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ABSTRACT

Alpha channeling uses waves to extract hot ash from a fusion plasma, transferring energy from the ash to the wave. It has been proposed that
this process could create a radial electric field, efficiently driving E! B rotation. However, existing theories ignore the nonresonant particles,
which play a critical role in enforcing momentum conservation in quasilinear theory. Because cross field charge transport and momentum
conservation are fundamentally linked, this non-consistency throws the rotation drive into question. This paper has two main goals. First, we
provide a pedantic and cohesive introduction to the recently developed simple, general, self-consistent quasilinear theory for electrostatic
waves that explains the torques which allow for current drive parallel to the magnetic field, and charge extraction across it; a theory that has
largely resolved the question of rotation drive by alpha channeling. We show how the theory reveals a fundamental difference between the
reaction of nonresonant particles to plane waves that grow in time vs steady-state waves that have a nonuniform spatial structure, allowing
rotation drive in the latter case while precluding it in the former, and we review the local and global conservation laws that lead to this result.
Second, we provide two new results in support of the theory. First, we provide a novel two-particle Hamiltonian model that rigorously estab-
lishes the relationship between charge transport and momentum conservation. Second, we compare the new quasilinear theory to the
oscillation-center theories of ponderomotive forces, showing how the latter often obscure the time-dependent nonresonant recoil, but ulti-
mately lead to similar results.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0085821

I. BACKGROUND AND INTRODUCTION
A deuterium–tritium fusion reaction produces fast neutrons and

hot helium ash. While the neutrons quickly leave the device, the
charged ash remains confined in the reactor for a time. Initially, this
confinement is somewhat beneficial as the ash is extremely hot
(3.5MeV) compared to the bulk plasma ("20 keV) and thus transfers
heat to the bulk via collisions.

However, this situation is not ideal for a few reasons. First, the
radial gradient of hot alpha particles represents a large source of free
energy, which can drive plasma instabilities. Second, the hot ash pri-
marily heats electrons. Although some of the heat eventually makes its
way to ions via electron–ion collisions, this energy flow pattern sets up
a situation where the electrons are hotter than the ions, which
increases pressure and radiative energy loss without increasing the
fusion power. Third, once the ash thermalizes, it no longer provides
any heat, but quasineutrality requires that each alpha particle be

accompanied by two electrons, further increasing the pressure without
additional fusion power.

For all of these reasons, it is desirable to quickly extract the alpha
particles from the plasma, while redirecting their energy into useful
work, such as ion heating and current drive. Since both of these tasks
can be accomplished by suitably chosen plasma waves, it makes sense
to try to transfer the ash energy into a these waves.

Such a flow of energy from the alpha particle ash into the waves, as
in the case of instabilities, is made possible by the free energy associated
with the radial gradient of the alpha particles, which are born at the hot
reactor core. A suitably chosen wave can tap this free energy by pulling
ash outward along this gradient, both capturing the ash energy and
removing the cold ash from the reactor, accomplishing two goals with a
single process. Because this generic process involves channeling energy
from alpha particles into waves, while also channeling the alpha particles
out of the reactor, it has been termed “alpha channeling.”
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A blueprint for alpha channeling was first proposed by Fisch and
Rax,2,3 using the electrostatic lower hybrid (LH) wave. Sufficiently
strong LH waves are useful for both current drive and fast ion heating,
and also interact strongly with fusion-born alpha particles. While we
will focus here on alpha channeling via lower hybrid waves,2–6 it
should be noted that one can also make use of waves in the ion-
cyclotron range of frequencies7–18 and can further optimize the effect
by combining multiple waves.19–22

Alpha particles interact with LH waves via a Landau resonance,
wherein twice per orbit in a magnetic field, the velocity of the alpha
particle matches the phase velocity of the wave [Fig. 1(a)]. Karney23,24

showed that for sufficiently strong LH waves, this process leads to a
diffusion in energy, with particles randomly gaining or losing energy
with each interaction with the wave. Taken alone, i.e., in a homoge-
neous plasma, this diffusion leads to net transfer of energy from the
wave into the particles, which is undesirable for alpha channeling.

What Fisch and Rax showed was that this diffusion in energy is
coupled to diffusion in the position of the particle, so that particles
which gain energy move in one direction, while particles that lose
energy move in the opposite direction [Fig. 1(a)]. Formally, the overall
diffusion thus takes place on a one-dimensional path in energy-
position space. Thus, by creating a path that connects high-energy
particles at the fusing core of the plasma (a source) with low-energy
particles at the plasma edge (a sink), the diffusion can be made to
extract alpha particles while cooling them [Fig. 1(b)], thus accomplish-
ing the goal of alpha channeling.

During this process of wave-mediated ash extraction, it is natural
to hypothesize that the charge of the ash is pulled out as well. Such
charge extraction would create a radial electric field in the magnetized
plasma, resulting in E! B rotation. Driving E! B rotation, and in
particular, sheared rotation, is useful in a variety of ways for plasma
control; it can suppress both large-scale instabilities25–32 and small-
scale turbulence,33–37 increase the confinement of mirror plasmas via
centrifugal forces,38–40 and even be exploited in a variety of plasma
mass separation schemes.41–50 Thus, rotation drive via alpha channel-
ing would be an extremely useful tool to have in the plasma control
toolbox.

Such rotation due to alpha channeling was first proposed by
Fetterman and Fisch.51–53 In particular, they proposed that for a rotat-
ing plasma, a stationary electrostatic or magnetostatic wave at the
plasma edge would appear as a propagating wave in the rotating
plasma reference frame, pulling out alpha particles and putting their
energy into the plasma rotation.52 This would result in a very efficient
direct conversion of energy from fusion ash heat into plasma rotation.

While this picture is very appealing, the charge extraction pro-
posal of Fetterman and Fisch must be looked at as a hypothesis since
the theory that they built only looked at the response of the Landau-
resonant alpha particles to the wave, without considering the response
of the bulk plasma. Thus, embedded in the theory is an assumption:
the bulk particles will not move across magnetic field lines in response
to the wave, leaving only the alpha particle charge transport.

There is a puzzle here, however. Consider the case of an electro-
static plane wave. Such a wave has no electromagnetic momentum,
which is given by the Poynting flux, p ¼ S=c2 ¼ E! B=4pc. Thus, as
the wave amplifies due to alpha channeling, momentum must be con-
served in the plasma.

This momentum conservation has implications for the transport
of charge, which is most familiar from the theory of classical collisional
transport in magnetized plasmas. When two particles collide in a uni-
form magnetic field, their gyrocenters move in just such a way that no
net charge moves across field lines (Fig. 2). As we discuss in Sec. II,
this cancelation of net charge transport is intrinsically linked to the
fact that the collision conserves momentum. This link suggests that we
must tread with care in arguing that alpha channeling pulls charge
across field lines and thus drives rotation.

What is ultimately needed is a self-consistent theory of alpha
channeling, treating both resonant and nonresonant particles. Such a
theory has been recently developed54–57 for the simple case of alpha
channeling in a slab-geometry plasma.

The main goals of this paper are twofold. First, we aim to provide
a pedantic and cohesive introduction to the newly developed electro-
static quasilinear theory, showing the deep relations between its impli-
cations for both current drive and rotation drive—relations which are
currently spread across several separate papers.

FIG. 1. Schematic view of alpha channeling by a lower hybrid wave. (a) As a hot alpha particle orbits in a magnetic field Bz, it becomes Landau resonant with the LH wave
twice per orbit. At this resonance point, it receives a “kick,” either gaining or losing energy. Correlated with this change in energy, the center of its orbit moves as well, resulting
in a coupled random walk (diffusion) along a 1D path in energy (K) and space (X). (b) By choosing a wave where this diffusion path connects high-energy particles at the toka-
mak center (an alpha particle source) to low-energy particles at the edge (a sink), alpha ash can be made to diffuse out while transferring its energy into the wave. (b) is
adapted with permission from Fisch, Fusion Sci. Technol. 65, 79–87 (2014).1 Copyright 2014 Taylor and Francis.
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Second, we provide two new calculations in support of the quasi-
linear theory. The first of these calculations increases the clarity of the
theoretical results by firmly establishing the ordering of the relation-
ship between momentum transport and charge transport. In so doing,
it distinguishes the alpha channeling processes described in this paper
from momentum transport in collisional transport theory58–62 or
gyrokinetics.63,64

The second calculation examines the relation between the new
quasilinear theory and a separate class of theories commonly used to
evaluate ponderomotive forces, known as the oscillation center (OC)
theories.65,66 We show how the relation between these theories is
somewhat subtle, and how care must be taken in comparing the theo-
ries, but how they ultimately agree in the most important conclusions.

