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Super-resonant four-photon collinear laser frequency multiplication in plasma
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Resonant four-photon scattering could nearly double frequencies of intense laser pulses in plasma. However,
transverse slippage between pulses presents a technological challenge, while collinear four-photon scattering is
forbidden for classical light dispersion in plasma. Nonlinear renormalization of intense laser pulses can enable
collinear four-photon resonance. However, such a very intensity-sensitive resonance is difficult to maintain for
evolving pulses. Remarkably, there is a lower-dimensionality submanifold of the resonant four-photon manifold
where the evolving pulses stay in resonance. This could enable an all-optical frequency doubling of mildly
relativistic-intense laser pulses in collinear geometry, advantageously free of the transverse slippage challenges.
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I. INTRODUCTION

The lack of a material that can reflect laser pulses of
energy fluences greater than a few J/cm2 limits practically
achievable pulse energies. Due to this limitation, hundreds of
square meters of high quality mirrors for laser resonant cavi-
ties and reflecting gratings for the chirped pulse amplification
technique [1,2] are needed to produce megajoule laser pulse
energies at the National Ignition Facility (NIF) [3–7] or Laser
Mégajoule Project [8–10].

Additionally, the lack of a material that can reflect photons
of energies greater than 10 eV, corresponding to wavelengths
shorter than 1/8 μm, limits direct production of laser pulses
at such wavelengths to a single pass amplification. As a result,
the currently achievable laser pulse energies sharply decrease
from megajoules at optical wavelengths to millijoules at sub-
stantially submicron wavelengths. Such millijoule ultraviolet
and x-ray pulses are now produced by free electron lasers
[11,12].

It would be of a great interest to find an efficient way
of transferring megajoule laser energies from the optical to
significantly shorter wavelengths. As but one possible ap-
plication, in inertial confinement fusion, an extremely large
frequency up-shift would enable the direct delivery of laser
pulse energy to the compressed target core, producing the fast
ignition of a small fraction of fuel, which would be a major
step towards the ultimate NIF goal.

Even a moderately large frequency up-shift could be very
useful for the NIF. The NIF has 192 laser pulses, 10-kJ energy
each, at 351-nm wavelength. These pulses are produced by
50% efficient frequency tripling of 1053-nm laser pulses. The
tripling is accomplished in a standard nonlinear material in
two stages. In the first stage, the frequency is doubled. In
the second stage, the original input frequency is added to
the double frequency output of the first stage. It would be
beneficial to avoid this very large and expensive frequency
tripling system, but the higher frequency is needed for more
robust propagation of laser pulses in plasma.

Large frequency up-shifts could potentially be achieved
via resonant nonlinear wave interactions in plasma. How-
ever, propagation of intense laser pulses in plasma tends to
be disrupted by various instabilities. The instabilities could
be mitigated at large laser-to-plasma frequency ratios, but
low-frequency plasma waves cannot resonantly produce sig-
nificant shifts of the laser pulse frequency.

It was proposed to use the resonant four-photon scattering
in rarefied plasma for transferring megajoule laser energies
from optical to shorter wavelengths [13]. In the regimes [13],
the scattering rates were proportional to the square of angles
between the laser pulses, and, to accomplish energy trans-
fers within modest laboratory distances, these paraxial angles
should not be too small. However, moderately small paraxial
angles already present a technological challenge by producing
significant transverse slippages between the pulses.

Collinear four-photon scattering would be advantageously
free of the transverse slippage challenges. Additionally,
collinear regimes would benefit from the transverse slip-
page suppressing parasitic noncollinear scattering seeded by
noise. Collinear pulses could conveniently propagate in a
shallow plasma channel, in the ground-state transverse mode,
limiting the transverse size of the pulses. The pulse power
could be kept below the threshold of the self-focusing in-
stability [14–17], thus excluding this kind of impediment as
well.

