

€x

€y

€z

0
BB@

1
CCA ¼ q

m

_yB0 � _zB? sinxt

� _xB0 þ _zB? cosxt

B?
d
dt
ðx sinxt � y cosxtÞ

0
BBB@

1
CCCA: (11)

We introduce the dimensionless parameters, s, p, and w, which are
defined as
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s ¼ xt;

p ¼ qB0

mx
;

w ¼ qB?
mx

;

(12)

where p and w correspond to the axial field strength and RMF ampli-
tude respectively as outlined in Eq. (1), and s to the angle swept in
time. For example, for the PFRC-2,29,30 for electrons we get pe ¼ �8:9
�102 and we ¼ �4:4� 101. For protons, the parameters are pi
¼ 4:8� 10�1 and wi ¼ 2:4� 10�2.

Using s for the dot derivative notation now (and not time t), we
can rewrite

€x

€y

€z

0
B@

1
CA ¼

_yp� _zw sin s

� _xpþ _zw cos s

w
d
ds
ðx sin s� y cos sÞ

0
BBB@

1
CCCA: (13)

The last equation can be integrated to give

_z ¼ wðx sin s� y cos sÞ þ cz; (14)

with integration constant cz. The form of the equations above suggests
trying a rotating coordinate system,

u ¼ x cos sþ y sin s;

v ¼ y cos s� x sin s;
(15)

_u ¼ _x cos sþ _y sin sþ v;

_v ¼ _y cos s� _x sin s� u;
(16)

€u ¼ €x cos sþ €y sin sþ 2 _v þ u;

€v ¼ €y cos s� €x sin s� 2 _u þ v:
(17)

After some algebra, this leads to a system of linear differential equa-
tions in the rotating coordinates u and v

€u � ðpþ 1Þu ¼ ð2þ pÞ _v;
€v � ðpþ 1� w2Þv ¼ �ð2þ pÞ _u þ wcz;

_z ¼ �wv þ cz;

(18)

which are the same set of equations of motion described in Fisch and
Watanabe.14

B. General solution to the equations of motion

The linear system, Eq. (18), has two frequencies of oscillation,

a20;1 ¼
1
2
ð1þ ðpþ 1Þ2 þ w2Þ6 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpþ 2Þ2ðp2 þ 2w2Þ þ w4

q
; (19)

where a20 corresponds to the� sign, and a21 to theþ sign. For stability,
we require that a20 > 0, which leads to the stability condition,

ð1þ pÞð1þ p� w2Þ > 0; (20)

which has to be satisfied for both electrons and ions. Now stray-
ing from the original paper,14 we now wish to look at all possible
initial conditions for particles, without making any assumptions
on what a typical orbit looks like. For notational convenience, we
define

Ai �
a2i þ pþ 1
aiðpþ 2Þ : (21)

To convert from our rotating coordinates ðu; _u; v; _v; _zÞ back to
Cartesian coordinates, we use matrix TðsÞ, which is the inverse of Eqs.
(15) and (16),

TðsÞ ¼

cos s 0 �sin s 0 0

�sin s cos s �cos s �sin s 0

sin s 0 cos s 0 0

cos s sin s �sin s cos s 0

0 0 0 0 1

2
6666664

3
7777775
: (22)

For the general solution in rotating coordinates, we define matrix VðsÞ,

s0; c0; s1; c1 ¼ sin a0s; cos a0s; sin a1s; cos a1s;

VðsÞ ¼

s0 c0 s1 c1 0

a0c0 �a0s0 a1c1 �a1s1 0

A0c0 �A0s0 A1c1 �A1s1
w

w2 � p� 1
�a0A0s0 �a0A0c0 �a1A1s1 �a1A1c1 0

�wA0c0 wA0s0 �wA1c1 wA1s1
�p� 1

w2 � p� 1

2
6666666664

3
7777777775
:

(23)

Before using information from initial conditions, we can show that
orbits are uniquely defined by five time-independent parameters
lA; lB;lC; lD; cz ,

x
_x
y
_y
_z

0
BBBB@

1
CCCCA ¼ TðsÞ

u
_u
v
_v
_z

0
BBBB@

1
CCCCA ¼ TðsÞVðsÞ

lA

lB
lC

lD
cz

0
BBBB@

1
CCCCA: (24)

These orbit parameters can be derived from the initial conditions at an
arbitrary time s0,

lA

lB

lC

lD

cz

0
BBBBBB@

1
CCCCCCA
¼ ðTðs0ÞVðs0ÞÞ�1

x

_x

y

_y

_z

0
BBBBBB@

1
CCCCCCA

s¼s0

; (25)

where s0 can also be interpreted as the initial phase of the RMF.
Putting the two equations together, we have the final solution of all
possible orbits,