To accomplish these goals, we begin in Sec. II by reviewing the
deep link between momentum conservation and charge transport in a
magnetized plasma.61,62 To eliminate confounding processes that might
muddy the subsequent analysis, we work in the simplest possible mag-
netic geometry: a slab with a uniform magnetic field. In such a geome-
try, we show that large radial charge transport requires an azimuthal
force to be applied to the plasma and use a novel Hamiltonian two-
particle model to establish the ordering that separates the wave-driven
torques discussed in this paper from collisional58–62 and gyrokinetic63,64

momentum transport processes. In Sec. III, we review the momentum
conservation principles in plasma wave problems, showing how planar
electrostatic waves cannot produce a net force on the plasma. In Sec. IV,
we see how these conservation laws play out in the quasilinear theory of
the bump-on-tail instability. This familiar textbook67–69 example shows
the importance of the nonresonant response in enforcing momentum
conservation.70 Analysis of this case allows us to derive a simple form of
the quasilinear force, consistent with momentum conservation and the
kinetic theory of the bump-on-tail instability, but valid for any planar
electrostatic wave in a homogeneous plasma.

As an immediate application, this force reveals how currents can
be driven by ion acoustic waves in plasmas despite the nonresonant

recoil, even in the absence of collisions. We explore this current drive
in Sec. V, which can be skipped by readers interested only in alpha
channeling and rotation drive.

With our groundwork laid, we return in Sec. VI to the problem
of alpha channeling. We discuss what has historically made a self-
consistent linear and quasilinear theory of alpha channeling challeng-
ing and how to get around these issues. By applying our simple
electrostatic theory of the quasilinear force, we show how in the plane
wave initial value problem of alpha channeling, the resonant charge
extraction identified by Fetterman and Fisch51 is canceled out by a
nonresonant charge transport in the opposite direction, eliminating
the rotation drive effect.

In Sec. VII, we turn our attention to the problem in multiple
dimensions. We extend our quasilinear theory to this case, discussing
how the addition of spatial fluxes to the conservation laws changes the
fundamental constraints of the problem. In particular, we show how
the Reynolds and Maxwell stress combine to cancel the nonresonant
charge transport, allowing resonant charge extraction and rotation
drive consistent with local momentum conservation. Furthermore,
using a Fresnel analysis and our conservation laws, we show how the
force on the plasma needed to extract these particles is ultimately pro-
vided by the antenna that launches the wave.

Finally, in Sec. VIII, we perform a novel comparison of our analy-
sis to the oscillation center theories of ponderomotive forces.65,66 For
simplicity, we consider only the unmagnetized electrostatic wave prob-
lem, which turns out to already be quite subtle. We see that the oscilla-
tion center theories can make the recoil force difficult to calculate, but
also offer some fruitful general perspectives on the steady-state problem.

II. MOMENTUM CONSERVATION IN A MAGNETIZED
PLASMA SLAB

To examine perpendicular charge transport, we consider the sim-
plest possible plasma setup. Namely, we consider a slab plasma, uni-
form along y and z, with a magnetic field B along the axis ẑ . Any
quantities which vary in space (such as the electric potential) vary only
along the x direction. Thus, x can be thought of as the “radial” coordi-
nate, y as the “poloidal” coordinate, and z as the “axial” or “toroidal”
coordinate. We are interested in charge transport along x, which will
lead to a change in the y-directed E! B drift, i.e., the plasma rotation.

Consider the motion of a charged particle in such a uniform
magnetic field. The magnetic field is given by the vector potential
A ¼ Bxŷ . Thus, ignoring the ẑ direction and working in the x–y plane,
the particle motion exhibits two invariants, from the energy and y-
directed canonical momentum,

H ¼ 1
2
mv2 þ /ðxÞ; (1)

py ¼ mvy þ
qB
c
x: (2)

The upper and lower bounds of the orbit can be used to find the gyro-
center. When /ðxÞ is a linear function of x, i.e., when the radial electric
field is constant, we can Lorentz boost to gyrocenter rest frame moving
at the velocity v ¼ cE! B=B2. In this frame, the gyrocenter position
is simply given by

xgc ¼
c
qB

py: (3)

FIG. 2. When two particles collide in a uniform magnetic field, their gyrocenters
move such that no net charge moves. This cancelation ultimately comes from the
fact that momentum is conserved in the collision. Because a planar electrostatic
wave has no electromagnetic momentum, as the wave amplifies or damps, momen-
tum should be conserved in the plasma. Thus, the wave amplification or damping
can be seen as mediating a momentum-conserving “collision” between particles in
the plasma, making charge transport questionable.
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Now consider a collision between any number of particles, but
which conserves momentum. The total cross field charge transport
will be given by

X

i

qiDxgc;i ¼
c
B

X

i

Dpy;i ¼ 0: (4)

Thus, there is no net movement of charge due to the collision: move-
ment of net charge requires momentum input, i.e., a net force on the
plasma.

A. Ordering of the charge transport
This conclusion fundamentally relating momentum conservation

and charge transport relaxes if the electric field varies in x. For
instance, consider a particle in a constant magnetic field, but with an
electric field with nonvanishing first and second derivatives,

/ ¼ '/2
x
d

! "2

' /3
x
d

! "3

: (5)

As we show using a two-particle Hamiltonian model in Appendix A,
the relation between gyrocenter and energy becomes nonlinear as
soon at the electric field has a nonzero second derivative, allowing for
net charge transport in a momentum-conserving collision. However,
this charge transport is ordered down by !2 relative to the motion of
each individual charge, where ! " qi=L, with qi the gyroradius and L
the characteristic scale length of the electric field variation. This scaling
leads to cross field-currents consistent with the Braginskii perpendicu-
lar viscosity58,62 and collisional gyrokinetics,63,64 and can be seen as a
Larmor-radius-scale random walk of momentum. A similar !2 scaling
exists for collisionless gyrokinetic momentum transport processes64

since these also are fundamentally momentum diffusion processes.
A broader discussion of the multiple ways to view these small cross

field currents, including in the two-fluid,62 MHD, and particle pictures,
is given in Ref. 57. However, for the purposes of this paper, we will be
focused on whether alpha channeling leads to uncompensated charge
transport, i.e., to zeroth order net x-directed currents independent of the
flow shear variation length L. The present analysis suggests that this
requires a net force to be applied to the plasma along the y direction: a
problem for a planar electrostatic wave, which has no momentum.

III. CONSERVATION LAWS
Before launching into a discussion of momentum conservation

in waves problems, it is good to clarify what is meant by momentum
(and, for that matter, energy). In plasma waves, two types of energy
and momentum are common to discuss. The first are the energy and
momentum associated with the electromagnetic fields in the plasma,

WEM ¼
E2 þ B2

8p
; piEM ¼

1
4pc

!ijkEjBk: (6)

These form a closed system with all the particles constituting the plasma,
which (in the sub-relativistic limit) have energy andmomentum,

WP ¼
ð
1
2
mv2fdv; piP ¼

ð
mvifdv; (7)

where f ðt; x; vÞ is the distribution function. In a homogeneous plasma,
this conservation manifests as

d
dt

WEM þWPð Þ ¼ 0;
d
dt

piEM þ piP
$ %

¼ 0: (8)

The second form of energy and momentum often discussed is
known as the generalized Minkowski71 or plasmon69 energy and
momentum, which incorporates the oscillating motion of the plasma
particles,

WM ¼ xrI ; piM ¼ kirI : (9)

Here, xr and kr are the real components of the wave frequency and
wavenumber, and I is the wave action, given for electrostatic waves by

I ¼WEM
@Dr

@xr
; (10)

where Dr is the real part of the dispersion function, defined in detail in
Sec. IV. Although the Minkowski energy and momentum do not gen-
erally form a part of a closed system, in a collisionless, homogeneous
plasma, they form a closed system with the resonant particles, in the
sense that

d
dt

WM þWRPð Þ ¼ 0;
d
dt

piM þ piRP
$ %

¼ 0: (11)

The resonant particle energy and momentum are given in the same
way as the nonresonant energy and momentum from Eq. (7), but with
the integration only over the resonant region.

These two conservation relations, summarized in Fig. 3, will
allow for a very clear interpretation of the evolution of the bump-on-
tail instability, which will guide our subsequent analysis of the alpha
channeling problem. For a more detailed discussion, see Ref. 56.

IV. BUMP-ON-TAIL INSTABILITY
AND SELF-CONSISTENT QUASILINEAR FORCES

The detailed kinetic mathematics of the bump-on-tail instability
are worked out in several good textbooks;67–69 here, we will simply
give a brief overview of the relevant features of the problem.

FIG. 3. Schematic depiction of the difference between electromagnetic and
Minkowski energy and momentum. The Minkowski energy and momentum incorpo-
rate the oscillating motion of the particles and can sometimes form a closed system
with the nonresonant particles.
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The bump-on-tail instability is an electrostatic kinetic instability
in a homogeneous, unmagnetized plasma. It occurs for electron
Langmuir waves, with the ions taken as a neutralizing background.
The instability is triggered when, near the phase velocity vp ¼ xr=kr ,
the particle distribution satisfies v@f =@v > 0; i.e., when there are more
particles at high energy than low energy (black line, Fig. 4). Then, the
wave-induced diffusion flattens out the bump, transferring energy and
momentum out of the resonant particles. Keeping in mind our conser-
vation relation from Eq. (11), this energy and momentum appear as
Minkowski momentum in the wave.

