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In a variety of different systems, high-Z ion species show a marked tendency to accumulate in regions 
of high plasma density. It has previously been suggested that the apparent universality of this behavior 
could be explained thermodynamically, in terms of the maximum-entropy state attainable when the 
system must obey an ambipolarity condition. However, the previous treatment did not allow for the 
possibility of temperature gradients. Here, tools from non-equilibrium (Onsager) thermodynamics are 
used to show that ambipolarity continues to play a key role in producing this behavior in the presence 
of temperature gradients, and to recover well-known temperature screening effects that appear in these 
cases.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

The relative accumulation of different ion species is a topic of 
interest – and, often, of serious concern – for a variety of plasma 
technologies. In fusion devices, it is important to ensure that fuel 
ions are mixed in the high-temperature region of the plasma. At 
the same time, it is necessary in steady-state operation to flush 
out fusion products (ash) lest they choke out the reaction. Mean-
while, the excessive accumulation of high-charge-state impurities 
can result in large radiative energy losses, and must be avoided. 
These issues are similarly important for many non-fusion appli-
cations. For instance, for plasma mass filters (which are designed 
to separate out different constituents of a plasma based on mass), 
control over the relative transport of different particles is the most 
essential feature of the device.

In isothermal magnetically confined plasmas, in regimes where 
turbulence does not dominate, there is a classic result [1–3] that 
in steady state the density profiles of two ion species satisfy

n1/Za
a ∝ n1/Zb

b . (1)

Here na is the density profile of species a, nb is the density pro-
file of species b, and Zae and Zbe are the two species’ charge 
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states (where e is the elementary charge). The densities are as-
sumed to vary only in the direction perpendicular to the magnetic 
field. Eq. (1) predicts a dramatic accumulation of high-Z species in 
the highest-density regions of a plasma. In the presence of some 
potentials �a and �b affecting the two species (for example, a 
gravitational potential), Eq. (1) becomes [4]

(
nae�a/T )1/Za ∝ (

nbe�b/T )1/Zb , (2)

where T is the temperature of the system.
Eqs. (1) and (2) appear across a very wide range of sys-

tems and parameter regimes. These expressions, and special cases 
thereof, appear in the theory of classical transport [1–3,5,4,6–11]; 
in neoclassical transport including the Pfirsch-Schlüter, plateau, 
and banana regimes [12–15]; in the theory of plasma mass fil-
ters [16–22]; in the study of non-neutral plasmas [23–25]; and, 
recently, in the theory of collisionally unmagnetized (low-Hall-
parameter) cross-field transport [26]. The ubiquity of this behavior, 
even in different systems whose dynamics are understood in terms 
of mutually inapplicable models, raises the question: can the ap-
pearance of this same behavior across all of these different systems 
be understood in terms of some kind of universal requirement?

Ref. [27] suggests that it can. If the maximum-entropy state is 
calculated subject to some fixed total energy and fixed particle 
populations, the result is the Boltzmann distribution. If an addi-
tional constraint fixes the net ion charge densities to some initial 
distribution, then the result is instead Eq. (1) or (2), depending 
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on the presence or absence of potentials �s . This constraint is 
physically motivated by the ambipolarity of cross-field collisional 
transport. This approach explains the behavior in Eqs. (1) and (2)
without having to specify any of the details of the dynamics (other 
than that the system must tend toward its maximum-entropy state 
and that it must respect the aforementioned constraints).

However, the approach in Ref. [27] has a significant drawback. 
Because that calculation approaches the problem in terms of the 
equilibrium thermodynamics of a closed system, it has no nat-
ural way to describe the effects of a temperature gradient. This 
is more important than it might sound. A properly oriented tem-
perature gradient is known (both theoretically and experimentally) 
[28–30,15,31,32] to mitigate and even reverse the accumulation of 
high-Z ions described in Eq. (1), under the right circumstances. 
This “temperature-screening” effect is one of the major strategies 
used by the operators of real confinement devices to prevent the 
(otherwise rather dire) accumulation of heavy impurities predicted 
by Eq. (1).

