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Minimum stabilizing energy release for mixing processes
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Diffusive operations, which mix the populations of different elements of phase space, can irreversibly
transform a given initial state into any of a spectrum of different states from which no further energy can be
extracted through diffusive operations. We call these ground states. The lower bound of accessible ground-state
energies represents the maximal possible release of energy. This lower bound, sometimes called the diffusively
accessible free energy, is of interest in theories of instabilities and wave-particle interactions. On the other hand,
the upper bound of accessible ground-state energies has escaped identification as a problem of interest. Yet, as
demonstrated here, in the case of a continuous system, it is precisely this upper bound that corresponds to the
paradigmatic “quasilinear plateau” ground state of the bump-on-tail distribution. Although for general discrete
systems the complexity of calculating the upper bound grows rapidly with the number of states, using techniques
adapted from treatments of the lower bound, the upper bound can in fact be computed directly for the three-state
discrete system.
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I. INTRODUCTION

It is often of interest to calculate how much kinetic energy
could be released from a given system—that is, the system’s
free or available energy. There are multiple definitions of
free or available energy, each corresponding to a different
rule for how a distribution of particles may be rearranged.
One of the simplest, due to Gardner in 1963 [1], is that any
rearrangement is permitted so long as it conserves phase-
space densities. These rearrangement operations are known
as “Gardner restacking.” The maximum energy that can be
extracted with Gardner restacking is known as the “Gardner
free energy.”

However, physical processes that conserve phase-space
densities on a microscopic scale can appear to produce dif-
fusion when the system is viewed with finite granularity,
which is often the case of practical interest. For example,
wave-particle interactions are often modeled as diffusive pro-
cesses. This includes the well-known collisionless damping
mechanism of waves in plasma known as “Landau damp-
ing” [2], where the damping of the wave is accompanied
by diffusion of particles in velocity space, often modeled by
quasilinear diffusion [3]. The diffusion of particles by waves
underlies mechanisms of heating plasma by waves [4] and
mechanisms for driving plasma currents by waves [5]. In the
event that the plasma is out of equilibrium, the diffusion of
particles by waves can result in the amplification of the waves.
Since the amplification is limited by how much energy can
be released in a diffusive process, it can be useful to define
the free energy limited by diffusive exchange, in which the
allowed operation is to average the populations of any two
elements of phase space (as opposed to Gardner restack-
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ing, where the populations instead exchange position without
mixing) [6–10]. These mixing operations are perhaps the sim-
plest class of operations that do not conserve phase-space
densities.

In this context, a ground state is defined as a state from
which no operation can release further energy. For both Gard-
ner restacking and diffusive exchange, the ground state is
always a state in which the highest-population elements of
phase space occupy the lowest-energy states. For any given
initial state, Gardner restacking can lead to only one possible
ground state, whereas diffusive exchange operations can lead
to a spectrum of ground states (as is drawn in Fig. 1). The
diffusively accessible free energy is defined as the energy
released when the system is transformed from its initial state
to the lowest-energy ground state that can be reached through
diffusive operations. Calculating this free energy is therefore
a search problem over the space of all accessible ground
states.

The diffusively accessible free energy was originally de-
fined in the context of alpha channeling, where waves are
intentionally injected into a system in order to extract energy
from a population of fusion products [6,11]. The motiva-
tion was to determine how efficient alpha channeling (and
similar strategies for intentional phase-space manipulations)
could possibly be. This helps to explain why the focus in
the diffusive-exchange literature has always been on the
lowest-energy ground state: For the purposes of engineering
phase-space transformations to release as much energy as
possible, the upper limit on the achievable energy release is
the most interesting thing to calculate.

The Gardner restacking literature, on the other hand, is
largely motivated by the physics of instabilities. This includes
Gardner’s original work [1] as well as much of the recent
progress on the theory of restacking [12–14]. If an instabil-
ity can be understood as drawing energy from the unstable
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FIG. 1. Diffusive operations can often map a given initial state
into any of a large number of different ground states. These accessi-
ble ground states can have a range of energies.

configuration, then the amount of energy that could possibly
be extracted quantifies how unstable the system could be,
without recourse to the dynamics of the particular instabilities
in question. Recent work suggests that the Gardner free energy
can sometimes provide powerful predictions for turbulent en-
ergy fluxes [14].

This difference in focus is largely historical rather than
having anything to do with the underlying physics of these
different transformations. However, if one wishes to use the
theory of diffusive exchange operations to understand insta-
bilities, then it becomes desirable to understand the rest of
the spectrum of ground states pictured in Fig. 1, not just the
lowest-energy state. After all, a natural instability will not
necessarily pick the optimal sequence of phase-space mixing
operations; in general it may drive the system to any of the
accessible ground states. This paper takes the first step toward
understanding the rest of that spectrum by introducing the
concept of the minimum stabilizing energy release—that is,
the identification of the highest-energy ground state that can
be reached through mixing operations. For an experimental-
ist hoping to avoid detrimental instabilities, this represents
the best-case scenario: the smallest energy release that can
stabilize the system. More importantly, when taken together
with the (maximum) diffusively accessible free energy, the
minimum stabilizing energy release quantifies the range of
possible outcomes that can be achieved through mixing op-
erations.