Gðs; s0Þ � TðsÞVðsÞðTðs0ÞVðs0ÞÞ�1; (26)

x
_x
y
_y
_z

0
BBBB@

1
CCCCA ¼ Gðs; s0Þ

x
_x
y
_y
_z

0
BBBB@

1
CCCCA

s¼s0

: (27)

C. Stability for both electrons and ions

We need to ensure that both electrons and ions simultaneously
respect the stability condition in this electron orbit regime. Because
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ions are much heavier than electrons, we can arrange for the situation
where

pe < �1;
pi þ 1 > w2

i ;
(28)

where pe denotes the value of p for electrons and pi for ions. Note that
only electron orbits can live in this w2 � 1 regime while keeping both
electron and ion orbits stable. Attempting to put ions in the same
regime results in unstable electron orbits. We can now calculate the
restriction this imposes on the magnitude of we. Using the ratio

R ¼ � mi=qi
me=qe

¼ Oð103Þ; (29)

then pi ¼ �pe=R and wi ¼ �we=R, so

pe < �1;
jwej < R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� pe=R

p
:

(30)

This leaves plenty of room for a strongwe.

III. SCATTERING
A. Motivation

Fisch and Watanabe14 calculated a single particle dissipation
model with very specific initial conditions and assumed that all of the
oscillating energy in an orbit is dissipated via scattering. We instead
keep track of the net work done by the RMF on an electron orbit
between two collision events for all possible orbits and consider a
sequence of scatterings.

B. Electron–ion scattering

Building on the previously derived single particle motion, we will
introduce an electron–ion scattering model. In this type of collision, in
the ion frame of reference, electron kinetic energy is conserved, but
momentum is not. The electron–ion collision rate is given by18

�ei ¼
k
v3
;

k ¼ 4pZe4ne
ð4pe0Þ2

lnK
m2

e
;

(31)

where n is the particle number density of the plasma, v is the speed of
an electron in the ion frame of reference, and lnK is a correction due
to long-range Coulomb interactions in the plasma, and can be taken
as lnK � 10 for a wide range of plasma conditions. Note that the elec-
tron’s scattering cross section, and hence collision rate, decreases with
v. In practice, an approximation we will make is that �ei is constant
between collisions.

For our model, we will treat electron–ion collisions as instanta-
neous events which conserve electron kinetic energy and scatter them
isotropically. This is similar to the prescription for some Monte Carlo
simulations. We will then use this collision model to calculate the
effects on the entire population of electron orbits.

IV. RESISTIVITY FROM ELECTRON–ION COLLISIONS

The majority of the kinetic energy of the single electron orbits is
not necessarily contributing to the azimuthal current, and the direc-
tion of their motion varies greatly over a single pass around the central
axis. In fact, we will show that the azimuthal current contribution

from a single electron is almost completely uncorrelated with its initial
azimuthal velocity. Hence the effects of isotropic scattering from elec-
tron–ion collisions cannot be treated as resetting the azimuthal current
contribution of electrons, because in the w2

e � jpej � jwej � 1
regime the majority possible orbits an electron could occupy will
observe near synchronous drift with the RMF.

We will also show the existence of a subset for attractor orbits
into which pitch-angle scattering will quickly drive electrons within
the first few collision times. These attractor orbits will be integral in
describing the dynamics of heating/cooling and expansion/contraction
of the electron orbit population.

A. Work done on a population of electrons

Since we know the exact path an electron will take given its initial
conditions, we can calculate the net work done by the RMF on the
electron between times t0 and t0 þ Dt between two collision events,
which can only be done by the RMF’s associated axial electric field

DW ¼ �wmex
2
ðs0þDs

s0

uðwv � czÞds; (32)

where s0 can either be interpreted as the nondimensionalized initial
conditions’ starting time s0 ¼ xt0, or as the initial phase of the RMF
relative to the x-axis at time t¼ 0. Substituting our expressions for u
and v from Eq. (24), we recover

DW ¼� w2mex
2
ðs0þDs

s0

ds

�
A0lAlB cos 2a0sþ A1lClD cos 2a1s

þ 1
2
A0ðl2

A � l2
BÞ sin 2a0sþ

1
2
A1ðl2

C � l2
DÞ sin 2a1s

þA1lAlCs0c1 � A1lAlDs0s1 þ A1lBlCc0c1 � A1lBlDc0s1
þA0lClAs1c0 � A0lClBs1s0 þ A0lDlAc1c0 � A0lDlBc1s0

þ cz
ðpþ 1Þ=w
w2 � p� 1

ðlAs0 þ lBc0 þ lCs1 þ lDc1Þ
�
: (33)

This expression is periodic in nature (since the two frequencies a0 and
a1 are different), so the exact time at which the electron undergoes its
next collision dictates whether the RMF will have performed overall
positive/negative/zero work on it. Thus, we can conclude that in the
absence of collisions, the RMF on average dissipates no net power on
the electrons, which is to be expected from a closed-orbit solution.
Hence, any overall heating must be due to collisions promoting elec-
trons into higher-energy orbits.