The object of this paper is to demonstrate that the basic finding 
of Ref. [27] – that is, the universal role of an ambipolarity condi-
tion in giving rise to Eqs. (1) and (2) – still applies for systems that 
have temperature gradients. Moreover, this paper will show that 
the non-equilibrium theory can predict the temperature-screening 
effects observed in real systems, and that temperature screening 
depends on the details of the system’s dynamics in a way that the 
results in Ref. [27] did not.

This paper is organized as follows. Section 2 describes the linear 
non-equilibrium formalism and coordinates to be used in the rest 
of the paper. Section 3 shows how an ambipolarity condition gives 
rise to Eq. (1), Eq. (2), and their generalizations with temperature 
screening. Section 4 presents an example of how this formalism 
works in a simple slab system. Section 5 is a discussion of these 
results. Appendix A makes a connection between this problem and 
non-equilibrium variational principles.

2. Thermodynamic fluxes, forces, and the linear regime

The transport in a non-equilibrium system can be described in 
terms of thermodynamic fluxes J i and forces Xi , such that the en-
tropy production density can be written as

σ =
∑

i

J i Xi . (3)

The choices of J i and Xi are not unique. In the literature on non-
equilibrium thermodynamics, it is common to use

J̃ =

⎛
⎜⎜⎜⎝

q
m1n1v1

...

mNnN vN

⎞
⎟⎟⎟⎠ , (4)

where q is the heat flux, ms is the mass of species s, ns is the 
number density of species s, and vs is the velocity of species s, 
and

X̃ =

⎛
⎜⎜⎜⎝

∇(1/T )

−∇(μ1/m1T ) + F1/m1T
...

−∇(μN/mN T ) + FN/mN T

⎞
⎟⎟⎟⎠ , (5)

where T is the system temperature, μs is the internal chemical 
potential of species s, and Fs is any body force acting on species s
(we will assume for simplicity that all species have the same local 
temperature, though a version of this problem could be posed in 
which this was not the case).
2

However, it is more convenient for present purposes to trans-
form to a different set of forces and fluxes. This kind of trans-
formation is described in Ref. [33]. If Xi = ∑

j Mij X̃ j for some 
non-singular matrix of coefficients M with inverse M−1, then 
the appropriate fluxes J to associate with X are given by J i =∑

j J̃ j(M−1) ji .
With that in mind, let

X =

⎛
⎜⎜⎜⎝

∇(1/T )

−∇ log p1 + F1/T
...

−∇ log pN + FN/T

⎞
⎟⎟⎟⎠ , (6)

where ps
.= ns T . The gradient of the chemical potential can be 

written as ∇(μs/T ) = ∇ log(ps T −5/2), so the appropriate transfor-
mation matrices are

M =

⎛
⎜⎜⎜⎜⎜⎝

1
−5T /2 m1
−5T /2 m2

...
. . .

−5T /2 mN

⎞
⎟⎟⎟⎟⎟⎠

(7)

and

M−1 =

⎛
⎜⎜⎜⎜⎜⎝

1
5T /2m1 m−1

1
5T /2m2 m−1

2
...

. . .

5T /2mN m−1
N

⎞
⎟⎟⎟⎟⎟⎠

. (8)

Then the associated flux J is

J =

⎛
⎜⎜⎜⎝

q + (5/2)
∑N

s=1 psvs

n1v1
...

nN vN

⎞
⎟⎟⎟⎠ . (9)

Note that σ = J̃ · X̃ = J · X.
For a system that is sufficiently close to equilibrium, J i and Xi

are linearly related, so that

J i =
∑

j

Li j X j (10)

for some matrix of coefficients Li j . This is sometimes called the lin-
ear or Onsager regime, and the associated matrix L is sometimes 
called the Onsager matrix. Much of the theory of plasma trans-
port is concerned with detailed calculations of Li j for a particular 
system.