If one just looked at the resonant electrons, it would thus look as if
the plasma was losing energy and momentum. However, from Eq. (8),
we know that the total energy and momentum in the plasma must
remain constant since the wave has no electostatic momentum. Thus,
the nonresonant particle distribution must shift, canceling the momen-
tum loss from the resonant particles, to satisfy both momentum conser-
vation equations—and this is exactly what happens (Fig. 4).

It turns out that we can actually derive a very simple expression54,55

for the quasilinear force on the plasma that demonstrates this result and
generalizes to any electrostatic wave. We start with the linear theory,
which for an electrostatic wave begins with the Poisson equation,

'r2/ ¼ 4p
X

s

qsns: (12)

Fourier transforming gives the general form of dispersion relation for
an electrostatic wave,

0 ¼ D ( 1þ
X

s

Ds; Ds ( '
4pqs
k2

~ns

~/
: (13)

Usually, we get the real and imaginary frequencies by Taylor expand-
ing this dispersion relation in small jxij=jxrj, yielding real and imagi-
nary components of the dispersion relation,

0 ¼ 1þ
X

s

Drs; (14)

0 ¼
X

s

ixi
@Drs

@xr
þ iDis

! "
: (15)

Here, Dis and Drs are the real and imaginary parts of Ds when evalu-
ated at real x; k.

Now, we can get the average force on each species over a wave
cycle by taking the average of the field-density correlation,

Fi
s ¼ qshnsEii ¼ qs

2
Re ~E

i)
~ns

h i
(16)

¼ 2WEMki Dis þ xi
@Drs

@xr

& '
: (17)

Here, the second line used the definition of Ds and ~E
i ¼ 'iki~/.

Note that Eq. (17) automatically satisfies momentum conserva-
tion since if we sum over all species, the term in brackets is simply the
imaginary part of the dispersion function [Eq. (15)], which must by
definition be 0. As explained in more detail in Refs. 54–56, the first
term represents the resonant diffusion (and can be shown to be consis-
tent with the absorption of Minkowski momentum56) and the second
term is the nonresonant recoil response. Thus, the nonresonant recoil
naturally arises in this momentum-conserving quasilinear framework,
which forms the basis for our subsequent analysis.

V. CURRENT DRIVE BY WAVE-MEDIATED MOMENTUM
EXCHANGE

The quasilinear theory of the Sec. IV leads to an important and
immediate result in current drive, which we explore in this section.
This section can thus be skipped by readers interested only in ques-
tions of cross field charge transport and rotation drive.

Consider again the Langmuir wave from Sec. IV, but now with-
out the bump-on-tail, so that the wave damps rather than amplifies.
Because of the lack of momentum in a purely electrostatic planar field,
equal and opposite momenta, and thus equal and opposite currents,
will be driven in the resonant and nonresonant electron populations.
To get net current, therefore, some of this momentum has to be trans-
ferred into the ions. Such momentum exchange can be provided by
collisions. For instance, since Langmuir waves have a high phase veloc-
ity relative to the electron thermal velocity, and because the Coulomb
collision frequency with the background ions scales as v'3, the reso-
nant current driven in the tail electrons will be much longer-lived than
the nonresonant current. Thus, a net current is produced on collisional
timescales.72–75

However, such a situation spells trouble for current drive by other
waves, which do not exhibit collisional timescale separation between
resonant and nonresonant particles. For instance, ion-acoustic waves
(IAWs) have a phase velocity vp " Cs *

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZTe=mi

p
+ vthe, so that

resonant electrons are right in the middle of the thermal distribution
and thus lack a collisional timescale separation from the nonresonant
particles. One might then think that it is impossible to drive currents
with IAWs.

However, there is a major difference between the IAW and the
electron Langmuir wave: both ions and electrons participate in the
IAW. Thus, momentum conservation alone does not say where
the nonresonant recoil will go; it could go either to electrons or ions. If
the recoil goes to the ions, it will drive negligible current, leaving
uncompensated resonant electron current, and thus net current drive.

Our quasilinear force from Eq. (17) can quickly tell us where this
recoil goes. Combining this equation with the definition of the
Minkowski momentum from Eqs. (9) and (10), we find the very com-
pact expression,54

FIG. 4. Quasilinear evolution of the bump-on-tail instability. Resonant particles lose
momentum, which shows up as Minkowski momentum in the wave. However, the
wave has no electromagnetic momentum, and so the total particle momentum can-
not change. Thus, to enforce momentum conservation, the nonresonant particle dis-
tribution shifts, canceling the resonant particle momentum.
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dji

dt
¼
X

s

qs
ms

dpis
dt
¼ ' dpiM

dt

X

s

qs
ms

!cs ' !gsð Þ; (18)

where we have now defined the species resonant (!cs) and nonresonant
(!gs) response coefficients,

!cs (
DisX

s0
Dis0

; !gs (
@Drs=@xrX

s0
@Drs0=@xr

: (19)

For a wave that damps on multiple species, these coefficients take a
value between 0 and 1, representing the fraction of the resonant and
nonresonant response that goes to each species. For a typical, long-
wavelength IAW, we have

Dri ¼ '
x2

pi

x2 ; Dre ¼
1

k2k2De
; (20)

so that !gi ¼ 1 and !ge ¼ 0. Thus, the entire nonresonant response is in
the ions, and the driven resonant electron current is uncompensated.
This quick result is strengthened in Ref. 54, where we show that for
any IAW, the electron resonant current !ce is always significantly larger
than the electron nonresonant response !ge, even when taking into
account next-order corrections.

Because this current drive mechanism relies on the momentum-
less wave field to rearrange momentum between the different plasma
species, it has been termed “wave-mediated momentum exchange.”
This method of current drive was first discovered using a much more
complex kinetic calculation by Manheimer76 for IAWs and Kato77 for
IAWs and LH waves; here, we see that it follows very straightforwardly
from the form of the force in Eq. (17).

The case of the ion-acoustic wave is intriguing because shocks,
which are ubiquitous in astrophysical systems, tend to produce ion-
acoustic waves in their wake.78–80 Thus, the same shocked systems
that are predicted to produce magnetic fields in astrophysics via the
Biermann battery,81–88 such as those around supernova remnants,84,85

could produce magnetic fields via IAW-driven currents, providing an
alternate possible mechanism for the origin of cosmological seed mag-
netic fields.

This intriguing possibility is explored in Ref. 89. To calculate the
magnetic field growth due to the IAW current, one must account for
the self-inductance of the plasma that fights the creation of a magnetic
field. This can be accomplished, as in magnetohydrodynamics, by
neglecting the electron inertia in the electron momentum equation.
Thus, the electron momentum equation must become force-free,
which is enforced by the generation of an electric field. If this electric
field has curl, a magnetic field is generated. The change in the mag-
netic field can be calculated by combining Faraday’s law and the elec-
tron momentum equation to obtain89

@B
@t
¼ r! ðv ! BÞ ' c

e
r! Fe

ne

! "
: (21)

Here, Fe is the force on the electrons from everything other than the
large-scale electric and magnetic fields. If this force is the pressure
force, one obtains the Biermann battery; if it is the quasilinear force
from the IAW, one obtains a corresponding “IAW Battery.”

A possible scenario for magnetogenesis by this IAW battery is
shown in Fig. 5. A shock from a supernova expands into the

surrounding intersteller medium (ISM), encountering inhomogenei-
ties in the medium. These inhomogeneities lead in turn to inhomoge-
neities in the wave strength, and thus in the force experienced by the
electrons. A curl in this force results in a compensating curl in the elec-
tric field to keep the electrons force-free, and thus to the generation of
a magnetic field. Depending on the wave parameters, this process can
sometimes produce fields faster than the Biermann battery
mechanism.89

VI. LINEAR AND QUASILINEAR THEORY OF ALPHA
CHANNELING

Now we return to the subject of rotation drive by alpha channel-
ing. The case of the bump-on-tail instability in Sec. IV suggests that
the nonresonant particle will gain any momentum lost by the resonant
alpha particles. The analysis of Sec. II, meanwhile, suggests that in the
absence of net momentum input, no charge transport is possible.

To see how this plays out in the case of alpha channeling by a
plane wave, we would like to make use of our simple quasilinear theory
from Eq. (17). However, making use of this theory requires a linear
theory, which until recently did not exist for alpha channeling.