We now seek to rigorously calculate the work done (and hence
heating) on a population of electrons due to the presence of stochastic
electron–ion collisions. To recover a useful expression for deriving
resistivity of the plasma, we are interested in the expected work done
by the RMF on a large randomized population of electrons. By assum-
ing collisions are only electron–ion, and that they pitch-angle scatter
electrons elastically and isotropically, we can recover the expected
work done on electrons before a scattering event with this type of ran-
domized velocity initial conditions along with uniformly random ini-
tial x, y coordinates. We will denote this averaging by h…ic;N (i.e.,
averaging over velocities due to multiple collisions c and averaging
over positions due to multiple particles N). Using Eq. (33), we can con-
cisely write this average as follows:
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hDWic;N ¼ �w2mex
2
ðs0þDs

s0

dsl†UðsÞl; (34)

where l and l† are defined as

l ¼

lAic;N
lBic;N
lCic;N
lDic;N
czic;N

2
6666664

3
7777775
; ðl†ÞT ¼

hlA

hlB

hlC

hlD

hcz

2
6666664

3
7777775
; (35)

and the symmetric matrix UðsÞ is given by

1
2

A0 sin 2a0s A0 cos 2a0s A1s0c1 þ A0c0s1 A0c0c1 � A1s0s1
ðpþ 1Þ=w
w2 � p� 1

s0

2U12 �A0 sin 2a0s A1c0c1 � A0s0s1 �A0s0c1 � A1c0s1
ðpþ 1Þ=w
w2 � p� 1

c0

2U13 2U23 A1 sin 2a1s A1 cos 2a1s
ðpþ 1Þ=w
w2 � p� 1

s1

2U14 2U24 2U34 �A1 sin 2a1s
ðpþ 1Þ=w
w2 � p� 1

c1

2U15 2U25 2U35 2U45 0

2
666666666666664

3
777777777777775

: (36)

We now use Eq. (25) and the fact that all odd quantities and their
combinations of the initial condition velocities average out to zero
(e.g., h _x _yic;N ¼ 0) to calculate the expected work done under colli-
sions. These restrictions on the initial conditions can be written in the
form of a diagonal matrix X in the non-rotating frame,

X � xx† ¼

1
2
r20 0 0 0 0

0
1
3
v20 0 0 0

0 0
1
2
r20 0 0

0 0 0
1
3
v20 0

0 0 0 0
1
3
v20

2
66666666666664

3
77777777777775
; (37)

where r0 and v0 indicate the radius and the x-normalized speed of the
electron immediately after the collision event, and x and x† are defined as

xðs0Þ ¼

hx
h _x
hy
h _y
h _z

2
6666664

3
7777775

s¼s0

; ðx†ðs0ÞÞT ¼

xic;N
_xic;N
yic;N
_yic;N
_zic;N

2
6666664

3
7777775

s¼s0

: (38)

Without loss of generality we can set s0 to zero. This is because s0 indi-
cates the starting phase of orbits relative to the RMF immediately after
a collision n, the effects of which we have already averaged out with
our h…iN particle averaging. Using these equations along with the
inverse V matrix all evaluated at s0 ¼ 0, we can find the collision-
particle averaged orbit parameters in terms of the collision-particle
averaged initial conditions, along with taking advantage of the fact
that l and l† are time-independent between collision times.

hDWic;N ¼ �w2mex
2l†

ðDs

0
dsUðsÞ

 !
l

¼ �w2mex
2xð0ÞTðS�1ÞT

ðDs

0
dsUðsÞ

 !
S�1ðxð0Þ†ÞT

¼ �w2mex
2 Tr

ðDs

0
dsUðsÞ

 !
S�1XðS�1ÞT

" #
; (39)

where S ¼ Tð0ÞVð0Þ. This equation describes a stochastic process
where the collision-particle expected initial speed after collision nþ 1
is determined by the randomized time between collisions Dsn and the
initial radius and speed after collision n,

hv20;nþ1ic;N � hv20;nic;N
¼ Tr ðU	ðDsnÞ � U	ð0ÞÞS�1X0ð~cnÞðS�1ÞT

h i
hr20;nic;N ; (40)

where ~cn � hv20;nic;N=hr20;nic;N , and U	ðsÞ; X0ðcÞ are defined as

U	ðs1Þ � U	ðs0Þ ¼ �w2
ðs1

s0

dsUðsÞ;