Onsager’s reciprocal relations state that the Onsager matrix is 
symmetric: that is, Li j = L ji . The original form of the theorem’s 
proof does not apply in the presence of a magnetic field; in the 
presence of B, the Onsager symmetry Li j = L ji has traditionally 
been replaced by the Onsager-Casimir symmetry Li j(B) = L ji(−B)

[34–36]. However, recent results suggest that the Onsager symme-
try may apply to cases with magnetic fields after all [37–40], and 
in any event the coefficients in plasma systems are very often even 
functions of B, in which case the distinction is moot [33].

3. From flux constraints to impurity pinch

Appendix A describes how the principle of minimum entropy 
production leads to a set of constraints on the fluxes through the 
system. Of course, even in cases where Onsager symmetry does not 
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hold, or in which Prigogine’s minimum-entropy-production princi-
ple is otherwise inapplicable, it would be equally valid to consider 
a system in which all fluxes are fixed by the system’s boundary 
conditions. Either way, this section will consider the problem in 
which, for one reason or another, the fluxes J i are fixed, and espe-
cially the case where the J0 may not vanish but the particle fluxes 
do vanish.

For the calculation that follows, assume that Onsager symmetry 
does at least hold for the coefficients coupling the particle fluxes 
with thermodynamic forces associated with different species’ pres-
sure gradients (in other words, that Lss′ = Ls′s for any s, s′ �= 0; 
we do not require Onsager symmetry for the coefficients that cou-
ple to the temperature gradient and heat flux). This is a weaker 
assumption than is required for the minimum-entropy-production 
principle in Appendix A.

Consider a one-dimensional system in a magnetic field (so that 
all spatial functions can be considered to depend only on some 
coordinate that measures position perpendicular to the field). Sup-
pose the system obeys an ambipolarity constraint, much like the 
one discussed in Ref. [27]. Such a constraint could be written as

N∑
s=1

Zs J s = 0. (11)

Eq. (11) should be understood to apply at all times (not just in 
steady state); in other words, it is a constraint on the Onsager ma-
trix. For Eq. (11) to hold for all possible thermodynamic forces, it 
must be true for any vector Y that

N∑
s=1

Zs

N∑
i=0

Lsi Yi = 0. (12)

This implies that

N∑
s=1

Zs Lsk = 0 ∀k ∈ {0,1, . . . , N}. (13)

Intuitively, this kind of constraint can be motivated in terms of the 
response of a particle to a force. If a particle of species s is acted 
upon by a force F, it will drift across the local magnetic field at a 
velocity F × B/ZseB2. The 1/Zs dependence in the cross-field mo-
tion means that interactions between particles tend to rearrange 
the particles in a way that satisfies Eq. (11). Eq. (11) is not, in gen-
eral, an exact conservation law. Small uncompensated cross-field 
currents can appear for a wide variety of reasons (for example, 
inhomogeneities in the magnetic field). Ambipolarity is, however, 
typically a very good approximation for plasmas immersed in mag-
netic fields that are sufficiently strong and do not vary too quickly.

Suppose the flux constraints are chosen so that the heat-flux 
term J0 �= 0, but so that the particle fluxes J s all vanish. Then for 
each species s,

J s = − Ls0T ′

T 2
+

N∑
s′=1

Lss′
(

Fs′

T
− p′

s′
ps′

)
= 0, (14)

as per Eqs. (6) and (10). In the special case where the thermal 
coupling term Ls0T ′ vanishes, this can be rewritten as

N∑
s′=1

Zs′ Lss′
(

Fs′

Zs′
− p′

s′
Zs′ns′

)
= 0. (15)

Keeping in mind Eq. (13), this is solved whenever

Fs′

Zs′
− p′

s′
Zs′ns′

= C (16)
3

for some constant C that is the same for all s′ . This can be inte-
grated directly to get the condition that

[
pa

pa0
exp

(
−

x∫
x0

dx
Fa

T

)]1/Za

=
[

pb

pb0
exp

(
−

x∫
x0

dx
Fb

T

)]1/Zb

(17)

for some integration constants pa0 and pb0 and reference point x0. 
This reduces to Eq. (2) in the case where T is constant, and to 
Eq. (1) in the case where Fs = 0. Note that this derivation had two 
key ingredients: the Onsager symmetry Lss′ = Ls′s and the ambipo-
larity condition. Also note that the Onsager coefficients themselves 
do not appear in Eq. (17).