These formulations of the available-energy problems come
from the plasma physics literature and are connected with a
number of other ideas about stability and accessibility within
that literature [15–18]. However, these considerations are
much more broadly relevant. Gardner restacking is closely
related to ideas that appear in astrophysics [19–22], statisti-
cal mechanics [23], and mathematics [24–28]. The discrete
diffusive exchange problem can be found (under other names)
in the literature on physical chemistry [29], income inequality
[30–32], and altruism [33]. All of these formulations generally
approach the problem of determining the set of states that can
be reached under a particular set of operations. This more
general problem appears, for example, in meteorology [34],
chemistry [35], laser absorption [36], and quantum informa-
tion theory and thermodynamics [37–42].

This paper is organized as follows. Section II defines the
minimum stabilizing energy release for discrete and con-
tinuous phase spaces. Section III explicitly calculates the
minimum stabilizing release for a three-state discrete system
and describes how the problem differs from that of calculating
the maximum energy release (that is, the minimum-energy
accessible ground state). Section IV discusses the minimum
stabilizing energy release for continuous phase space. It shows
that the quasilinear plateau is the maximum-energy acces-
sible ground state for a bump-on-tail distribution and that
this theory provides a natural generalization of the quasi-
linear plateau for more general curves. Section V discusses
these results. Appendix describes explicit solutions for the
minimum-energy accessible ground states for two- and three-
state discrete systems, as well as the corresponding Gardner
restacking ground states.

II. DEFINING THE MINIMUM STABILIZING
ENERGY RELEASE

All of the aforementioned concepts of available energy
can be defined for either discrete or continuous phase space.
For the purposes of building intuition, it is often helpful to
start with the discrete case. One can think of a discrete phase
space as being a coarse-grained average over a continuous
space. Alternatively, one can think of a discrete phase space
as corresponding to a fundamentally discrete system (such as
an atomic system with some discrete set of energy levels).

A discrete system with N states is specified by the energies
{εi} and current populations {ni} of those states; the total
energy can be written as

W =
N∑

i=1

εini. (1)

It is convenient to assume without loss of generality that εi !
ε j ∀i < j, so that the system is in a ground state if and only if
ni " n j ∀i < j.

A Gardner restacking operation consists of exchanging ni
and n j . A diffusive exchange operation consists of sending
both ni and n j to (ni + n j )/2. In the original formulation
of the minimum-energy ground-state problem, there was no
further restriction on the allowed operations. However, when
considering the maximum-energy ground-state problem, it is
necessary also to impose that an averaging operation should
only be allowed if it does not increase the total energy. The
disallowed operations, which effectively inject energy into the
system, are sometimes called annealing operations. Annealing
operations must be prohibited because if they are allowed,
then the problem becomes both trivial and unphysical.

It becomes trivial because the solution is always the same:
Every element of phase space is repeatedly averaged against
every other element until all populations are equal. This
outcome is unphysical; in the limit of large N , and in the
continuous limit, it can involve an arbitrarily large increase
in energy. In the continuous analog (which is described more
fully below), this would correspond to a uniform distribu-
tion over the entire domain of velocity space. Moreover,
these annealing operations are intrinsically not in line with
how we typically expect instabilities to behave. Annealing
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operations were not prohibited in the original formulation of
the minimum-energy ground-state problem, but Hay, Schiff,
and Fisch showed [7] that the minimum-energy accessible
ground state is the same with or without these operations.

For a continuous phase space, the corresponding free ener-
gies can largely be understood in terms of the large-N limit
of the discrete problem. In the case of Gardner restacking,
the continuous problem [43] is equivalent to calculating the
“symmetric decreasing rearrangement” discussed in the math-
ematics literature [24–28]. The continuous diffusive problem
can be presented as an optimization problem on the energy

Wfinal = lim
t→∞

∫
ε(v) f (v, t ) dv (2)

for a distribution f (v, t ) that evolves in time through the
nonlocal mixing process,

∂ f
∂t

=
∫

K (v, v′, t )[ f (v′, t ) − f (v, t )] dv′. (3)

There is no requirement that the mixing be local because
microscopically local flows can result in nonlocal mixing on
larger scales [6]. The minimum-energy ground-state problem
is to find the kernel K (v, v′, t ) that minimizes Wfinal, with the
requirements that K (v, v′, t ) = K (v′, v, t ) and K (v, v′, t ) "
0. The maximum-energy ground-state problem is to instead
maximize Wfinal, with the added constraints that K (v, v′, t )
can only be nonzero when ε(v) − ε(v′) and f (v, t ) − f (v′, t )
have the same sign (no annealing) and that the final state must
be a ground state.