X0ðcÞ ¼ X1 þ
2
3
cX2 ¼

1 0 0 0 0

0
2
3
c 0 0 0

0 0 1 0 0

0 0 0
2
3
c 0

0 0 0 0
2
3
c

2
66666666664

3
77777777775
:

(41)

The last thing we need to complete this calculation is writing the sto-
chastic process for the radius squared r20;n, which we can also recover
from the general orbit solution and performing collision-particle aver-
aging like we did for the work done by the RMF,
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r2ðsÞ ¼ ðlAs0 þ lBc0 þ lCs1 þ lDc1Þ2 þ lAA0c0 � lBA0s0 þ lCA1c1 � lDA1s1 þ cz
w

w2 � p� 1

� �2

) hDr2ic;N ¼ l†ðKðDsÞ � Kð0ÞÞl ) hr20;nþ1ic;N ¼
1
2
Tr ðKðDsnÞ � Kð0ÞÞS�1X0ð~cnÞðS�1ÞT
h i

þ 1

� �
hr20;nic;N ; (42)

where the symmetric matrix KðsÞ is given by

s20 þ A2
0c

2
0

1
2
ð1� A2

0Þ sin 2a0s s0s1 þ A0A1c0c1 s0c1 � A0A1c0s1
wA0c0

w2 � p� 1

K12 c20 þ A2
0s

2
0 c0s1 � A0A1s0c1 c0c1 þ A0A1s0s1

�wA0s0
w2 � p� 1

K13 K23 s21 þ A2
1c

2
1

1
2
ð1� A2

1Þ sin 2a1s
wA1c1

w2 � p� 1

K14 K24 K34 c21 þ A2
1s

2
1

�wA1s1
w2 � p� 1

K15 K25 K35 K45
w2

ðw2 � p� 1Þ2

2
6666666666666666664

3
7777777777777777775

: (43)

Note that the diagonal elements of K survive under s-averaging, unlike the U matrix. We can now write the full stochastic process over the entire
electron population for r20 and v

2
0 with Eqs. (40) and (42) in the continuous random variable Dsn,

hv20;nþ1ic;N ¼ Tr ðU	ðDsnÞ � U	ð0ÞÞS�1X0ð~cnÞðS�1ÞT
h i

þ ~cn

� �
hr20;nic;N ;

hr20;nþ1ic;N ¼
1
2
Tr ðKðDsnÞ � Kð0ÞÞS�1X0ð~cnÞðS�1ÞT
h i

þ 1

� �
hr20;nic;N :

(44)

Because many electrons will be colliding with ions at different randomized times, we can average this stochastic process over Ds to get the overall
expected changes in electron radius and speed. In essence, we seek to recover the following deterministic process,

hv20;nþ1iDs;c;N ¼ Tr hU	ðDsnÞ � U	ð0ÞiDsS
�1X0ðcnÞðS�1ÞT

h i
þ cn

� �
hr20;niDs;c;N ;

hr20;nþ1iDs;c;N ¼
1
2
Tr hKðDsnÞ � Kð0ÞiDsS

�1X0ðcnÞðS�1ÞT
h i

þ 1

� �
hr20;niDs;c;N ;

(45)

where cn � hv20;niDs;c;N=hr20;niDs;c;N . To perform this averaging, we will need to know how Dsn is distributed. For a given electron temperature, the
continuous random variable Dsn is exponentially distributed

PðDsnÞ ¼ ke�kDsn ;

k ¼ �ei=x;
(46)

where �ei indicates the electron–ion collision rate. It is distributed this way because the probability of an electron undergoing a collision in
the time interval ½Dsn;Dsn þ dðDsnÞ
 and no earlier is equal to the product of e�kDsn (the probability that no collisions occur for Dsn amount
of time) and kdðDsnÞ (the probability of a collision occurring in the subsequent interval ½Dsn;Dsn þ dðDsnÞ
). Note that we will be treating
�ei as constant in time for this calculation, which is not true, in general, since it scales with v�3. However, we will find that in the collisionless
limit (i.e., allowing electrons to complete at least a few orbits on average before a collision event) that this approximation holds as shown in
Figs. 1 and 2. The integrals involved in this averaging are notably in the form of Laplace transforms, so we can write the expressions as
follows:

hv20;nþ1iDs;c;N ¼ Tr kLs U	ðsÞ � U	ð0Þ½ 
ðkÞS�1X0ðcnÞðS�1ÞT
h i

þ cn

� �
hr20;niDs;c;N ;

hr20;nþ1iDs;c;N ¼
1
2
Tr kLs KðsÞ � Kð0Þ½ 
ðkÞS�1X0ðcnÞðS�1ÞT
h i

þ 1

� �
hr20;niDs;c;N :