The equilibrium conditions are further modified in the more 
general case where the thermal friction term Ls0 T ′ does not van-
ish. In the most general case, the condition cannot be written 
much more compactly than Eq. (14), though it more nearly re-
sembles some of the forms seen in the literature if it is rewritten 
as

− Ls0T ′

T 2
+

N∑
s′=1

Zs′ Lss′
[

1

Zs′

(
Fs′

T
− p′

s′
ps′

)
− 1

Zs

(
Fs

T
− p′

s

ps

)]
= 0.

(18)

As is discussed in Ref. [26], the equilibrium condition cannot al-
ways be written in the “transitive” form seen in Eqs. (1), (2), or 
(17), where the condition reduces to a self-consistent set of pair-
wise relations between all pairs of particle species.

However, it is often useful to look at the special cases where it 
can be expressed in the transitive form. It can be written in this 
form in the absence of thermal forces; this is Eq. (17). It can also 
be expressed in this form in the case where there are only two 
species. In that case, the zero-flux conditions on particle species a
and b become

− La0T ′

Zb Lab T 2
+ 1

Zb

(
Fb

T
− p′

b

pb

)
− 1

Za

(
Fa

T
− p′

a

pa

)
= 0 (19)

− Lb0T ′

Za Lab T 2
+ 1

Za

(
Fa

T
− p′

a

pa

)
− 1

Zb

(
Fb

T
− p′

b

pb

)
= 0, (20)

assuming Lab �= 0. These two conditions are the same, since in the 
two-species case Eq. (13) implies La0/Zb = −Lb0/Za . In this case, 
the condition can be integrated to get

{
pa

pa0
exp

[
−

x∫
x0

dx
Fa

T

]}1/Za

=
{

pb

pb0
exp

[
−

x∫
x0

dx

(
Fb

T
− La0T ′

Lab T 2

)]}1/Zb

. (21)

In cases without thermal frictions, Eq. (21) describes familiar be-
havior: precisely the peaking of high-Z species found in Eqs. (1)
and (2). In cases with thermal frictions, the values of the Onsager 
coefficients begin to matter; depending on the dynamics of the 
particular system in question, temperature gradients may tend to 
flush high-Z species from high-density regions, or they may tend 
to pull them in.

Essentially the same formalism used in this section to describe 
temperature screening can also be used to understand systems 
with steady-state particle fluxes: the difference is simply that J s is 
allowed to be nonzero for s �= 0. This problem has received less at-
tention in the literature than temperature screening has, but there 
are scenarios in which it could be important; see Ref. [10]. The an-
alytic expressions for ns in Ref. [10] can be recovered from Eqs. (6)
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and (10) by direct integration (or equivalently from Eq. (14) with 
a nonzero RHS). For cases with finite particle fluxes, the values of 
some Onsager coefficients appear in the equilibrium conditions.

4. A simple illustrative example

Consider, for example, classical collisional transport in a mag-
netized slab. Suppose the system has Cartesian coordinates with 
unit vectors (x̂, ŷ, ̂z), with a magnetic field B = Bẑ and all gradi-
ents in the x̂ direction. Furthermore, suppose the plasma consists 
of electrons, hydrogen ions, and some heavy impurity ion species. 
Variables referring to the hydrogen will be denoted with the sub-
script H ; variables related to the impurity will be denoted by the 
subscript I . Let the plasma be strongly magnetized, so that the 
cross-field transport of the electrons is slow enough to be ignored.