A. Historical results and challenges
The primary reason that this linear theory has proved elusive is

that the pole associated with the perpendicular Landau resonance dis-
appears from the dispersion relation as soon as there is any magnetic
field in the plasma. This puzzling disappearance of Landau damping
as soon as a plasma is even infinitesimally magnetized has been termed
the “Bernstein–Landau paradox” since it involves a discrepancy
between the Bernstein (magnetized) and Landau (unmagnetized)
kinetic dispersion relations.90,91

The Bernstein–Landau paradox is a mathematical artifact more
than anything else. It arises from the fact that, in calculating the forces
in the linear magnetized theory, the force is always evaluated at the
unperturbed particle position. Because of this, a particle never forgets
its phase with respect to the wave as it goes around repeatedly on its
gyro-orbit, and so unless there is a resonance between the gyroperiod
and the wave period, the particle will gain and lose equal amounts of

FIG. 5. Mechanism of magnetogenesis by ion-acoustic waves. A shock propagates
through the ISM, producing ion acoustic waves in its wake. These waves produce a
force Fe electrons, inhomogeneous on a scale L in the ISM. A compensating inho-
mogeneous electric field E arises to cancel this force. This field has curl (consider
the integral of the field over the loop s) and thus induces a magnetic field B.
Reproduced with permission from Ochs and Fisch, Astrophys. J. 905, 13 (2020).89

Copyright 2020 IOP Publishing.
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energy in a periodic oscillation. In the language of dynamical systems,
the particle is trapped on a small cycle, or “island,” in phase space,24

and thus only oscillatory motion is possible.
Diffusion, i.e., stochastic motion of the particle through phase

space, can only occur if these islands are destroyed. While it is true
that, in sufficiently magnetized plasmas, some particles will remain
trapped in these islands, there are a multitude of mechanisms which
can allow loss of phase memory and stochastic diffusion in a physical
plasma. This can occur when there are multiple overlapping waves
whose islands overlap (the “Chirikov criterion”)92,93 when random
collisions introduce sufficient stochasticity94 or when a single wave has
a large enough amplitude to trigger nonlinear physics.23,24

This last case was examined in full nonlinear detail by Karney,
who derived a diffusion coefficient for the resonant particles in per-
pendicular velocity space. To derive this diffusion coefficient, Karney
solved for the dynamics of a particle undergoing Larmor rotation in
the presence of an electrostatic wave of arbitrary strength. Because
the nonlinear mathematics involved were very complicated, the theory
was limited to planar waves with constant amplitude in time—
precluding a self-consistent quasilinear theory. However, the theory
did give a diffusion coefficient for the resonant particles, which can be
written in perpendicular energy space as54

DKK ( m2
a

2
qak/a

ma

! "2 v2pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2v2? ' x2

r

p H v? ' vpð Þ; (22)

where /a is the wave amplitude, v? ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2K=ma

p
, and H(x) is the

Heaviside function.
Using the existence of this diffusion, Fisch and Rax2,3 used the

relation between momentum and gyrocenter to show that every time a
particle receives a kick DK in perpendicular energy, it receives a corre-
lated kick DX=DK ¼ k ! b̂=maxXa in gyrocenter position. Wave
amplification occurs when there are more particles at high than low
energy along this path, i.e., when

@

@K
þ k ! b̂
maxXa

, @
@X

 !

Fa0ðK;XÞ > 0; (23)

where Fa0ðK;XÞ is the lowest-order distribution function for the reso-
nant alpha particles.

As we move to develop a self-consistent linear and quasilinear
theory of alpha channeling, our main targets are the diffusion coeffi-
cient in Eq. (22) and the amplification condition in Eq. (23).

B. Linear theory
The requisite self-consistent linear theory of alpha channeling,

for a poloidal plane wave (k k ŷ), is developed in Ref. 55. The basic
idea is to construct a theory for the alpha particles in a magnetized
plasma that contains the Landau resonances perpendicular to the mag-
netic field (Fig. 1) that underlie the diffusion process in alpha channel-
ing. Since these resonances exist in the unmagnetized kinetic theory,
our approach is to transform the unmagnetized kinetic theory, which
lives naturally in local phase space coordinates xi ( faðx; y; vx; vyÞ, to
gyrocenter-energy coordinates Xi ( FaðX;Y ;K; hÞ. To model the
nonlinear loss of gyrophase structure, we force the zeroth-order alpha
particle distribution function to be independent of gyrophase h and
average all equations over h. Indeed, a similar approach has been used

before in homogeneous plasmas to calculate damping on alpha par-
ticles;94–96 in contrast, here we allow the distribution function to be
inhomogeneous along X, i.e., to have a radial alpha particle gradient.

Treating the ions and electrons as cold fluids in the LH frequency
range Xi + xLH + Xe, we find that the alpha particles introduce an
imaginary component to the dispersion relation, resulting in an imagi-
nary frequency,55

xi ¼
p
2

x2
pa

x2
pi

x4
LH

jkyj3
m2

a

ð
dvx

@Fa0

@K
þ

ky
maxrXa

@Fa0

@X

! "

X);K)
; (24)

where X) ( x þ vp=Xa;K) ( mðv2x þ v2pÞ=2. The term in parenthe-
ses can be recognized as precisely the alpha channeling amplification
condition from Eq. (23), but now weighted properly over a distribu-
tion of alpha particles, rather than simply a single particle. Equation
(24) represents the first calculation of a linear amplification rate from
the alpha channeling process.

The amplification condition for LH wave alpha channeling was
originally derived by demanding that the gyrocenter distribution of alpha
particles has more particles at high energy than low energy along the
gyrocenter diffusion path. In contrast, Eq. (24) is just a coordinate trans-
form of the imaginary frequency result from Landau damping or the
bump-on-instability. Nevertheless, these two very different approaches
lead to the same amplification condition, and thus, evidently, represent
the same physical process. In other words, if we take a distribution func-
tion Fa0ðX;KÞ in gyrocenter coordinates for which alpha channeling
occurs, and we look at it locally in physical coordinates fa0ðx; vx; vyÞ, we
will find a bump-on-tail instability along vy (Fig. 6). Establishing the
equivalence of these two instabilities, which were thought to be entirely
distinct, is a rewarding result of developing the linear theory.

C. Quasilinear theory
Just as transforming the unmagnetized linear kinetic theory to

gyrocenter coordinates yielded the alpha channeling amplification
condition, transforming the unmagnetized quasilinear kinetic theory
yields the diffusion equation for the resonant alpha particle
distribution,55
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FIG. 6. Equivalence of alpha channeling and the bump-on-tail instability. If a distri-
bution Fa0ðX ; KÞ for which alpha channeling occurs, i.e., for which xi > 0 in Eq.
(24), is examined in local coordinates, then the local distribution fa0 exhibits a
bump-on-tail instability, where sgnðvpÞ

Ð
dvx@f=@vy > 0.
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Thus, the theory recovers diffusion along the channeling diffusion
path, definitively establishing that the theory captures the alpha
channeling process.

Since the new linear theory captures the alpha particle response
as an imaginary component of the dispersion relation Dia, we can
apply the simple quasilinear theory force theory from Eq. (17). Since
for the bulk components we have Dre ¼ x2

pe=X
2
e ; Dri ¼ 'x2

pi=x
2, the

recoil force (as in the case of ion acoustic waves in Sec. V) will be
entirely in the ions and lead to an F! B drift (and corresponding
charge transport) that entirely cancels the current from the resonant
alpha particles. The presence of this drift in a time-growing plane
wave is confirmed55 by single-particle simulations (Fig. 7) of the full
Lorentz force in a growing high-frequency electrostatic wave, which
agree well with the predictions of quasilinear theory (Fig. 8).

As a result of this analysis, we see is that charge cannot be
extracted, and thus E! B rotation cannot be driven, by a purely poloi-
dal plane wave that grows in time.

VII. SPATIALLY STRUCTURED WAVES
However, this conclusion is not the whole story. Often, in prob-

lems of plasma control, we drive a wave from the outer radial plasma
boundary and are interested in what this wave looks like in steady
state. Understanding what charge transport looks like for this state
requires analyzing waves with a spatial structure. For simplicity,

we will consider absorption of a damped wave; however, the core
results also apply to amplification of a wave due to alpha channeling.

To look at this new situation, we will consider the model from Ref.
56, shown in Fig. 9. This simple model is motivated by the coupling of
waveguides for lower hybrid current drive.97,98 For such waves, an eva-
nescent wave in a vacuum region converts into a plasma slow wave as
the plasma density ramps up past the point where jxpej > jxj. It then
propagates up to the mode-conversion layer, where it reflects as an elec-
trostatic lower hybrid wave.99Wemake twomain simplifications to dra-
matically reduce the problem complexity. First, we assume all damping
occurs in a uniform region with resonant particles, so that we do not
have to account for changing wave parameters in the resonant region.
Second we take the plasma to have a sharp boundary, where the evanes-
cent wave converts to a slow wave. This reduces the coupling calculation
to a Fresnel-style100,101 boundary-matching condition, dramatically sim-
plifying the mathematics.

A. Conservation relations revisited
The conservation relations from Sec. III relax considerably in a

plasma with a spatial structure. The general conservation relations are
best expressed in terms of the energy-momentum tensor (EMT) of the
system,

T ¼
W S=c

cp P

 !