(47)

In the low collisionality limit k ¼ �ei=x� a0, i.e., when orbits are allowed to perform at least a few cycles before a collision event, the random var-
iable Dsn gets so large that the time of the previous collision no longer affects the process. Working in this limit yields
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lim
k!0

kLs U
	ðsÞ � U	ð0Þ½ 
ðkÞ ¼ �w2

2

A0

2a0
0

a1A0 � a0A1

a21 � a20
0

1
a0

ðpþ 1Þ=w
w2 � p� 1

0 � A0

2a0
0

a0A0 � a1A1

a21 � a20
0

a1A0 � a0A1

a21 � a20
0

A1

2a1
0

1
a1

ðpþ 1Þ=w
w2 � p� 1

0
a0A0 � a1A1

a21 � a20
0 � A1

2a1
0

1
a0

ðpþ 1Þ=w
w2 � p� 1

0
1
a1

ðpþ 1Þ=w
w2 � p� 1

0 0

2
6666666666666666664

3
7777777777777777775

;

lim
k!0

kLs KðsÞ � Kð0Þ½ 
ðkÞ ¼

1
2
ð1� A2

0Þ 0 �A0A1 0 A0
�w

w2 � p� 1

0 � 1
2
ð1� A2

0Þ 0 �1 0

�A0A1 0
1
2
ð1� A2

1Þ 0 A1
�w

w2 � p� 1

0 �1 0 � 1
2
ð1� A2

1Þ 0

A0
�w

w2 � p� 1
0 A1

�w
w2 � p� 1

0 0

2
66666666666666664

3
77777777777777775

:

(48)

Combining Eqs. (47) and (48) gives us a full analytic expression for
how the entire electron population heats/cools and expands/contracts
under electron–ion pitch-angle scattering, which we can use to derive
how the entire system heats/cools and expands/contracts under
collisions.

B. c‘-attractor orbits

The form of Eq. (47) implies the existence of a preferred speed-
radius ratio,

c1 � lim
n!1

hv20;niDs;c;N

hr20;niDs;c;N
; (49)

that the system of orbits is attracted to after each particle undergoes a
few pitch-angle scatter events. Using Eqs. (47) and (48), we find that
in the low collisionality limit this fixed point is determined explicitly
by

2
3
k2c

2
1 þ k1 �

2
3
u2

� �
c1 � u1 ¼ 0;

ki � Tr
1
2
lim
k!0

kLs KðsÞ � Kð0Þ½ 
ðkÞS�1XiðS�1ÞT
� �

;

ui � Tr lim
k!0

kLs U
	ðsÞ � U	ð0Þ½ 
ðkÞS�1XiðS�1ÞT

h i
;

(50)

where X1 þ 2
3 cX2 ¼ X0ðcÞ. This gives us a quadratic equation for c1

which in our case always gives a unique solution,

c1 ¼
� k1 �

2
3
u2

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1 �

2
3
u2

� �2

þ 8
3
k2u1

s

4
3
k2

: (51)

The attractor orbits characterized by c1 dictate the overall heating/
cooling of the population of electrons. If the electron population starts
at c > c1, the electrons will undergo rapid cooling and expansion in
the first few collision times in order to reach c1, and the opposite will
occur when c < c1. In a real experiment, we would expect the plasma
to initially be cold, hence the plasma would start at c < c1. This
model predicts that the electrons would undergo rapid heating and
contraction of orbits for the first �10 collision times in order to reach
c1. Once the equilibrium c1 is reached, there remains only a slow
heating rate given by

PD ¼
1
2
g1mex

2ne�eihv20;niDs;c;N ¼
3
2
g1neTe�eiðTeÞ;

g1 �
Tr limk!0 kLs U	ðsÞ �U	ð0Þ½ 
ðkÞS�1X0ðc1ÞðS�1ÞT
h i

c1
:

(52)

This power dissipation rate is derived by multiplying the increase in
bulk electron kinetic energy density per collision 1