The space of allowed kernels K (v, v′, t ) is large, and direct
searches over this space are difficult. However, it was re-
cently shown (surprisingly enough) that the minimum-energy
diffusively accessible ground-state energy for a continuous
system is identical to the energy accessible through Gardner
restacking [10]. This is to be contrasted with discrete systems,
in which the Gardner free energy always exceeds the energy
accessible through diffusive exchange (with the exception of
the case in which the system starts in a ground state and there
is no free energy of either kind).

III. N = 3 DISCRETE CASE

In Refs. [7] and [8], Hay, Schiff and Fisch approached the
problem of calculating the maximum accessible free energy
in discrete systems—that is, identifying the minimum-energy
accessible ground state. In particular, Ref. [7] describes five
primary findings for the N = 3 discrete system. To briefly
paraphrase (and using numbering to match the original pa-
per):

(1) For any given initial population values, it is possible to
identify a finite number of accessible states whose associated
energies could be extremal. In order to calculate the maximum
accessible free energy, it suffices to identify these states and
find the lowest-energy state among them.

(2) Candidates for the extremal states are always reachable
within N choose 2 averaging operations (that is, for N = 3, 3
operations).

(3) For any given initial conditions, there are ultimately
seven candidates among the accessible states which may be
extremal (including the initial state). Depending on the energy

values assigned to each of the three states, any of these seven
can be extremal.

(4) Allowing partial relaxation operations (partial mixing,
as opposed to full averaging of a pair of populations) does
not change the maximal energy that can be extracted from the
system.

(5) Allowing steps that increase the energy instead of de-
creasing it (so-called annealing operations) does not change
the maximal energy that can be extracted.

As it turns out, only result 4 continues to hold when
considering the problem of identifying the maximum-energy
accessible ground state rather than the minimum-energy state.

In some ways, this might seem surprising. Hay, Schiff, and
Fisch’s results were formulated in terms of the extremal ac-
cessible energies, not necessarily the minimum-energy states.
There are two things which prevent most of their results from
being directly applicable to the maximum-energy ground-
state problem. First, the highest-energy accessible state is not,
in general, a ground state. As a result, the maximum-energy
accessible ground state is very often not one of the seven
extremal states identified in Ref. [7]. Second, Hay, Schiff,
and Fisch described how to calculate the set of states that
are accessible when annealing operations are allowed. This
made sense in the paper’s original context, since, as they
showed, annealing operations are never needed to reach the
lowest-energy states. However, as discussed in Sec. II, it is not
physically appropriate to allow annealing operations for the
maximum-energy ground-state problem, so the space of states
to search for the maximum-energy ground state should be
more restrictive than the solution space described in Ref. [7].

With that in mind, consider the question of identifying
the maximum-energy accessible ground state when N = 3.
In fact, it is possible to find a fairly compact solution to
this problem by considering which operations are allowed for
which starting states. This is probably easiest to understand
graphically. Figure 2 shows the space of possible populations
(n1, n2, n3). As was noted in Ref. [7], it is possible to represent
this as a two-dimensional space by picking a normalization
such that n1 + n2 + n3 = 1 (in which case n3 can be deter-
mined from the values of n1 and n2). Depending on the relative
ordering of n1, n2, and n3, different averaging operations are
allowed in different regions of state space (according to the
requirement that each averaging operation must decrease the
energy of the system). The different orderings are shown in
the left panel of Fig. 2; the allowed trajectories for each
region are shown in the right panel. An averaging operation
consists of following one of the indicated trajectories to the
n1 = n2, n2 = n3, or n1 = n3 line, depending on the averaging
operation.

The maximum-energy ground states can be read off of
Fig. 2 region by region. If the initial state has n1 " n2 " n3,
then the system is already in a ground state, and the problem
is trivial.

If the initial state has n2 " n1 " n3, then the only allowed
operation is to average the first and second populations. The
immediately results in the (only) accessible ground state:

055209-3



E. J. KOLMES AND N. J. FISCH PHYSICAL REVIEW E 106, 055209 (2022)

FIG. 2. Left: The regions of state space corresponding to the six possible orderings of the three populations. Right: The allowable
nonannealing trajectories through state space at each point.

Similarly, if n1 " n3 " n2, then the only allowed operation
is to average the second and third populations, which again
immediately brings the system to a ground state:

If n3 " n2 " n1, then it is always possible to reach the ground
state (1/3, 1/3, 1/3), or at least to approach it arbitrarily
closely. This can be done by alternating between averaging the
populations of states 1 and 2 and averaging the populations of
states 2 and 3. These two averaging operations, performed one
after the other k times, is equivalent to the mapping




n1
n2
n3



 → Ak




n1
n2
n3



 (4)

with

A .=




1/2 1/2 0
1/4 1/4 1/2
1/4 1/4 1/2



, (5)

and for any k ∈ N it can be shown that

Ak = 1
3




1 1 1
1 1 1
1 1 1



 + 4−k

3




2 2 −4

−1 −1 2
−1 −1 2



. (6)

As such, the system eventually converges to (1/3, 1/3, 1/3) as
k → ∞. Moreover, each of these operations releases energy.
To see this, note that if the system starts with n1 ! n2 ! n3,
then averaging either the first and second or the second and
third populations must release energy (or do nothing) and that
neither of these operations will change the ordering of the
three states’ populations.