: (27)

In a closed system, conservation laws follow from the vanishing of the
4-divergence of this tensor, expressed in Cartesian coordinates in flat
spacetime as

1
c
@

@t
Tl0 þ @

@xi
Tli ¼ 0: (28)

Energy conservation corresponds to the l¼ 0 portion of this equation,
and momentum conservation to the l ¼ 1–3 components.

FIG. 7. Simulated single-particle trajectories in the x–y plane of (a) hot particles
(v0 ¼ 3:5vp) and (b) cold particles (v0 ¼ 0:03vp) in a growing electrostatic wave.
Lines are particle positions, and triangles are orbit-averaged gyrocenter positions.
Axes are normalized to qps ( x=kXs, i.e., ~x ¼ x=qps and ~y ¼ y=qps. The color
indicates time, light to dark. The hot particles diffuse stochastically. The cold par-
ticles exhibit a clear shift in gyrocenter toward positive ~x , which ultimately cancels
the charge transport from the hot alpha particles. Reproduced with permission from
Ochs and Fisch, Phys. Rev. Lett. 127, 025003 (2021).55 Copyright 2021 American
Physical Society.

FIG. 8. Change in gyrocenter position X for the particle in Fig. 7(b) due to the slow
ramp-up of the electrostatic wave. The gyroperiod-averaged position in the simula-
tions (filled black diamonds) agrees well with the predicted shift55 (gray dashed line)
due to the nonresonant recoil. Reproduced with permission from Ochs and Fisch,
Phys. Rev. Lett. 127, 025003 (2021).55 Copyright 2021 American Physical Society.

FIG. 9. Model for the structured wave analysis from Ref. 56. Darker color repre-
sents higher density. A vacuum evanescent wave (black), consisting of a forward-
decaying “incident” wave (dotted gray) and backward-decaying “reflected” wave
(dashed gray), converts to a “transmitted” slow wave at the plasma/vacuum inter-
face. This slow wave then continues to propagate inward as the plasma density
increases until it hits the lower hybrid resonance, where it mode converts into an
electrostatic lower hybrid wave (blue). Wave action is conserved during the in-
plasma propagation and mode conversion. This wave then propagates back to a
uniform region containing resonant particles, where it damps. Reproduced with
permission from Ochs and Fisch, Phys. Plasmas 28, 102506 (2021).56 Copyright
2021 AIPP.
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Looking at momentum conservation, we are primarily interested
in the appearance of the stress terms P,

Pij
EM ¼ '

1
4p

EiEj ' 1
2
dijE2 þ BiBj ' 1

2
dijB2

! "
; (29)

Pij
P ¼

ð
mvivjf ðt; x; vÞdv; (30)

Pij
M ¼ piMvjg ; (31)

where we have introduced the group velocity of the wave,

vig ¼ '
@Dr=@kri
@Dr=@xr

: (32)

For the purposes of charge transport, we are interested in the
force along the symmetry direction y. As discussed in Ref. 56, for
the purposes of this calculation, both the tensors ðTEM þ TPÞ and
ðTM þ TRPÞ represent closed systems—a fact we make extensive use
of in the ensuing analysis.

Often, a distinction is made between pure electrostatic waves,
which have no magnetic component, and quasi-electrostatic waves,
which have a small magnetic component consistent with Maxwell’s
equations. This magnetic field is important for calculating energy flow
into the plasma since it gives rise to a Poynting flux (as discussed, e.g.,
in Sec. 4.4 of Stix74). It is important to note that this distinction is
unimportant for calculating momentum flow since the resulting cor-
rections to the stress tensor Pij

EM areOðvp=cÞ2, i.e., negligible for (fun-
damentally non-relativistic) electrostatic waves. This ordering can be
noted by boosting a spatially decaying electrostatic wave from its rest
frame to the laboratory frame; the boost significantly changes the (ini-
tially 0) Poynting flux, but leaves the Maxwell stress tensor unchanged.

B. Local momentum conservation
In the presence of a wave, the kinetic stress tensor gives rise to a

stress component due to the oscillating motion of the particles, known
as the Reynolds stress,

Pij
Rey ¼ mn0hui1u

j
1i ¼

1
2
mn0Re ~ui

a~u
j
a

+ ,
; (33)

where ~u1 is the local complex velocity amplitude of the wave. This
Reynolds stress plays an important role in calculating turbulent forces
on a plasma.102–108 The presence of the Maxwell stress tensor and the
Reynolds stress dramatically changes the conservation calculations. As
shown in Ref. 56, for the lower hybrid wave, the two combine in just
such a way as to cancel the nonresonant (recoil) force on the plasma,
leaving only the resonant force, in a way consistent with momentum
conservation. Thus, in the spatially structured, steady-state problem of
alpha channeling, resonant particles can be extracted, and E! B rota-
tion can be driven, thanks to the torque exerted on the plasma by the
Maxwell and Reynolds stresses.

C. Global momentum conservation
Onemight still wonder where this torque is coming from; is there

an externally applied net torque on the plasma consistent with this
force on the resonant alpha particles? If not, then this local force on
the plasma must be compensated somewhere else within the plasma,

leading to momentum rearrangement within the plasma (and thus the
generation of shear flow), but no net spin-up of the plasma.

To look at this question, we turn in Ref. 56 to a Fresnel model of
the wave transition between the vacuum and the plasma. Now, the
evanescent wave in the vacuum has a well-defined electromagnetic
momentum flux (Maxwell stress), but no well-defined Minkowski
flux. However, it is possible to show that, for a lower hybrid wave, the
x-directed flux of y-directed electromagneticmomentum Pyx

EM through
the vacuum is equal to the x directed flux of y-directed Minkowski
momentum Pyx

M within the plasma. Because the Minkowski EMT
forms a closed system with the resonant particle EMT, this momen-
tum all ends up in the resonant particles. Thus, the force on the reso-
nant particles that allows charge extraction is ultimately provided by
the electromagnetic fields propagating through the vacuum at the
plasma edge. As a result, the entire plasma spins up due to the interac-
tion with the wave, in a way consistent with local and global momen-
tum conservation.

In the case of alpha channeling, this analysis suggests that electro-
magnetic energy will flow from the plasma into the antenna as a result
of alpha channeling. This raises the intriguing possibility of perform-
ing direct conversion of alpha particle energy into electrical energy at
the antenna, which could be a much more efficient way to usefully
harvest the energy than any thermal process.

VIII. OSCILLATION CENTER PONDEROMOTIVE
THEORIES

Although the above theory holds together well and explains how
charge extraction is consistent with momentum conservation, there
are other, completely different approaches to calculating ponderomo-
tive forces in the literature, which focus on the motion of the oscilla-
tion center (OC) (Fig. 10). It is important to see whether the theories
are compatible and lead to the same conclusions. Thus, in Chapter 7
of Ref. 57, we performed a detailed comparison of the two types of
theory.

There are actually (at least) two distinct types of oscillation center
theory in the literature: one65 which comes from separating out the
quiver motion of a particle in the wave Lagrangian, and one, exempli-
fied by Dewar,66 which comes from applying a non-secular, near-
identity canonical transform to the particle coordinates in the
wave–particle interaction. Each of these theories has somewhat
different features, as we explore in Ref. 57 for the simple case of an
electrostatic wave in an unmagnetized plasma, which we summarize
briefly here.

FIG. 10. Oscillation center theories track the slow dynamics of the central position
around which a particle quickly oscillates in a wave field.
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A. Quiver Lagrangian
We will start by examining the quiver-Lagrangian theory of the

oscillation center.65 Since it will already require a fair amount of com-
plexity, we will consider only electrostatic waves in an unmagnetized
plasma. To get the Lagrangian that describes this theory, we separate
out the oscillating motion of a particle from its smooth motion that
changes on a longer timescale, obtaining

!L * 1
2
mV2 þ 1

2
mh~v2iþ qh~x ,EðX; tÞi: (34)

Here, X and V represent the oscillation center position, and ~x and ~v
describe the quiver motion, which can be solved simply at constant X;V.
Thus, the latter two terms combine to form a ponderomotive potential,

UðX;VÞ ¼ 1
4
q2

m
k2j/aðXÞj

2

ðk , V' xÞ2
; (35)

which gives the ponderomotive force via the Euler–Lagrange
equations.

We show in Appendix B that a naive application of this oscilla-
tion center theory can yield erroneous conclusions about the pondero-
motive force, but a more careful calculation agrees with the fluid
quasilinear theory. As we show, forces in the two theories differ by
three terms. The first two—the Reynolds stress and the polarization
stress—were identified by Gao et al.109 in a cold fluid plasma. We
show that for finite plasma temperature, which is necessary for wave
packet propagation into an unmagnetized plasma or for purely per-
pendicular modes in a magnetized plasma, there is also a third term of
discrepancy, namely, the kinetic stress of the oscillation centers them-
selves. By carefully evaluating the OC distribution in the region of a
stationary electrostatic wave envelope, by following free-streaming
particles from a Maxwellian distribution far from the wave to the wave
region under the influence of the ponderomotive potential, we show
that there is anisotropy in the OC distribution that provides a kinetic
stress force along the symmetry direction (Fig. 11). Only when
accounting for all three terms—Reynolds stress, polarization stress,
and OC stress—do the theories agree and support the conclusion that
the nonresonant force along y vanishes in steady state.