While the classical light dispersion in plasma does not al-
low resonant collinear four-photon scattering, such scattering
can be enabled by nonlinear renormalization of laser frequen-
cies and be fast enough to occur within modest laboratory
distances [18]. However, it would be challenging to maintain
the resonance as the interaction proceeds and the laser inten-
sities evolve. This is because the changes in laser intensities
would typically cause the renormalized laser frequencies to
change by more than the width of four-photon resonance.
Therefore, any prearranged exactly resonant conditions would
typically be ruined quickly by detuning of the resonance in the
process of natural evolution.
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Our goal here is to try to find a submanifold of the resonant
manifold in parameter space, such that the evolution starting
in this submanifold proceeds within it. This hypothetical sub-
manifold is called here “super-resonant.”

To facilitate reading of the paper, we briefly outline its con-
tent. In Sec. II, using a generic form of four-wave evolution
equations in canonical variables [19], we specify, in general
terms, the regimes to be examined. In Sec. III, we derive
particular equations for renormalized frequencies and slowly
varying envelopes of copropagating plane laser wave packets
of the same linear polarization. In Sec. IV, we simplify these
equations for the most interesting regimes, where the laser
frequency is nearly doubled. In Sec. V, we find explicit exam-
ples of super-resonant solutions in such frequency-doubling
regimes. In Sec. VI, we summarize and briefly discuss the
results.

II. REGIMES TO BE EXAMINED

The synchronism conditions needed for exactly reso-
nant scattering of two plane collinear waves into two plane
collinear waves have the form

k1 + k2 = k3 + k4 ≡ 2k, ω1 + ω2 = ω3 + ω4 ≡ 2ω, (1)

where k j are wave numbers and ω j are frequencies of the
waves. As long as the exact resonance is maintained, the
evolution equations for properly defined wave envelopes bj

can be presented in the following canonical form:

ı(∂t +c1∂z )b1 =V b∗
2b3b4, ı(∂t +c2∂z )b2 =V b∗

1b3b4, (2)

ı(∂t +c3∂z )b3 =V ∗b1b2b∗
4, ı(∂t +c4∂z )b4 =V ∗b1b2b∗

3, (3)

where c j are the group velocities of waves. The same one-
dimensional equations (with a slightly modified coupling
coefficient V ) are, in fact, applicable for pulses in a shallow
channel ground-state transverse mode.

The standard four-wave scattering rate is quadratic in wave
amplitudes, as are the nonlinear corrections to the wave fre-
quencies. Though coming from the same cubic nonlinearity,
these quantities are not necessarily of the same magnitude.
For noncollinear four-photon scattering regimes [13], the
scattering rate is typically much smaller than the nonlinear
corrections to photon frequencies, because of the mutual can-
cellation of leading physical contributions to the rate. This
makes keeping the resonance between the evolving pulses
challenging. The nonlinear corrections to the photon frequen-
cies might be canceled by arranging multiple noncollinear
seed pulses [13], but it is difficult to manage simultaneously
the transverse slippage between the pulses. The transverse
slippage could be managed by a grazing angle reflection of
the pulses from outside mirrors [13]. These mirrors could
also provide resonant synchronism between the pulses over
repeated meetings in the plasma. However, this solution is
technologically difficult.

Highly desirable would be regimes where the collinear
four-photon resonance [18] persists within the plasma, ab-
sent transverse slippage between the pulses. However, the
challenge in finding such collinear regimes is compounded
by the collinear four-photon resonance (created rather than
only adjusted by the renormalization) being much more sen-

sitive to intensity variations than the noncollinear four-photon
resonance. It is not at all clear at the outset that the hypo-
thetical super-resonant submanifold, where evolving collinear
pulses stay in the four-photon resonance, exists. Being of a
lower, if any, dimensionality, the super-resonant submanifold
hardly could be found numerically without detailed analytical
guidance. (Note that a similar difficulty was illustrated in a
preliminary search of the enduring resonant regimes for non-
collinear four-photon scattering where empirical numerical
approaches fell far short of finding the theoretically possible
energy transfers, even when using a simplified model that dis-
regarded the transverse slippage between pulses [20].) Hence,
what is critically needed is to examine analytically if such
hard-to-find super-resonant regimes, where evolving collinear
pulses stay in enduring four-photon resonance, are possible.