This leaves two remaining cases: n2 > n3 > n1 and n3 >
n1 > n2. Consider the former of these two. If n2 > n3 > n1
and (n1 + n2)/2 ! n3, then averaging the first and second
populations gets the system to the boundary of the region
discussed in the previous case, in which an alternating se-
quence of averaging operations between the first and second

and second and third populations leads the system arbitrarily
close to (1/3, 1/3, 1/3). This is the highest-energy possible
ground state, so it must be the optimal choice. On the other
hand, if (n1 + n2)/2 > n3, then there are two possible allowed
sequences of moves. Either the first and second can be aver-
aged, leading to a ground state:

or the first and third can be averaged, after which the only
allowed operation is to average the first and second, leading
to a ground state:

The first of these two possible sequence always leads to a
higher final energy, so it is the optimal choice. Intuitively,
one can see this from Fig. 2: Moving horizontally in state
space before moving diagonally down leads to a final ground
state with a lower energy than would be reached by moving
diagonally down from the initial position.

The argument for the final region of initial state space, in
which n3 > n1 > n2, is essentially the same. If (n2 + n3)/2 "
n1, then averaging the second and third populations leads to
the boundary of the region in which the highest-energy ground
state, (1/3, 1/3, 1/3), is reachable. If, on the other hand,
(n2 + n3)/2 < n1, then it turns out always to be favorable to
average the second and third populations, which immediately
leads to a ground state:

This is sufficient to specify, for any given initial state, the se-
quence of allowed operations that leads to the highest-energy
possible ground state.

055209-4



MINIMUM STABILIZING ENERGY RELEASE FOR MIXING … PHYSICAL REVIEW E 106, 055209 (2022)

At this point, it is possible to see in which ways
the maximum-energy ground-state problem differs from the
minimum-energy ground-state problem. Consider the five
conclusions on the latter problem in Ref. [7], listed at the
beginning of this section.

The first and third appear not to apply in the same way
to the maximum-energy ground-state problem; rather than
identifying a finite set of candidate sequences and checking
each, the solution presented here simply specifies directly
which trajectory through state space is optimal, depending
on the initial populations. However, although this was not
the approach taken by Hay, Schiff, and Fisch, this kind
of explicit case-by-case solution is also possible for the
minimum-energy ground-state problem. This is described in
Appendix.

The second conclusion from Ref. [7] (that the optimal
ground state is always accessible within three operations) is
entirely untrue for the maximum-energy ground-state prob-
lem. In cases where the highest-energy accessible ground
state is (1/3, 1/3, 1/3), this optimal state is sometimes ac-
cessible only in the limit of an infinite number of operations.
For example, the initial state (0, 1/4, 3/4) can only lead to
populations of the form A/2B for positive integers A and
B for any finite number of steps; therefore it cannot reach
(1/3, 1/3, 1/3) in finite steps, but it is shown above that it
can approach that ground state arbitrarily closely. The fifth
conclusion (that allowing or prohibiting annealing operations
does not change the optimal accessible state) also does not
continue to hold for the present problem; this is discussed in
Sec. II.

The remaining, fourth conclusion—that the optimal ground
state is the same whether or not partial mixing operations are
allowed—is the only one that continues to hold for the N = 3
maximum-energy ground-state problem. “Partial relaxation”
refers to any operation of the form

ni → (1 − γ )ni + γ n j, (7)

n j → γ ni + (1 − γ )n j, (8)

for 0 < γ < 1/2 (rather than “full mixing,” where γ = 1/2).
It is easiest to see this by inspecting the trajectories in Fig. 2.
A partial mixing operation would still have to follow one of
the marked trajectories, but unlike a full mixing operation, it
would not have to follow a given trajectory line to one of the
ni = n j lines. For initial conditions where n2 > n1 > n3 and
n1 > n3 > n2, there is only one allowed pair of populations to
average anyway. For initial conditions where n3 > n2 > n1,
full mixing operations can already reach the highest-possible-
energy ground state (1/3, 1/3, 1/3), so it is clear that no other
operations could do better. The cases in which n2 > n3 > n1
or n1 > n3 > n2 are less trivial, but still clear from the figure:
The operations which average the first and third populations
are never favorable, whether they are complete or partial, so
the optimal first move is always to fully mix the first and
second populations (if n2 > n3 > n1) or the second and third
(if n1 > n3 > n2).

Some of these conclusions (for instance, the role of anneal-
ing operations) hold for all N . Others (like the effects of partial
mixing) seem likely to continue to hold when N > 3, but we
have not proved them here for general N .