Then the thermodynamic forces can be written as

X =
⎛
⎝ ∂x(1/T )

−∂x log pH

−∂x log pI

⎞
⎠ (22)

and the corresponding fluxes can be written as

J =
⎛
⎝q + (5/2)pH v H,x + (5/2)pI v I,x

nH v H,x

nI v I,x

⎞
⎠ . (23)

Here vs,x is the x̂-directed velocity of species s. Suppose, for sim-
plicity, that the plasma is inviscid.

Suppose boundary conditions fix some cross-field heat flux 
while requiring that the x̂ particle fluxes vanish. The relevant com-
ponents of the linear response matrix Li j can be calculated directly 
by considering the equations of motion. For the purposes of cal-
culating nH and nI , the thermal-conductivity-associated coefficient 
L00 is unimportant (so long as the solution is expressed in terms 
of some self-consistent T (x)). Otherwise, in steady state,

mH vH · ∇vH = evH × B − ∇pH

nH
+ RH I

nH
(24)

mI vI · ∇vI = Z I evI × B − ∇pI

nI
+ RI H

nI
, (25)

where e is the elementary charge and Rss′ is the friction force den-
sity between species s and s′ . This force will in general include 
both flow frictions and thermal frictions. In the case of a heavy 
impurity, it can be expressed [6] as

RH I = mHnHνH I

[
vI − vH + 3T ′

2eB
ŷ

]
(26)

RI H = mInIνI H

[
vH − vI − 3T ′

2eB
ŷ

]
. (27)

Here νss′ is the collision frequency between species s and s′ , and 
the conservation of momentum requires that mH nHνH I = mInIνI H .

Dropping the advective vs · ∇vs terms on the left-hand side of 
the equations of motion (since these are quadratic in J), and drop-
ping the x̂ component of the flow frictions (since these ultimately 
contribute to J at a higher order in msνss′/ZseB , which is a small 
parameter in a strongly magnetized plasma), the equations of mo-
tion can be rewritten as

J = mHnHνH I T

e2 B2

⎛
⎝ �00 �01 �02

3T /2 1 −1/Z I

−3T /2Z I −1/Z I 1/Z 2
I

⎞
⎠ X. (28)

Here �00, �01, and �02 are arbitrary matrix entries. They would be 
specified by a temperature evolution equation, but they are not 
4

necessary here. Note that Eq. (28) is consistent with Eq. (13). In 
this system, Eq. (21) becomes

pI

pI0
=

(
pH

pH0

)Z I ( T

T0

)−3Z I /2

. (29)

This is one of the simplest examples that can exhibit temperature 
screening of impurities. In other regimes, peaked temperature pro-
files can have the opposite effect (pulling high-Z impurities into 
the high-temperature regions rather than pushing them away), ac-
cording to differences in Ls0.

5. Discussion

In the absence of thermal frictions, in the linear (Onsager) non-
equilibrium regime, this paper has shown that the relative cross-
field accumulation of different ion species represented in results 
like Eqs. (1) and (2) follows from two key conditions: (1) an am-
bipolarity condition on the flows of different species and (2) sym-
metry of the Onsager coefficients coupling the flow of one particle 
species to a thermodynamic force acting on another species. Apart 
from these conditions, no other details of the system’s dynamics 
need to be specified. This extends the argument from Ref. [27]
to provide a unified explanation for the accumulation of high-Z
species in cases with temperature gradients but without thermal 
frictions.

In cases with thermal frictions, this paper has shown that tem-
perature screening effects arise naturally from the same formalism, 
and can be related in a simple way to the Onsager coefficients 
(though of course, temperature screening has been derived for 
many particular systems using the Onsager formalism before). This 
dependence on the Onsager coefficients is a significant difference: 
temperature screening can still be explained in terms of a generic 
linear-response theory, but in order to calculate the resulting equi-
libria it is necessary to compute some of the Li j (as opposed to 
the case without thermal frictions, where nothing need be known 
about the Onsager coefficients except that they enforce ambipolar-
ity).