2 g1nemex2

hv20;niDs;c;N , calculated with recourse to Eq. (40), with the electron–ion
collision rate �ei. We can refer to g1 as the c-equilibrium heating/
expansion rate as both hr20;niDs;c;N and hv20;niDs;c;N grow by a factor of
(1þg1) per collision in the c ¼ c1 regime, i.e., they both grow slowly
but geometrically,

hr20;miDs;c;N ¼ hr20;niDs;c;Nð1þ g1Þm�n;
hv20;miDs;c;N ¼ hv20;niDs;c;Nð1þ g1Þm�n;

(53)

where collision count n is sufficiently large such that the system has
already reached the c ¼ c1 equilibrium. In the limit of jpej � 1;
jwej � 1, as shown in Fig. 3, c1 and g1 reduce to
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c1 ¼
3jpej
2

;

g1 ¼
4

5jpej
;

(54)

which yields a power density dissipation rate of

PD ¼
6

5jpej
neTe�eiðTeÞ: (55)

Note that the heating rate expression overall scales with T�1=2e and
intriguingly scales inversely with the background magnetic field
strength B0, indicating a very slow heating rate that is independent
from the RMF field strength B? assuming it is sufficiently strong.

C. Azimuthal current and resistivity of a c‘-population
of electrons

The azimuthal current density Jh is given by

Jh ¼ �enexh _hriDs;c;N ; (56)

where _h indicates the normalized azimuthal angular velocity such that
_h ¼ 1 would indicate perfect synchronous drift with the RMF. We
currently do not have an analytic expression for h _hriDs;c;N , since it

FIG. 3. Overall asymptotic speed-radius ratio c1 � limn!1 hv20;niDs;c;N=
hr20;niDs;c;N and heating/expansion rate g1 of electron orbits undergoing electron-
ion pitch-angle scattering plotted against varying electron machine parameters pe,
we. We find that as long as we are in the pe � 1; we � 1 regime [while obeying
the stability condition in Eq. (20)], the expressions found in Eq. (54) are valid.

FIG. 1. Short-term evolution of electron orbit population radius hr20;niDs;c;N and
squared speed-radius ratio cn under collision n for electron machine parameters
pe ¼ �1:0� 103; we ¼ �1:0� 102, initializing with zero speed. The blue line
represents the analytic result from Eqs. (47) and (48) while the orange and red
points indicate the numerical results from direct simulation of 10 000 particles
undergoing stochastic isotropic pitch-angle scattering with a constant and �v�3
collision rate respectively, both with a mean collision rate of 0:1x. This demon-
strates that the approximation made in Eq. (46) is valid in this regime. Note that cn
levels off to a predetermined constant c1ðpe;weÞ � limn!1 hv20;niDs;c;N=
hr20;niDs;c;N by rapidly heating electrons and contracting their orbits, which all occurs
within �10 collisions per electron. If electrons were instead initialized with a high
energy such that c0 > c1, then the system would instead undergo rapid cooling
and expansion in the first few collisions.

FIG. 2. Long-term gradual electron heating (and expansion) after the asymptotic
c1 is reached from both the analytic result in Eqs. (47) and (48) and direct numeri-
cal simulation with the same parameters used in Fig. 1 (except for using only 1000
particles rather than 10 000 for the v�3 collision rate). In this regime, the electron
orbits undergo slow heating and expansion at a predetermined rate g1ðpe;weÞ as
defined in Eq. (52).
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involves a non-trivial time integral which is then averaged over isotro-
pic initial conditions,

h _hriDs;c;N ¼ lim
T!1

1
T

ðT
0
ds

x _y � y _xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
* +

c;N

: (57)

However, we can instead calculate this quantity numerically by initial-
izing many particles with randomized isotropic positions and veloci-
ties whose initial conditions follow the c1 speed-radius constraint in
Eq. (51). In the w2

e � jpej � jwej � 1 regime, this quantity comes
out to be approximately

h _hriDs;c;N � 0:7 hriDs;c;N � 0:7
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hr2iDs;c;N

q
; (58)

which indicates a good overall synchronous drift with the RMF for all
orbits in this regime.