Note that there is no case in which reaching the optimal
ground state requires mixing the first and third populations.
The optimal sequences only ever require that neighboring
states be mixed. We have proven this for the three-state dis-
crete case, but we conjecture that it is true for all N .

IV. CONTINUOUS EXAMPLE:
THE BUMP-ON-TAIL DISTRIBUTION

Consider a bump-on-tail distribution f (v). f (v) is mono-
tonically decreasing until it hits a local minimum, then
monotonically increasing until it arrives at a local maximum,
and thenceforth monotonically decreasing. We will assume
that f (v = 0) exceeds this local maximum and that the global
minimum happens as v → ∞; these assumptions are not
necessary for what follows, but they are convenient. Let the
energy of a particle with velocity v be given by ε(v) = mv2/2
for some mass m.

The “quasilinear plateau” is constructed by finding veloci-
ties v1 and v2 such that we can construct a flattened function
f̄ (v) as follows:

f̄ (v) .=
{

f (v) v < v1 or v > v2
h v1 ! v ! v2

, (9)

with

h .= 1
v2 − v1

∫ v2

v1

f (v) dv. (10)

For a bump-on-tail distribution, h is chosen as the unique
value for which f (v1) = f (v2) = h. This section will demon-
strate that f̄ (v) is the maximum-energy accessible ground
state for the bump-on-tail distribution.

In addition to v1 and v2, there are two other important
values of v to note: first, v0, the minimal value of v at which
f (v0) attains the same value as the bump’s local maximum
of f , and, second, v3, the maximal value of v at which f (v3)
attains the same value s the bump’s local minimum of f . Note
that for this starting distribution, v0 < v1 < v2 < v3.

The plateau distribution f̄ (v) is accessible through diffu-
sive operations. One can pair intervals within [v1, v2] over
which f (v) > h with those by which f (v) < h and succes-
sively exchanging particles between them until they converge
to f (v) = h. This would not require annealing, since the in-
tervals within [v1, v2] for which f (v) > h all occur at lower v
than those for which f (v) < h.

There can be no exchange involving v < v0 or v > v3; any
exchange involving these intervals would require annealing.
Moreover, it is clear that within [v1, v2], it is impossible to
do better than a flat distribution. As such, the only scenario in
which one might imagine accessing a higher-energy ground
state than the plateau is if there were some exchanges involv-
ing the intervals [v0, v1] or [v2, v3].

Any nonannealing exchange involving [v0, v1] must trans-
fer population into this region. Any nonannealing exchange
involving [v2, v3] must transfer population out of this region.
This follows from the fact that f (v) is monotonically decreas-
ing for v < v1 and v > v2. Therefore, a higher-energy ground
state would have to involve exchanges that move some total
population FL " 0 to [v0, v1] from [v1, v2] and some total pop-
ulation FR " 0 to [v1, v2] from [v2, v3] (with at least one of FL
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FIG. 3. This cartoon shows how a starting distribution with more
than one bump on its tail can lead to multiple “plateaulike” ground
states if the bumps are not sufficiently separated (in particular, if the
local minimum of f associated with one bump does not exceed the
local maximum associated with the other). The one-bump case is the
paradigmatic “bump-on-tail” distribution with the classic, textbook
plateau solution that is adjusted in height to conserve particles by
matching the area below the plateau line with that above it.

and FR being nonzero). The resulting ground state would have
an energy bounded above by the case in which f (v) could
still be flattened between v1 and v2. But then any FL > 0 must
lower the distribution’s total energy in [v1, v2] by more than
it increased the energy in [v0, v1], and any FR > 0 must lower
the distribution’s energy in [v2, v3] by more than it increased
the energy in [v1, v2]. In other words, the exchanges involving
the regions [v0, v1] and [v2, v3] never lead to a ground state
with an energy higher than that of the quasilinear plateau.

This is enough to determine the maximum-energy accessi-
ble ground state for one class of distribution functions (albeit
an important one). A logical next case to consider is a dis-
tribution with multiple bumps on its tail. The generalization
is straightforward in cases where the two bumps are suffi-
ciently separated. In particular, if the local minimum of f (v)
for the lower-v bump exceeds the local maximum of f (v)
for the higher-v bump, then the two plateau regions cannot
interact without annealing operations and there is a unique
two-plateau solution which must be the maximum-energy
accessible ground state. Things are more complicated if the
two bumps are not separated in this way. This is illustrated
in Fig. 3; it is possible for there to be multiple “plateaulike”
ground states. If it were true that the maximum-energy ground
state is always plateaulike, then this means that computing
the maximum-energy ground state would still be a nontrivial

search problem over some set of plateaulike candidate dis-
tributions. We conjecture that the maximum-energy ground
state is, in fact, plateaulike for any sufficiently well-behaved
smooth function, but we have not proved that this must be the
case. If so, then it would follow that continuous maximum-
energy ground states are accessible through local diffusion.