Of our highest interest here are the scattering regimes
where the output amplified seed pulse 3 has nearly double the
wave number of the mean input pump wave number:

k4 = 2k − k3 � k. (4)

Existence of such a collinear four-photon resonance for small
seeds was shown in [18]. It still needs to be verified for
larger seeds 3 and 4, as a prerequisite for searching the super-
resonant regimes.

In regimes (4), nearly all the pump energy goes into the
short-wavelength amplified pulse 3 and just a small fraction
of the energy goes into the long-wavelength disposable pulse
4. This may be possible at laser frequencies much greater than
the plasma frequency:

ω j � ωe =
√

4πn0e2/m ≡ kec. (5)

Here m is the electron rest mass, −e is the electron charge, n0

is the electron concentration of plasma in absence of lasers,
and c is the speed of light in vacuum.

Laser group velocities c j are then close to c and not sensi-
tive to nonlinear corrections which can be therefore neglected
in c j , so that

c j = c − δc j, δc j ≈ ck2
e /2k2

j . (6)

The speed of longitudinal slippage of the disposable pulse 4
is much greater than between other pulses.

Consider regimes in which the slippage between pulses 1,
2, and 3 can be neglected, as depicted in Fig. 1. Then, in the
variables t , ζ = z − c1t , Eqs. (2) and (3) reduce to

ı∂t b1 ≈ V b∗
2b3b4, ı∂t b2 ≈ V b∗

1b3b4, (7)

ı∂t b3 ≈ V ∗b1b2b∗
4, ı(∂t − δc4∂ζ )b4 ≈ V ∗b1b2b∗

3, (8)

where the partial derivative ∂t is already taken at fixed ζ rather
than z. Solutions of these equations satisfy the following
Manley-Rowe relations:

Ñ ≡ |b3|2 − |b30|2 ≈ |b10|2 − |b1|2 ≈ |b20|2 − |b2|2, (9)

where additional indices “0′′ are used for initial conditions.
The physical meaning of these relations is that the variation
of photon concentration Ñ in pulse 3 has the opposite sign
and the same value as in each of the pump pulses 1 and 2.
We’ll consider fully overlapping pulses 1, 2, and 3 of the same
length L1 and flat photon concentrations within this length.
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FIG. 1. The longitudinal slippage between pump pulses 1 and
2 and seed pulse 3 of nearly double pump frequency is negligible,
so that positions of these three pulses do not change in the window
moving with their joint group velocity. These pulses, ideally fully
overlapping, are shown here exaggeratedly displaced to make more
visible that they are three different pulses rather a single pulse.
Also for better visibility, the aperture of all pulses is shown here
exaggeratedly large (while, in fact, it is small due to the mildly
relativistic intensities at powers below the self-focusing power). The
low frequency disposable seed pulse 4 has a smaller group velocity,
so that it slips backwards in this moving window.

For nearly simultaneous depletion, the initial photon concen-
trations in pump pulses need to be close: |b10|2 ≈ |b20|2.

If even the slippage of pulse 4 over pulses 1–3 were negli-
gible within the propagation length L,

δL4 ≈ Lδc4/c ≈ Lk2
e /2k2

4 � L1, (10)

pulse 4, overlapping with pulses 1–3, would also satisfy the
Manley-Rowe relation:

|b4|2 − |b40|2 ≈ Ñ . (11)

Then, assuming that the wave numbers k j and renormalized
frequencies

ω j ≈ ck j + ck2
e /2k j +

∑
l

Vj,l |bl |2 (12)

stay in the exact resonance (1) until the pump pulses are
significantly depleted, the photon concentration in disposable
pulse |b4|2 would ultimately increase to about |b10|2 ∼ |b20|2.
The respective increase of the photon energy density |b4|2ω4

in pulse 4 would be about |b10|2ω4. In the terms of electron
quiver velocities v j , the energy density |b j |2ω j is proportional
to v2

j ω
2
j , so that v2

j ∝ |b j |2/ω j ∝ |b j |2/k j . It follows that v2
4

would ultimately increase to about v2
10k/k4. For smallness

of higher order nonlinearities, electron quiver velocities v j

should be much smaller than the speed of light c:

a j = v j/c � 1. (13)