B. Near-identity transform
The basic idea behind Dewar’s theory is to use a canonical trans-

formation, familiar from Hamilotonian mechanics,110,111 to transform
from the physical particle coordinates ðx; pÞ to an oscillation center
coordinate system ðX ;PÞ. This coordinate system is chosen so as to
only include the gradient ponderomotive potential and the resonant
force, without any of the reactive time-dependent terms that can prove
confusing. To second order in wave amplitude, these coordinate sys-
tems are linked by the transformation,66

X ¼ x þ @Sðx; p; tÞ
@p

' @Sðx; p; tÞ
@x

, @
2Sðx; p; tÞ
@p@p

; (36)

P ¼ p' @Sðx; p; tÞ
@x

þ @Sðx; p; tÞ
@x

, @
2Sðx; p; tÞ
@p@x

: (37)

Here, S is a quantity that defines the near-identity transformation, so
we demand that hSi ¼ 0 at first order.

In these coordinates, the “force” dP=dt from the waves on the
particles consists of only two terms: the gradient of the ponderomotive
potential and the resonant diffusion.66 However, we have to be careful
how we interpret this because the ponderomotive force as we intui-
tively think of it cannot be simply identified with dP=dt. This is
because, in general, what we think of intuitively as the ponderomotive
force is either the change in the kinetic momentum mV of the oscilla-
tion center (in the quiver Lagrangian sense) or the change in the mean
kinetic momentum hmnui of the plasma particles. In contrast,P rep-
resents a canonical momentum with complex dependence on the pon-
deromotive potential, and with hPi 6¼ hpi, as evidenced by Eq. (37).
Thus, while the Hamiltonian theories hold together theoretically, and
elegantly conserve energy and momentum,66 backing out the physical
forces and currents from the solution in Hamiltonian phase space is a
very complex task.

C. Steady state
Nevertheless, Dewar’s formulation is very useful for us because it

suggests something fundamental about ponderomotive forces from
steady-state waves and their effects on particle orbits. In the absence of
a wave, in a plasma confinement device, the orbit is determined by

FIG. 11. Oscillation center velocity distribution FðVÞ, as given by Eq. (B34), (a) far from the wave region, and (b) in the wave region. As explained in the Appendix, the distribu-
tion in (b) is calculated for WEM=pth0 ¼ 0:35; kxvth=x ¼ kyvth=x ¼ 1=4

ffiffiffi
2
p

. In the wave region, the distribution reduces in magnitude and also stretches out along k, result-
ing in anisotropy. This anisotropy provides the stress that allows a net force to be exerted on the plasma by the wave.
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several constants of motion, including the particle energy and its
momentum along the symmetry directions. For instance, in a periodic
cylinder, the orbit would be determined by the energy, and the
momenta along the h and z directions. Thus, the change in the orbit is
determined by hdH=dti; hdph=dti, and hdpz=dti. However, in
Dewar’s theory, hHi ¼ hH' K2ðSÞi, where K2 is a “renormalization
energy” that depends only on the function S. For a steady-state wave,
H is constant in time. Furthermore, because S is defined to not grow
secularly, i.e., to be a fixed function of the wave amplitude, it is also
constant in time. Thus, hHi will be constant in time. Similarly, looking
at Eq. (37), we see that hdp=dti is equal to hdP=dti plus terms that
depend on hdS=dti, so that by the same argument, in steady state, hpi
is a constant function of hPi. Furthermore, hdP=dti ¼ h'dH=dXi
¼ 0 on a closed orbit. Thus, Dewar’s theory suggests that in steady
state, nonresonant particles on closed orbits remain on those closed
orbits, leaving only the resonant cross field current.

In summary, Dewar’s theory is not the best for understanding
and calculating the reactive forces that are applied to nonresonant par-
ticles in time-growing waves. However, once the consistency between
the models has been established, it offers a deep explanation for the
seemingly fortuitous disappearance of the nonresonant recoil force for
steady-state, boundary-driven waves.

IX. CONCLUSIONS AND FUTURE DIRECTIONS
This paper reviewed recent work that addressed the question of

whether alpha channeling, in transporting resonant ash across field
lines, also transports net charge across field lines. Such charge transport
would drive E! B rotation,51–53 which can be advantageous for plasma
stabilization, turbulence reduction, enhanced confinement in magnetic
mirrors, and plasma centrifugation. In the end, we found that, at least
for electrostatic waves, the answer depends on how the waves enter the
plasma, with different results for plane waves that grow in time, as
opposed to waves which enter from the plasma boundary.

To arrive at these results, in Sec. II, we considered charge trans-
port along x due to collisions in a magnetized plasma slab, finding that
it was very hard to move charge across field lines since it required a
net force to be applied along y. In Sec. III, we saw how this presented a
problem for charge transport by a planar electrostatic wave, which
contains no momentum. In Sec. IV, we saw how this momentum con-
servation played out in the bump-on-tail instability, motivating the
development of a self-consistent quasilinear theory for alpha channel-
ing. After a foray into current drive theory in Sec. V, in Sec. VI, we
developed the first linear theory of alpha channeling as a prerequisite
to evaluating the quasilinear forces on the plasma. In so doing, we
showed that alpha channeling is physically equivalent to the bump-
on-tail instability, exposing a deep connection between two thought-
to-be-distinct processes. The resulting quasilinear theory allowed us to
confirm the existence of the nonresonant recoil reaction in the case of
a time-growing plane wave, which canceled the charge transport from
the resonant ash, preventing the E! B rotation drive that was pre-
dicted by earlier theories. As a silver lining, this return current was in
the ions; thus, even though no rotation was driven, there was a differ-
ent beneficial effect, in that for every alpha particle brought out by
alpha channeling, two ions were brought into the core plasma, fueling
the fusion reaction.

In Sec. VII, we generalized the model to allow for spatially
damped waves. In this multi-dimensional problem, the Maxwell and

Reynolds stresses played a prominent role, leading to the disappear-
ance of the poloidal nonresonant force and its associated charge trans-
port in steady state. Thus, extraction of charge by a steady-state,
boundary-driven wave was shown to be consistent with momentum
conservation. A Fresnel model of the wave propagation from vacuum
to plasma, combined with a wave action conservation principle, con-
firmed that the momentum and energy required for this charge extrac-
tion were ultimately provided by electromagnetic energy and
momentum flux in the evanescent wave traveling through the vacuum
gap between the antenna and plasma. Applied to alpha channeling,
this analysis suggested the possibility of direct conversion of alpha par-
ticle energy into electric energy, as the alpha particle amplification
results in an outwardly directed Poynting flux, driving electromagnetic
energy into the antenna.

Taken together, the analysis in Secs. VI and VII revealed a core
difference between the plane wave initial value problem of alpha
channeling, where net charge cannot be extracted, and thus rotation
cannot be driven, and the steady-state boundary-value problem, where
it can be. In contrast to earlier models that focused only on the reso-
nant particles, the analysis here respects the momentum conservation
principles between the various plasma subsystems.

In Sec. VIII, we compared our quasilinear model to the varia-
tional Lagrangian and Hamiltonian theories of the oscillation center
for the simple case of an electrostatic wave in an unmagnetized
plasma. We found that the resulting ponderomotive forces in the two
models differed by the terms arising from the Reynolds, polarization,
and oscillation center stresses, but ultimately agreed on the form of
ponderomotive force. Furthermore, an analysis of Dewar’s near-
identity transform theory suggested that the vanishing of the nonreso-
nant recoil reaction for steady-state waves was likely to be a general
result across many systems, at least for nonresonant particles on closed
orbits in phase space.

This paper thus provides a cohesive and simple theory of rotation
driven by alpha channeling, which demystifies how momentum con-
servation works out while allowing charge extraction. Since it was
intended to resolve a core mystery, our analysis throughout was delib-
erately simple, taking every simplifying assumption possible while
retaining the core features of the problem. Thus, there are many gener-
alizations and extensions possible, which will be required in order to
quantitatively connect to future experiments.