V. CONCLUSION

There is a class of problems in which a distribution of
particles is rearranged via phase-space diffusion. The most
familiar example in plasma physics is the quasilinear dif-
fusion that appears in the theory of weak turbulence. The
same formalism also applies to other systems, including laser-
stimulated emissions due to transitions between atomic states.
In these problems, it is desirable to understand the behavior of
a distribution under the influence of diffusive operations.

Diffusive operations are known to be able to map a given
initial system to a spectrum of different ground states. Previ-
ous work has always focused on bounding the final energy of
that spectrum from below—that is, determining the maximum
energy that could be released [7–11]. This paper has argued
that the upper bound of the ground-state energy spectrum
(which sets the lower bound for how much energy could be
released) is comparably important, especially for the purposes
of understanding uncontrolled instabilities.

Moreover, this paper has identified the maximum-energy
ground state in certain cases. In a discrete phase space
with N = 3 elements, the maximum-energy ground state
can be determined by carefully considering the allow-
able mixing operations at every point in state space. In
a continuous phase space, it turns out that the quasilinear
plateau is the maximum-energy diffusively accessible ground
state for the bump-on-tail distribution. This means that the
maximum-energy ground state can be understood as a natural
generalization of the quasilinear plateau for general distri-
butions. The quasilinear plateau is a paradigm of recurring
interest in this literature because it is the best-known and
most intuitive example of what a diffusively accessible ground
state could look like; here we identify precisely where on the
spectrum of ground-state energies it falls and find that it is
extremal.

These examples lead us to make two conjectures:
(1) For a large class of smooth initial distributions, the

maximum-energy ground states are plateaulike in the sense
that they consist of segments of distribution that are fully
flattened and segments which are not modified from their
initial forms.

(2) In both the discrete and continuous cases, only lo-
cal mixing operations are necessary in order to reach the
maximum-energy ground states.

It would certainly be interesting to know whether either
of these conjectures are true, but neither of these conjectures
is proved here. However, based on known examples, neither
is disproved and both appear to be plausible. More gener-
ally, this paper serves to introduce a previously overlooked
problem that helps to characterize the entire spectrum of pos-
sible ground-state energies rather than focusing on their lower
bound alone.
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APPENDIX A: EXACT SOLUTIONS TO THE N = 2 AND
N = 3 GARDNER RESTACKING AND

MAXIMUM-ENERGY-RELEASE DIFFUSIVE
EXCHANGE PROBLEMS

1. Introduction to the problem

Section III presents an explicit solution for the problem
of finding the maximum-energy accessible ground state for a
discrete system with three states. This Appendix will describe
the corresponding solutions for the minimum-energy ground
state accessible through diffusion, as well as describing the
Gardner restacking solutions.

The objective of the minimum-energy ground state prob-
lem is, given a collection of N initial populations {ni} and
corresponding energies εi, to find the sequence of pairwise
averaging operations on the {ni} that will minimize the energy

W =
∑

i

εini. (A1)

It is typically convenient to use a convention in which the cells
are arranged in increasing order of energy, that is, εi ! ε j ∀i <
j. The difference between the initial energy W and the mini-
mal final energy is %WD, the (maximal) diffusive free energy.
In general, finding the minimal final W is a computationally
intensive problem. When there are N discrete elements, Hay,
Schiff, and Fisch showed [7] that the search space of possible
optimal sequences of exchanges has an O(NN2

) upper bound.
However, the problem can be tractable—even without com-
puter assistance—for sufficiently small N . This Appendix will
present a general solution for the diffusive-exchange problems
for N = 2 and N = 3.

This Appendix is adapted from material that appeared in
one of the authors’ doctoral dissertations [44]; we reproduce
it here because it has not previously appeared in the archival
literature.

2. The N = 2 problem

Consider a system with initial populations n1 and n2 and
corresponding energies ε1 and ε2. Assume without loss of
generality that ε1 ! ε2. If n1 " n2, then the system is already
in a ground state, and %WG = %WD = 0. If, on the other hand,
n1 < n2, then the ground state can be reached as follows:

(A2)

Gardner restacking instead does the following:

n1 n2 → n2 n1 . (A3)

In this case, %WG = (ε2 − ε1)(n2 − n1) and %WD = (ε2 −
ε1)(n2 − n1)/2. In fact, in either of the two possible cases, it
turns out that %WG = 2%WD.

3. The N = 3 problem

Consider a three-state system with initial populations n1,
n2, and n3 and corresponding energies ε1 ! ε2 ! ε3. For the
purposes of this problem, only the differences between pop-
ulations and energies matter, so in fact this problem depends

only on the following four parameters:

%1
.= n2 − n1, (A4)

%2
.= n3 − n2, (A5)

α
.= ε2 − ε1, (A6)

β
.= ε3 − ε2. (A7)

%1 and %2 are defined in terms of the initial values of n1,
n2, and n3. The arguments that follow will rely on the fact—
proven in Ref. [7]—that the optimal sequence of diffusive
exchange operations for minimizing the final ground-state
energy never needs to include “annealing” operations; in other
words, it is safe to assume that every averaging step in the op-
timal sequence must decrease W . Reference [7] also showed
that the optimal sequence of exchanges on N cells can include
at most (N choose 2) transformations. For N = 3, this means
that the optimal sequence will never involve more than three
transformations.