To keep a4 � 1, it would be needed then to use excessively
small input pump intensities:

a2
10 ∼ a2

20 � k4/k. (14)

This would, in turn, imply excessively large amplification
distances. Such excesses could be avoided by disposing pulse

4 to a reasonable level a4 ∼ a10 allowing us to preserve the
natural limitation (13) for pump pulses. The disposing could
occur in short regions of a denser plasma significantly slow-
ing down pulse 4 while virtually not affecting the higher
frequency pulses 1–3. Within such a region, pulse 4 could
be quickly replaced by its fresh version of a slightly smaller
amplitude. The pulse 4 energy disposed at a4 ∼ a10 is just a
small k2

4/k2 � 1 fraction of the input pump energy. Therefore,
any number of such disposals, much smaller than k2/k2

4 � 1,
would not noticeable deteriorate high efficiency of the pulse 3
amplification.

A continual disposing could be accomplished in the
regimes where the slippage of disposable pulse 4 is large
δL4 � L1 and roughly the same as the pulse 4 length L4 ∼
δL4. The input ratio of the pulse 4 energy to the pump energy
is small:

k4|b40|2δL4

(k1|b10|2 + k2|b20|2)L1
∼ a2

40

2a2
10

δL1

L1
� 1, (15)

for a40 � a10 and δL1 � L1. Rear edges of all four pulses
coincide at t = 0. Then, pulse 4 slips backwards over pulses
1–3 with the speed δc4. Each layer of pulse 4 slips over
the common length L1 of pulses 1–3 quickly, so that a
noticeable resonance detuning does not occur on such a
short timescale. Thus, pulses 1–3 effectively interact at each
time with a fresh layer of pulse 4. To keep the resonance
throughout the evolution, each layer of pulse 4 needs to be
prearranged to get into resonance with pulses 1–3 upon en-
countering them. The layer phase also needs to be prearranged
properly.

III. BASIC EQUATIONS

We start with the nonlinear evolution equation [13] for
dimensionless vector potential 
a = e 
A/mc2 of the electromag-
netic field, derived by expansion in a � 1 (meaning that the
electron quiver velocity in the laser field is much smaller than
the speed of light in vacuum c). For plane waves propagating
along the axis z and polarized along the axis x, so that 
a = a 
ex,
the evolution equation takes the form [18]

(∂2
t − c2∂2

z + ω2
e )a

= ω2
e a[1 − (∂2

t + ω2
e )−1c2∂zz]a

2/2 + O(a5). (16)

Solutions of the equation (16) are searched in the form

a =
∑

j

(a je
ıφ j + c.c.) + δa, ∂zφ j = k j, ∂tφ j = −ω j, (17)

where envelopes a j slowly vary in space-time while δa repre-
sents small nonresonant beatings generated by nonlinearity.

The renormalized relation between ω j and k j is defined by
matching all terms proportional to aj , which gives, neglecting
higher order terms,

ω2
j = c2k2

j + ω2
e + ω2

e

⎛
⎝|a j |2Fj, j/2 +

∑
l �= j

|al |2Fj,l

⎞
⎠, (18)

Fj,l = c2(k j − kl )2

(ω j − ωl )2 − ω2
e

+ c2(k j + kl )2

(ω j + ωl )2 − ω2
e

− 3=Fl, j . (19)
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The evolution equations for slowly varying envelopes aj

can be derived from (16). Neglecting the second deriva-
tives of a j’s, the envelopes just move with the wave group
velocities and can additionally slowly vary due to non-
linear interactions. We are interested here in the regimes
where four-photon scattering is not coupled with the Ra-
man scattering. This implies that the beatings of input waves
are well off the Raman resonances corresponding to ze-
ros of denominators (ω j − ωl )2 − ω2

e in (19). Assuming
that the parasitic Raman scattering seeded by noise is sup-
pressed, the nonlinear evolution of wave envelopes, caused
by four-photon scattering, can be described by the following
equations:

2ı(ω j∂t +c2k j∂z )a j = ω2
e

∑
p�= j,s �= j

a∗
l apasFl;p,sFj,l;p,s, (20)

Fl;p,s = Fl;s,p = c2(kp − kl )2

(ωp − ωl )2 − ω2
e

+ c2(ks − kl )2

(ωs − ωl )2 − ω2
e

+ c2(kp + ks)2

(ωp + ωs)2 − ω2
e

− 3, (21)

Fj,l;p,s =〈eı(φp+φs−φl−φ j )〉=Fl, j;p,s =Fj,l;s,p =F ∗
p,s; j,l . (22)

Here, the angle brackets signify averaging over a space-time
domain small compared to the space-time scales of envelopes
variation, but large compared to the scales of nonresonant
beatings variation.

In the exact resonance (1), factors Fl;p,s, defined by (21),
have additional symmetries,

F2;3,4 = F1;3,4 = F3;1,2 = F4;1,2, (23)

while factors Fj,l;p,s can be reduced to

F1,2;3,4 = F3,4;1,2 = 1 (24)

by proper selection of integration constants in phases φ j (17).
Then, Eq. (20) takes, in the variables t , ζ , b j ,

a j (t, z) = b j (t, ζ )/
√

k j, (25)

the form of Eqs. (7) and (8) with

V = ck2
e F2;3,4√

k1k2k3k4
. (26)

Equation (18) reduces to Eq. (12) with

Vj, j = ck2
e

4k2
j

Fj, j, Vj,l �= j = ck2
e

2k2
l

Fj,l . (27)

IV. LARGE FREQUENCY UPSHIFTS

For laser frequencies much greater than the plasma fre-
quency (5), coefficients Fj, j (19) reduce to

Fj, j ≈ −2. (28)

Well off the Raman resonances (ω j − ωl )2 − ω2
e = 0, coeffi-

cients Fj,l (19) reduce to

Fj,l ≈ k2
e

(k j − kl )2 − k2
e

− 1. (29)

Taking into account that k4 � k (4), Fj,l �= j can be further
simplified to

F1,3 ≈ F1,4 ≈ F2,3 ≈ F2,4 ≈ F3,4 ≈ −1, (30)

F1,2 ≈ k2
e

(k1 − k2)2 − k2
e

− 1, (31)

while the factor F2;3,4 (21) reduces to

F2;3,4 ≈ k2
e

(
1

k2
1

+ 1

k2
2

+ 1

4k2

)
. (32)

The resonance condition (1) for renormalized frequencies
(12) can be presented in the form(

k1k2

k3k4
−1

)
(1−|a1|2−|a2|2−|a3|2−|a4|2)

≈ k2
e (k1|a1|2+k2|a2|2)

k[(k1−k2)2−k2
e ]

. (33)

Taking into account that k4 � k (4) and |a j | � 1, it follows
that

(k1 − k2)2 − k2
e ≈ 2k2

e (|a1|2 + |a2|2)k4/k. (34)

This should be well off the Raman resonance, the frequency
width of which is about ω2

e |a1|/ω1 [21,22]. That means

(k1 − k2)2 − k2
e � 2k3

e |a1|/k �⇒ 2|a1|k4 � ke. (35)

Within the resonant manifold (34), the factor F2;3,4 (32) re-
duces to

F2;3,4 ≈ 9k2
e

4k2
. (36)

V. SUPER-RESONANT REGIMES

The most promising are the regimes where pump pulses
1 and 2 jointly move together with seed pulse 3 which is
at nearly twice their frequency. These three pulses, moving
together, encounter fresh layers of the lower frequency longer
disposable seed pulse 4 which slips backwards through pulses
1–3. Parameters of the plasma and pulse 4 at every encounter
space-time location need to be prearranged to satisfy the res-
onance conditions (1) and phase synchronism condition:

arg b4 = arg b1 + arg b2 − arg b3 − π/2. (37)

These may leave some flexibility in choosing parameters,
as seen from the simplified equation (34) for the resonant
manifold. The flexibility may be employed to facilitate the
useful amplification and suppression of parasitic instabilities.
However, our goal here is just to verify the existence of super-
resonant regimes in the parameter domain of physical interest.
Therefore, we will choose values of flexible parameters in an
easy to illustrate though not necessarily optimal way.