First, and likely most straightforward, is to extend the analysis
from electrostatic waves to electromagnetic waves. This is necessary to
handle one of the systems originally envisioned by Fetterman, in
which stationary magnetic perturbations at the plasma edge provide
the moving wave in the rotating plasma frame.52,53 Although it
requires us to move from a scalar to a vector theory, the essential fea-
tures of the theory will be similar, but with the susceptibility in many
cases taking over role of the dispersion function. Of course, for an elec-
tromagnetic wave, the electromagnetic field does have momentum,
somewhat altering the momentum balance and magnitude of the
recoil in the plane wave initial value problem. However, the general
principles from the oscillation center theories suggest that the core
conclusions in the electromagnetic case will remain fairly similar:
namely, there will be some canceling charge transport for a time-
dependent plane wave due to the nonresonant recoil, but no recoil for
the steady-state boundary-value problem, with momentum conserva-
tion in the latter case enforced by a combination of Reynolds and
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Maxwell stress. Thus, rotation drive will likely be possible for
Fetterman’s magnetostatic edge coil scheme52,53 as well.

As we further generalize to consider the generation of shear flow
in a plasma, the plasma must by definition become inhomogeneous
since the rotation profile is a function of radius. This inhomogeneity
will impact both the dissipation and the evolution of k. Handling this
situation correctly will require integration of the momentum-
conserving channeling theory with geometrical optics.

To fully solve for the rotation drive, it will be necessary to com-
bine this improved theory with a theory of rotation dissipation. This
dissipation can be due to a variety of collisional processes62,112 or
“anomolous” transport such as that due to the stochasticity of the
magnetic field lines.113,114

Finally, in moving to more complex geometries, a variety of other
considerations come into play. In toroidal geometry, the waves can
move particles between neoclassical orbits19 rather than gyrocenter
orbits, opening the possibility for even larger rotation drive. In mirrors,
not only radial losses, but also losses from wave-induced scattering
into the loss cone, must be taken into account. Determining how these
additional loss mechanisms affect the radial potential will require an
involved, self-consistent, Pastukhov-style115–117 analysis that accounts
for the balance of ion and electron losses. However, the dividends for
such an analysis are potentially large, freeing open-field-line devices
from the design constraints imposed by end electrodes.

Thus, although we have firmly established the theoretical basis
for rotation drive by alpha channeling, we are really only at the begin-
ning of exploring the details of how it can be used to tailor rotation
profiles in various devices.
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APPENDIX A: COLLISIONS AND CHARGE TRANSPORT
IN A MAGNETIZED PLASMA WITH E 3 B FLOW SHEAR

In this section, which draws from Chapter 3 of Ref. 57, we con-
sider the charge transport that occurs when two particles collide in

a magnetized plasma in the presence of an inhomogeneous electric
field (and thus E! B flow shear). The analysis in this section bears
some similarity to that of Kaufman118 in that it considers full orbits,
but is also different in that it leverages Hamiltonian constants of
motion rather than solving dynamical equations for large distribu-
tions of particles. The development here thus better emphasizes the
relationship between momentum conservation and charge transport
in the single-particle picture.

To that end, consider a particle in a uniform magnetic field
along z. We want to examine the dynamics in the presence of a uni-
form magnetic field, B k ẑ , and an electric field, EðxÞ k x̂ , that
varies in strength along x.

To simplify the algebra, we work in the frame that moves at
the local y-directed (sub-relativistic) E! B velocity at x¼ 0. The
boost of the fields eliminates the electric field at x¼ 0, without sig-
nificantly changing the magnetic field. Thus, Taylor expanding the
electric field near x, we will only have electric field terms propor-
tional to x and x2, and thus only have electric potential terms pro-
portional to x2 and x3, and we have the vector and scalar
potentials,

Ay ¼ Bx; / ¼ '/2
x
d

! "2

' /3
x
d

! "3

: (A1)

This leads to a Hamiltonian and canonical momentum given by

H ¼ 1
2
mv2x þ

1
2
mv2y þ q/; py ¼ mvy þ

q
c
Ay: (A2)

Both of these are invariants of the orbit.
To get the gyrocenter position, we can combine these equa-

tions to eliminate vy. We can then solve for the upper and lower
bounds of the orbit by setting vx¼ 0. The average of these bounds
gives the gyrocenter position.

This process will look cleaner if we nondimensionalize. Define

x ¼ d!x; H ¼ m
2

X2d2 !H ; (A3)

py ¼ mXd!p; /a ¼
1
q
m
2

X2d2!/a: (A4)

Combining Eqs. (A2) to eliminate vy, and setting vx¼ 0, we find the
equation which determines the orbit limits,

!H ¼ ð!x ' !pÞ2 ' !x2!/2 ' !x3!/3: (A5)

Rather than list the whole cubic solution, we will solve this in
orders in !/a + 1. To zeroth order, we have the orbit limits,

!xð0Þ6 ¼ !p6
ffiffiffiffiffi
!H
p

: (A6)

This corresponds to a gyrocenter position,

!xð0Þgc ¼ !p: (A7)

Equation (A7) shows that, to lowest order, there is a linear
relation between a particle’s gyrocenter position and canonical
momentum. Thus, in the absence of spatially varying electric field,
when two particles with equal charge and mass exchange momen-
tum, they will move an equal and opposite amount, and no net
charge will be moved, as we found in Sec. II.
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To explore what happens when the electric fields are added, we
plug Eq. (A7) back into our Hamiltonian Eq. (A5), now looking at
terms to first order. Carrying out the same process of averaging to
find the gyrocenter position, we find

!xð1Þgc ¼ !p!/2 þ
1
2

!H þ 3!p2
$ %

!/3: (A8)

Now, we see, our former linear relationship between !xgc and !p has
become nonlinear, thanks to the /3 term.

To see how this modification affects charge transport, consider
a collision that averages momentum between two particles a and b
with the same !H , and with !pa ¼ '!pb ¼ !p0. After the collision, both
particles end up with !pf ¼ 0 and retain !Hf ¼ !H 0 (this corresponds
to a 90- collision). The initial average gyrocenter position of the
two particles is

h!xgc;0iab ¼
1
2

3!p20 þ !H
$ %

!/3: (A9)

After the collision, the final gyrocenter average is

h!xgc;f iab ¼
1
2

!H !/3: (A10)

Thus,

Dh!xgci ¼ '
3
2

!p2!/3: (A11)

One naturally wonders whether this charge transport corre-
sponds to the perpendicular Braginskii viscosity58 since it creates a
current that might flatten out the E! B flow.62 To find out, we can
estimate the current due to this process in a plasma. Thus, take

jx " nqDxgc"; (A12)

where n is the density, q is the charge, and " is the collision rate. To
estimate Dxgc, we need an estimate for !p0, the difference in momen-
tum of the colliding particles. Luckily, we can see from our zeroth
order solution that the nondimensional gyroradius is given simply
by !q ¼

ffiffiffiffiffi
!H
p

. Thus, collisions between particles with a separation of
a gyroradius correspond to !p0 ¼

ffiffiffiffiffi
!H
p

=2. The typical particle energy
will be H " T . Finally, we note that /3 is related to the electric field
by

/3 ¼
d3

6
@2E
@x2

: (A13)

Putting this all together, using Eqs. (A11) and (A4), and taking our
species to be ions, we have

jx "
c
B
@

@x
niTi"ii
4X2

i

 !
@vE!B
@x

" #
* ' c

B
ðr , piÞy; (A14)

where we have recognized the approximate form and scaling of the
Braginskii perpendicular viscosity g1 * niTi"ii=4X2

i , and the dis-
agreement in the Oð1Þ factors is due to the detailed kinetics of the
collision operator.

Thus, charge transport is possible when there are inhomogeneous
fields; however, it occurs at a rate ordered down by ðq=LÞ2 compared
to the charge transport of each individual particle involved in the colli-
sions. Throughout most of this paper, we are concerned with whether

charge transport occurs at zeroth order in q=L, rather than second
order, and neglect these finite-Larmor-radius effects.

APPENDIX B: PONDEROMOTIVE FORCES: COMPARING
FLUID AND OSCILLATION CENTER THEORY

Here, we briefly go through a calculation of the ponderomotive
force on a plasma in both the fluid and quiver Lagrangian theories.
For a longer discussion with more intermediate steps, see Ref. 57,
Chapter 7.

We start with the fluid quasilinear theory. By combining the
Reynolds stress and electromagnetic forces on the plasma, as done
for the lower hybrid wave in Ref. 56, we can find the force on the
fluid element from and electrostatic wave in an unmagnetized
plasma, yielding

Fi
fluid;s ¼ 2WEM kirDis þ kirxi

@Drs

@xr
' jiDrs

& '
; (B1)

where j is the imaginary component of k. Here, the first term is the
resonant force, the second term is the nonresonant recoil force for
time-growing waves, and the third term is the gradient ponderomo-
tive force. In steady state, a pressure gradient must form to balance
the ponderomotive force, canceling the last term.

Now that we have covered the fluid theory, we will proceed to
a derivation of the force from an alternative perspective, using the
quiver-Lagrangian theory65 of the oscillation center (OC). The
starting point for this theory is the Langrangian for a particle in an
electric field,

L ¼ 1
2
mv2 ' q/ðx; tÞ: (B2)

Here, /ðx; tÞ is the space- and time-dependent potential associated
with the electrostatic wave.