In order to calculate %WD, we will consider each of the
possible orderings of the initial values of n1, n2, and n3. This
results in a total of six cases to consider. Note that there are
corner cases which fit into more than one of the cases below
(for instance, if two of the populations are initially equal).

(a) Case 1: n1 " n2 " n3. In this case, there is no diffusive
exchange operation (nor any restacking exchange operation)
that can reduce the initial energy. The system is already in its
ground state:

%WG = 0 (A8)
%WD = 0. (A9)

(b) Case 2: n1 " n3 " n2. In this case, it is never profitable
to perform an exchange involving n1, so there is only one
candidate for the optimal sequence: To average n2 and n3:

The result is a ground state with energy less than the starting
energy. Of course, the Gardner free energy can be found by
performing a restacking exchange on the same two elements:

n1 n2 n3 → n1 n3 n2 .

As a result,

%WG = (ε3 − ε2)(n3 − n2) = β%2, (A10)

%WD = 1
2 β%2. (A11)

(c) Case 3: n2 " n1 " n3. This case is much the same as
Case 2, except that the only possible exchange is between n1
and n2, after which the system is in its minimal-energy ground
state. Therefore,

%WG = (ε2 − ε1)(n2 − n1) = α%1, (A12)

%WD = 1
2 α%1. (A13)

(d) Case 4: n2 " n3 " n1. This time, there are two possible
diffusive “starting moves”: to average n1 and n2 or to average
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n1 and n3. Since there are now multiple ground states accessi-
ble without any annealing operations, it is helpful to introduce
the notation that Ti j is the operation of averaging cells i and
j and that Ti jT(k is the operation of averaging cells ( and k,
followed by the operation of averaging cells i and j.

The optimal sequence must begin with either T12 or T13.
If it begins with T12, then either 2n3 ! n1 + n2 (in which
case the system is in a ground state) or 2n3 < n1 + n2, in

which case the only remaining sequence of less than four total
nonannealing exchanges leading to a ground state is T23T13T12.
On the other hand, if the sequence begins with T13, then the
only choice for the next operation is T12, which brings the
system to a ground state.

As a result, there are three viable candidates for the optimal
sequence: T12, T23T13T12, and T12T13. The resulting ground
states are as follows:

(A14)

T23T13T12 : [4pt] 1
4 n1 + 1

4 n2 + 1
2 n3

3
8 n1 + 3

8 n2 + 1
4 n3

3
8 n1 + 3

8 n2 + 1
4 n3 (A15)

(A16)

After T12, the total released energy is

%WT12 = 1
2 α%1. (A17)

After T23T13T12, the released energy is

%WT23T13T12 = α
( 3

8%1 − 1
4%2

)
+ (α + β )

( 3
8%1 + 3

4%2
)

(A18)

= α
( 3

4%1 + 1
2%2

)
+ β

( 3
8%1 + 3

4%2
)
. (A19)

Finally, after T12T13, the released energy is

%WT12T13 = α
( 1

4%1 − 1
4%2

)
+ (α + β )

( 1
2%1 + 1

2%2
)

(A20)

= α
( 3

4%1 + 1
4%2

)
+ β

( 1
2%1 + 1

2%2
)
. (A21)

Note that in this scenario, %1 " 0, %2 ! 0, and %1 + %2 " 0. Perhaps surprisingly, %WT12T13 is always the largest of the three,
regardless of the relative sizes of the differences in the three cells’ initial populations or energies.

The Gardner free energy can be found, as usual, simply by reordering the {ni} to put the higher populations in the lower-energy
cells. As such,

%WG = α%1 + β(%1 + %2) (A22)

%WD = α
( 3

4%1 + 1
4%2

)
+ β

( 1
2%1 + 1

2%2
)
. (A23)

(e) Case 5: n3 " n1 " n2. This case has much in common with the previous one. Again, there are two possible starting
exchanges for a candidate optimal sequence. This time, they are T13 and T23. If the candidate sequence begins with T23, then
the system is already in a ground state if 2n1 " n2 + n3. Otherwise, the only sequence of moves that is short enough to be a
candidate, that results in a ground state, and that does not include annealing moves is T12T13T23.