We also find that the average azimuthal velocity cannot be
approximated by the product of the average azimuthal angular velocity
and radius,

h _hriDs;c;N 6� h _hiDs;c;NhriDs;c;N : (59)

Thus, it is misleading to characterize the current-generating capacity
of an orbit based on its time-averaged azimuthal angular velocity
alone. To get a better idea of the required machine size to contain these
orbits, we also calculated the expected maximum radius of an orbit in
relation to its time-averaged radius as

hrmaxiDs;c;N � 1:3hriDs;c;N � 1:2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hr2iDs;c;N

q
: (60)

With these numerical calculations, we can now solve for the azimuthal
current density in terms of parameters we know analytically,

Jh � �0:7 enex
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hr2iDs;c;N

q

¼ �0:7
ffiffiffi
2
3

r
jpej�1=2enex

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hv2iDs;c;N

q
�� jpej�1=2

ene

m1=2
e

T1=2
e : (61)

We can then substitute this expression back into the previous equation
and recover the power dissipation law,

PD=J
2
h �

1:2
jpej

gSp; (62)

which is much smaller than both the Fisch–Watanabe14 and
Hugrass–Klima resistivities.10–12 The non-dimensional prefactor in
front of our equation is vanishingly small, which tells us that current
drive ought to be very efficient in this w2

e � jpej � jwej � 1 electron
regime, vastly outperforming the Spitzer resistivity.

V. DISCUSSION

The very large current drive efficiency, essentially a mammoth
current drive efficiency, as summarized in Eq. (62), is certainly nonin-
tuitive. In the regime in which it is large, it is even larger in the regime
in which the perpendicular magnetic field is large, namely, where
jpej � 1. In fact, the current in this limit appears to be essentially dis-
sipationless, even while remaining finite. One might seek, therefore, to

compare this phenomenon with current drive efficiencies associated
with other methods.

The original thinking advanced in the rotamak literature was that
the current drive would be related to the momentum input by the
wave10–12 much like advanced byWort in the so-called peristaltic toka-
mak.19 In that picture, the azimuthal current is supported by azi-
muthal wave momentum. Thus, in this picture, since, for the same
current, the energy input is proportional to the square of the velocity
of the current carrier, while it is lost every collision time of the elec-
trons, the law for energy dissipation becomes essentially the Spitzer or
Ohmic resistivity. The same reasoning leads to other methodologies of
pushing the bulk (thermal) electrons, but not the bulk ions, such as by
low frequency waves20 or neutral beams.21 However, in these other
current drive mechanisms, including those featured in the peristaltic
tokamak, as well as of course the Ohmic current drive mechanism, the
current is driven in the direction of the magnetic field.

Here, the same reasoning is used to derive current drive efficien-
cies for current driven perpendicular to the main magnetic field.
However, driving current perpendicular to a magnetic field is thought
to be harder than driving current parallel to a magnetic field, whereas
by Eq. (62), it appears to be easier to drive current perpendicular to a
magnetic field. So the question arises, what might be the mechanisms
to make current flow with less dissipation?

First, note that the classical resistivity perpendicular to a magnetic
field is a factor of two more than the resistivity parallel to the magnetic
field. This increases the dissipation compared to the Ohmic dissipation
in driving currents parallel to the field, rather than explaining why the
dissipation should be less. Although the picture of calculating the dissi-
pation as though an electron fluid was simply dragged azimuthally
was challenged by the initial single particle approach,14 which sug-
gested that the large motions perpendicular to the azimuthal dragging
of the electrons needed to be considered, taking those motions into
account suggested more dissipation, rather than less dissipation, as
found here.

Second, note that, in seeking much less dissipation, in the case of
current drive efficiency parallel to a magnetic field, the smallest dissipa-
tion occurs when waves are arranged to resonate only with the super-
thermal electrons, such as by lower hybrid waves22 or electron cyclotron
waves.23 In both cases, it is not necessary that wave momentum drives
the current; rather it is essential that the electrons carrying the current
be substantially superthermal, so that they collide less. In principle, the
efficiency can be made even larger by arranging the wave-particle reso-
nance conditions such that electrons are pushed in a direction close to
their constant energy surfaces.24 However, as higher efficiency is sought
in this manner, fewer electrons can be found that meet the necessary
conditions, so, in practice, there is a limited amount of current that can
be driven at very high efficiency. In any event, these methodologies per-
tain only to driving current parallel to a magnetic field.