For a small initial amplitude of seed pulse 3, the Manley-
Rowe relations (9) reduce to

|b1|2 ≈ |b10|2 − |b3|2, |b2|2 ≈ |b20|2 − |b3|2. (38)

For simultaneously depleting pump pulses 1 and 2, their initial
photon concentrations need to be the same:

|b20|2 = |b10|2 ≡ b2
0. (39)
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Then, the pulse 3 evolution equation (8) reduces to

∂t |b3| ≈ V |b4|(b2
0 − |b3|2), (40)

with the factor V , according to (26) and (36), given by

V ≈ 9ck4
e

4k3
√

2kk4
. (41)

If even the slippage of pulse 4 were negligible, the addi-
tional Manley-Rowe relation (11) would be valid, implying
|b4| ≈ |b3|. The respective solution of the equation (40) would
be

|b1|2 ≈ b2
0 − |b3|2 ≈ b2

0

1 + exp
(
2V b2

0t
) |b40|2/b2

0

. (42)

The propagation distance for nearly complete depletion of
pump pulses, leaving not yet depleted just a small fraction
α � 1 of the input pump power, would be

Ld ≈ c

2V b2
0

ln

(
b2

0

α|b40|2
)

. (43)

This could be rewritten in the form

Ld ≈ λ

9π |a10|2
k4

k4
e

√
2k4

k
ln

(
k|a10|2

αk4|a40|2
)

, (44)

where λ ≈ 2π/k is the laser pump wavelength, and |a10|2 �
k4/k (14).

For the regimes where slippages of pulse 4 are large, there
is a flexibility in choosing |b4|. Let us, for example, choose it
to be constant, |b4| = |a40|

√
k4. The respective solution of the

equation (40) is

b0 − |b3| ≈ 2b0

1 + exp(2V b0|b4|t )
. (45)

The propagation distance for nearly complete depletion of
pump pulses is

Ld ≈ c

2V b0|b4| ln

(
4

α

)
≈ λ

√
2

9π |a10||a40|
k4

k4
e

ln

(
4

α

)
. (46)

It can be shorter than (44), due to the softer limitations on
initial amplitudes, |a10| � 1 and |a40| � 1.

For a numerical example with α = 0.1, corresponding to
90% pump depletion, k = 20ke, and |a40|2 = |a10|2 = 1/5,
(46) gives

Ld ≈ 1.5 × 105 λ. (47)

For λ = 3 × 10−5 cm, this depletion length is Ld ≈ 4.5 cm.

VI. SUMMARY

In contrast to the classical case, the four-photon resonance
explored here is created (rather than just slightly modified)
by nonlinearity. This makes the resonance very intensity sen-
sitive and, generally, quickly detuned by the natural wave
evolution. Remarkably, it appears nevertheless that there may
exist a lower-dimensionality submanifold of the resonant
four-photon manifold where evolution laser pulses stay in
resonance. We derived a simple formula for such a super-
resonant submanifold in the most interesting regimes where
the input pump energy is nearly completely transformed into
the energy of an output pulse of nearly twice the pump fre-
quency.

A few centimeter laser energy transfer distances in fully
resonant regimes of our paper indicate that the transfer
distances could stay submeter even if the resonance were
occurring only in a few percentages of the laser propagation
length. This would substantially relieve tough requirements to
the plasma homogeneity by making acceptable random inho-
mogeneities which typically detune the four-photon resonance
even ten times more than its width. Additionally, the respec-
tive detuning of the Raman resonance, greater by the factor
of the laser-to-plasma square-frequency ratio, would facilitate
suppression of parasitic Raman scattering. These regimes also
promise softer requirements to the prearranged laser seeds and
pumps, thus strongly motivating further study.
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