If the sequence instead begins with T13, then it is not immediately in a ground state, since n2 is the smallest of the three initial
populations (not counting the trivial corner case in which n1 = n2 = n3). Then the only remaining move to follow T13 is T23,
which results in a ground state. The three candidate ground states are as follows:

(A24)

(A25)

(A26)

The corresponding released energy for T23 is

%WT23 = 1
2 β%2. (A27)

The released energy for T12T13T23 is

%WT12T13T23 = α
( 1

4%1 − 3
8%2

)
+ (α + β )

( 1
2%1 + 3

4%2
)

(A28)

= α
( 3

4%1 + 3
8%2

)
+ β

( 1
2%1 + 3

4%2
)
. (A29)

The released energy corresponding to T23T13 is

%WT23T13 = α
( 1

4%1 − 1
4%2

)
+ (α + β )

( 1
4%1 + 3

4%2
)

(A30)

= α
( 1

2%1 + 1
2%2

)
+ β

( 1
4%1 + 3

4%2
)
. (A31)
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Noting that in the present case %1 ! 0, %2 " 0, and %1 + %2 " 0, the largest of these is always %WT23T13 . Then, computing the
Gardner free energy in the usual way,

%WG = α(%1 + %2) + β%2 (A32)

%WD = α
( 1

2%1 + 1
2%2

)
+ β

( 1
4%1 + 3

4%2
)
. (A33)

(f) Case 6: n3 " n2 " n1. In this final case, the initial populations are arranged in such a way that averaging any of the three
pairs of cells (1 and 2, 2 and 3, or 1 and 3) would release energy.

First consider a candidate sequence beginning with T12. T12 does not immediately result in a ground state. The two possibilities
for a subsequent transformation are T13 and T23. After T12 and T13, there is one possible move that leads to a ground state: T23.
However, after T12 and T23, there is no sequence of three or less total moves that can lead to a ground state. So the only viable
candidate beginning with T12 is T23T13T12.

Now consider a sequence beginning with T13. This first move does not immediately produce a ground state and must be
followed with either T12 or T23. In either case, either it reaches a ground state in two moves or it cannot reach one in three or less.
As a result, there are two candidate sequences beginning with T13: that is, T12T13 and T23T13.

Last, consider a sequence beginning with T23. This subcase works out in much the same way as the candidate sequences
beginning with T12. After enumerating the possibilities, there is only one that reaches a possible ground state within three
exchanges without annealing. It is T12T13T23.

The four resulting candidates are as follows:

(A34)

(A35)

(A36)

(A37)

Looking at these ground states, it is possible to see immedi-
ately that T12T13 can never release more energy than T12T13T23,
since the latter has a larger population differential between its
first two cells and its third. Similarly, T23T13 can never release
more energy than T23T13T12. However, it is worthwhile to cal-
culate the energies released by the remaining two candidates.
T23T13T12 releases

%WT23T13T12 = α
( 3

8%1 − 1
4%2

)
+ (α + β )

( 3
8%1 + 3

4%2
)
,

(A38)

= α
( 3

4%1 + 1
2%2

)
+ β

( 3
8%1 + 3

4%2
)
. (A39)

T12T13T23 releases

%WT12T13T23 = α
( 1

4%1 − 3
8%2

)
+ (α + β )

( 1
2%1 + 3

4%2
)
,

(A40)

= α
( 3

4%1 + 3
8%2

)
+ β

( 1
2%1 + 3

4%2
)
. (A41)

The difference between the two is

%WT12T13T23 − %WT23T13T12 = 1
8 (β%1 − α%2). (A42)

In other words, %WT12T13T23 is the larger of the two if β%1 >
α%2 and %WT23T13T12 is the larger in the opposite case. Of
course, they are equal if β%1 = α%2.

The conclusion is that in this case—unlike any of the
others—%WD depends on the relative sizes of the energy
and population gaps in the starting populations (not just
their signs). %WG, of course, follows from the same sorting
argument as ever and has no such ambiguity. The two free

energies are as follows:

%WG = (α + β )(%1 + %2) (A43)

and

%WD

=
{

α
( 3

4%1 + 1
2%2

)
+ β

( 3
8%1 + 3

4%2
)

if α%2 " β%1

α
( 3

4%1 + 3
8%2

)
+ β

( 1
2%1 + 3

4%2
)

if α%2 < β%1.

(A44)

4. A few comments

There are a few things to say about this analysis. First,
if this is the amount of effort required to solve the diffu-
sive problem with N = 3, then one can imagine how quickly
the problem can spiral into computational intractability. The
Gardner restacking problem is comparatively very easy.

Second, if we look carefully at the difference between
%WG and %WD, then we already find indications that %WD
might be getting closer to %WG as N gets larger. When N =
2, %WD = %WG/2 in all (well, both) cases. When N = 3,
%WD " %WG/2 in each of the six cases. For example, con-
sider Case 6. Depending on the values of α, β, %1, and %2,
%WD can be anywhere from (1/2)%WG to (3/4)%WG. This
provides a hint of intuition for a result made rigorous in
Ref. [10]: that in the continuous limit (where N → ∞ and
the variation between neighboring values is reasonably well
behaved) these two free energies become the same.
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