The distinction between cases with and without significant 
thermal frictions is formally a question of the relative sizes of 
Ls0T ′/T 2 and the other terms in Eq. (13). It is clear that thermal 
frictions can be neglected when the temperature gradient vanishes 
or is sufficiently small. However, in general, how small that gradi-
ent has to be will depend on the details of the dynamics of the 
particular system in question (that is, on the actual value of Ls0). 
For example, in the simple case discussed in Section 4, thermal 
frictions can be considered significant whenever T ′/T is at least 
comparable to n′

H/nH or n′
I/nI .

The emphasis on ∇T -dependent effects was motivated by the 
prominence of these effects in the field, both theoretically and 
in experimental studies [28–30,15,31,32]. However, an essentially 
identical analysis could be used for cases in which the thermody-
namic force vector X included forces other than the temperature 
and pressure gradient terms described in Eq. (6). There are a num-
ber of situations in which additional thermodynamic forces may 
be important; see, for example, Refs. [33,41–43].

The discussion in this paper treats the electrons as stationary. 
In collisional cross-field transport, this is typically a reasonable 
assumption. The smallness of the electron gyroradii means that 
classical processes move them across field lines on a timescale that 
is slow compared to ion-ion transport. Indeed, this same assump-
tion is at least implicitly present in other derivations of Eqs. (1)
and (2). However, if for a given system the electron transport was 
not slow, there is no reason why electrons could not be included 
in the transport matrices as a species with charge Ze = −1. Re-
sults like Eqs. (1) and (2) have very different implications if they 
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also apply to the electron population. For example, if applied to 
all electron and ion species in a quasineutral plasma, Eq. (1) im-
plies that the density profiles must be flat. This makes sense, since 
on the longer timescales over which electrons can cross field lines 
collisionally, the plasma typically escapes from magnetic confine-
ment.

The focus here has been on cross-field dynamics. Of course, a 
related set of issues are important in unmagnetized plasma sys-
tems [44–48], but these systems do not generally have the same 
ambipolarity constraints that appear in magnetized systems.

The present investigation is confined to the comparatively set-
tled areas of near-equilibrium thermodynamics. Much of the lit-
erature on plasma transport is concerned with this regime. The 
further reaches of non-equilibrium thermodynamics, particularly 
for systems far from equilibrium, would require a different the-
ory. It is not necessarily clear that we should expect results like 
Eq. (1) and (2) to continue to apply outside of the near-equilibrium 
regime.
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Appendix A. Flux constraints from a variational principle

The argument in Ref. [27] was based on calculating the 
maximum-entropy state in an equilibrium system. There is no 
single universally accepted variational principle that plays an anal-
ogous role in non-equilibrium systems. In fact, the use of varia-
tional principles in non-equilibrium thermodynamics is an active 
area of research, and a number of authors have undertaken to de-
velop generally applicable variational principles for these systems 
[49–52].

In cases where Onsager symmetry holds, one non-equilibrium 
variational principle is the principle of minimum entropy pro-
duction [53–55], which is valid in systems close to equilibrium. 
This variational principle is not strictly necessary to the results 
in the rest of this paper, and it comes with a number of serious 
limitations [56], but it does establish a useful parallel with the 
maximum-entropy principle in Ref. [27], so we will briefly discuss 
it here, roughly following the discussion in Ref. [55].

In the Onsager regime, the total entropy production over some 
volume V is given by

Ṡ =
∫
V

d3r
N∑

i=0

J i Xi =
∫
V

d3r
N∑

i=0

N∑
j=0

Li j Xi X j . (A.1)

In the absence of any further constraints, Ṡ is minimized when

N∑
j=0

(Li j + L ji)X j = 0. (A.2)
5

In cases were Onsager symmetry holds, this becomes

J i = 0. (A.3)

In other words, the entropy production vanishes when the fluxes 
vanish. In many cases of interest, there is some additional con-
straint on some of the fluxes or forces. If, for some k, Jk is fixed 
by a constraint, then this simply becomes

J i �=k = 0. (A.4)

That is, any unconstrained fluxes vanish.
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