Thus, to summarize, in the case of driving current parallel to the
magnetic field, the picture is that particles receive an instantaneous
push, and that results in current that lasts until a collision destroys
that current. The efficiency can then be optimized by arranging for
that current to last longer or for the energy required in the push to be
less. The current lasts longer if the electrons carrying the current are
faster. In all cases, the push is to higher energy, but the push requires
less energy either if the electrons being pushed have less velocity in the
direction of the push, or if the push is along constant energy surfaces.
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In contrast, in driving current perpendicular to a magnetic field,
such as in a rotamak, the current only exists while the wave excitation
persists. There might be a push, but the current lasts only during the
push itself; no current persists until destroyed by a collision as in the
case of driving current parallel to the magnetic field. This situation is
more analogous to the case of alpha channeling, where charge is
pushed by waves across the magnetic field.25 In the case of alpha
channeling, which generally involves pushing ions across the field
rather than electrons, there is the opportunity to extract energy from
the particles (thereby amplifying the wave) even as the current is
driven. The utilization of the particle’s own kinetic energy suggests the
appearance of a high efficiency in driving this current. However, the
kinetic energy is released only because the particle is diffused by the
wave in space to a position of lower phase space density, in the energy-
configuration space. The alpha channeling effect also occurs in a rotat-
ing plasma, where some potential energy can also be released to drive
the perpendicular current.26 However, in the case of alpha channeling,
whether in a rotating plasma or a non-rotating plasma, it is imprecise
to define a steady state current drive efficiency, since the plasma itself
is expanding rather than in steady state.

The fact that the rotamak orbits uncovered here both suggest
very high current drive efficiency, but require a concomitant expan-
sion of the plasma, suggests that the high efficiency case here might be
analogous to the apparent high efficiencies in driving currents across
magnetic fields through the alpha channeling effect, which also require
plasma expansion while appearing to be highly efficient. However, the
rotamak drive is different in that it is not a resonant effect targeting
only a select group of particles. Also, in the presence of the rotating
magnetic field, the magnetic field direction itself changes, so current
that is perpendicular to the axial magnetic field is not exactly perpen-
dicular to the instantaneous magnetic field. Moreover, it still remains
mysterious why the efficiency is so high when the axial magnetic field
is made stronger.

There are caveats to this high efficiency. First, the very high
efficiency comes with the caveat that, as in the case of alpha
channeling, it is not quite a steady state efficiency. It requires the
plasma to expand, even if not so much. Second, the rotating field is
assumed to penetrate the plasma fully, even in the very high effi-
ciency regime where the axial field is made very large. The details of
that penetration could affect the apparent current drive efficiency.
For example, analogous to the case of currents driven by alpha
channeling, bringing power from outside the plasma to drive the
current (the boundary value problem), as opposed to damping
waves interior to the plasma (the initial value problem), can result
in very different currents in the plasma.27 This difference occurs
because the nonresonant particles that support the wave also can
carry current. In some cases, this current can be substantial. A third
caveat is that the collisions here are implemented as though each
electron has a fixed energy between collision events. In fact, over an
orbit, the electron energy varies. To the extent that electrons change
their energy substantially in the wavefield, this approximation may
need revisiting. Finally, it should be observed that if substantial cur-
rent is generated, to the extent that the applied axial field is substan-
tially canceled, then the conditions for efficient current generation
would be violated.

On top of this, we also assumed a uniform axial field B0, which
made electron orbits integrable. When a more realistic field is used,

electron orbits can become chaotic as they reach the boundaries of the
confining field, even without the presence of an RMF.28 That leads to
very different non-integrable motion than what we have found here.
Thus, it is not clear whether any effects found in this paper, such as
the surprising low dissipation effect, would survive in full FRC field
geometries. However, we do surmise that our low dissipation result
would apply to electron orbits that stay away from any boundaries
which would induce stochasticity even in the absence of collisions.
Hence there may be a class of electron orbits which survive for long
enough near the z¼ 0 midplane which drive a sufficient azimuthal
current and magnetic field in the �z direction. In any event, whether
or not the model here pertains to practical laboratory experimental
geometries, the low dissipation effect uncovered within the idealized
geometry remains surprising.

Despite these caveats, we are left in Eq. (62) with a mysterious,
enormously high current drive efficiency, even if it requires assuming
a penetrating driving field, even if a small amount of plasma expansion
makes the driven current not quite steady state, and even if stochastic-
ity inducing boundary conditions that occur in realistic geometries are
neglected in the straight confining magnetic field geometry that we
consider here.

VI. CONCLUSION

Using a single-particle motion picture with repeated stochastic
electron–ion pitch-angle scattering, we have found very specific
requirements for machine parameters on the electron orbits
w2
e � jpej � jwej � 1, where the power dissipation required to

maintain an azimuthal current becomes vanishingly small �gSp=jpej
despite the presence of electron–ion collisions. This power dissipation
can be significantly less than what either Fisch and Watanabe14 or
Hugrass and Klima9–12 would predict.

We have also found that collisions drive the system of electrons
to a unique preferred speed-radius state c1 initial deviation from
which (under the previously specified machine parameters) will cause
rapid expansion-cooling or contraction-heating to reach c1 ¼ 3jpej=2
within roughly 10 collision times, after which only very gradual
/ 4=ð5jpejÞ heating and expansion takes place.
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