The first key step is to split the particle coordinate into two
pieces: a small part ~x associated with the oscillation that changes
quickly and averages to 0 over a wave cycle, and a large part X that
corresponds to the center of the oscillation. If we examine the
Euler–Lagrange equations obtained by varying ~x and assume
dVi=dt is OðE2Þ, then we find to first order in E,

m
d~vi

dt
¼ qEiðXÞ: (B3)

We then assume the wave is locally monochromatic, so that

EiðXÞ ¼ ki/aðXÞ sin ðkjxj ' xt þ hÞ: (B4)

Since dVi=dt is OðE2Þ, we have to first order X ¼ X0 þ Vt.
Plugging this into Eq. (B3) and solving yields

~vi ¼ ' qki/aðXÞ
m

1
ðkjVj ' xÞ

cos ððkjVj ' xÞt þ h0Þ; (B5)

~xi ¼ ' qki/aðXÞ
m

1

ðkjVj ' xÞ2
sin ððkjVj ' xÞt þ h0Þ: (B6)

Now we are ready to calculate the evolution of ðX;VÞ. Because
we are only interested in changes on long timescales, we will aver-
age the full Lagrangian over an oscillation period. This gives
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!L * 1
2
mV2 þ 1

2
mh~v2iþ qh~x,EðX; tÞi: (B7)

Plugging in for ~x and ~v and averaging, we find the oscillation center
Lagrangian,

!L * 1
2
mV2 ' UðX;VÞ; (B8)

where we have defined the ponderomotive potential,

UðX;VÞ ¼ 1
4
q2

m
k2j/aðXÞj

2

ðk , V' xÞ2
: (B9)

From this Lagrangian, the ponderomotive force is given by the
Euler–Lagrange equations, which give to OðE2Þ,

m
dVi

dt
¼ @2U
@Vi@t

þ @2U
@Vi@Xj

Vj '
@U
@Xi

: (B10)

1. Integration of the total ponderomotive force
Now we seek to use Eq. (B10) to derive the force on a volume

of plasma. To do this, we integrate the single-particle force over the
distribution of oscillation centers F. (Here, the variable F plays
double-duty as both a distribution and a force density. It should be
clear from context which is which since the force density will always
be bolded or have a coordinate superscript.) Taking F to be normal-
ized to 1, we have

Fi
s;p ¼ ns0msPV

ð
dVFs

dVi

dt
: (B11)

Making use of Eqs. (B9) and (B10), the definition of WEM in
Eq. (6), and the fact that @WEM=@xj ¼ '2jjWEM and @WEM=@t
¼ 2xiWEM , we can eventually write this as

Fi
s;p ¼ 2WEM ki xi

@

@xr
þ jj

@

@kj

 !
' jjdij

 !

! PV
ð
dV '

x2
psFs

ðx' k , VÞ2

 !

: (B12)

We can recognize the integral on the second line from electrostatic
Vlasov–Poisson theory67,74 as the real part of the dispersion relation
contribution Drs from species s. Thus,

Fi
s;p ¼ 2WEM ki xi

@Drs

@xr
þ jj

@Drs

@kj

 !
' jiDrs

" #
: (B13)

Again, note also that this equation has only been shown for the spe-
cial case of electrostatic waves in an unmagnetized plasma and is
not a general relation for all electrostatic waves.

2. Reynolds and polarization stress
As shown by Gao et al.,109,119 for a cold fluid, the fluid and

oscillation center forces, in general, differ by the Reynolds stress
and the polarization stress. The discrepancy arises because the force
we have calculated thus far is the integrated force over a set of oscil-
lation centers. If we consider the difference in the force applied to

the particle distribution in a volume vs the oscillation center distri-
bution in a volume, there are two sources of discrepancy.

First, the oscillation center does not oscillate in the wave, while
the particle does. Thus, there will be a Reynolds stress (and resulting
macroscopic force) associated with the particle oscillation that is
absent for the oscillation center. For a given oscillation center distri-
bution FðX;VÞ, this stress is given to OðE2Þ by

Pij
Rey ¼ mn0

ð
dVFðX;VÞh~vi~v ji: (B14)

Second, just because the oscillation center is within a certain
volume does not mean that its associated particle is within the same
volume (or vice versa) since the particle is displaced from the oscil-
lation center by ~x . Since the displacement ~x is correlated with the
electric field E, the forces from lost and added particles will sum
and lead to a surface stress.

To get an explicit expression for the polarization stress, consider a
cube of plasma and the boundaries along the xj direction. At any given
position on the interface, there will be an excess surface charge density
(relative to that from the oscillation centers) rxs ¼ s

Ð
dVFðX;VÞqn0~xj

of charge due to charge entering or leaving the interface. Here, s is a
sign that depends on the interface, with s¼ 1 at the low-xj boundary,
and s¼'1 at the high-xj boundary. This charge combines with the
electric field to produce a force on the fluid element, which we obtain
by integrating over the coordinates that lie in the constant-xj surface
and averaging over the wave cycle,

ð
dXFi

pol ¼ '
ð
dXm 6¼jhEirxsi (B15)

¼ '
ð
dXm 6¼j

ð
dVFðX;VÞqn0h~xjEiijx

j
1

xj0
: (B16)

Applying Stokes’ theorem along the xj coordinate allows us to
express this as the divergence of a polarization stress tensor,

ð
dXFi

pol ¼
ð
dX ' @

@xj
Pij

pol

! "
; (B17)

Pij
pol ( qn0

ð
dVFðX;VÞh~xjEii: (B18)

Using our solutions for ~x and ~v from Eqs. (B5) and (B6), it is possi-
ble to show

Pij
Rey ¼ 'Pij

pol ¼ '2WEM
kikj

k2
Drs: (B19)

Thus, the two stresses in this case cancel out, so that the OC and
fluid forces should agree.

Now we are in a position to get the total force on the plasma
in OC theroy by summing Eq. (B13) with the force on resonant par-
ticles from Eq. (17), Fi

s;res ¼ 2WEMkiDis. Summing up the forces on
all species, and making use of the imaginary and real parts of the
dispersion relation [Eqs. (14) and (15)], we have

X

s

Fi
s;p þ Fi

s;res

- .
¼ 2WEMji: (B20)

Importantly, we see that this force only points along the direction
of wave decay, and thus (in contrast to the fluid force) cannot give a
force along h in a cylindrically symmetric plasma.
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However, in performing this analysis, we have left out one
important term, absent in the cold fluid theory: the stress of the
oscillation center distribution itself. As it turns out, in steady
state, the self-consistent oscillation center distribution is aniso-
tropic, leading to a stress that allows for agreement with the fluid
theory.

3. Oscillation center stress in steady state
To get the stress in steady state, we need to calculate the OC

distribution. To do this, we take the distribution function far from
the wave to be Maxwellian since this is the region of unperturbed
plasma. We can then solve for the distribution in the wave region
by using a combination of invariants of the motion, and incompres-
sibility of the phase space. (For a calculation with more intermedi-
ate steps, see Ref. 57, Chapter 7.)

Our OC Lagrangian [Eq. (B8)] can be written as

L ¼ 1
2
mV2 ' C

ð1' kiVi=xÞ2
; C (

x2
p

x2

WEM

n0
: (B21)

For simplicity, we will only consider waves for which x=k. V , (a)
so that we do not have to worry about particles encountering a
Landau resonance, and (b) so that we can Taylor expand,

L * 1
2
mV2 ' C 1þ 2

kiVi

x
þ 3
ðkjVjÞ2

x2

! "
: (B22)

This Lagrangian allows us to find the canonical momentum,

Pi (
@L
@Vi ¼ mVi ' 2C

ki
x
' 6C

kikjVj

x2 : (B23)

The Hamiltonian is then given by

H ¼ PiVi ' L ¼ 1
2
mV2 þ C 1' 3

ðkiViÞ2

x2

! "
: (B24)

Using the definition of Pi, this can be rewritten in terms of Pi
to OðCÞ as

H ¼ P2

2m
þ C þ 2C

kiPi

mx
þ 3C

ðkjPjÞ2

m2x2 : (B25)

Now, we take C to be independent of Y. This makes PY an
invariant of the dynamics. Furthermore, because we are examining
the problem in steady state, H is also an invariant of the dynamics.
The two constraint equations for these two invariants allow us to
determine PX0 and PY0 in terms of PX and PY, where PX0 and PY0
correspond to an unperturbed region far from the wave. The solu-
tions are

PY0 ¼ PY ; (B26)

PX0 * PX þ
mC
PX þ 2C

kiPi

xPX þ 3C
ðkjPjÞ2

mx2PX : (B27)

Now we are in a position to calculate the distribution function
in the wave region. Far from the wave, we will take the distribution
to be Maxwellian, so that

FP0ðP0Þ ¼
1

2pm2v2th
e'ðP

2
X0þP

2
Y0Þ=2m

2v2th : (B28)

Then, in the wave region, phase space incompressibility gives
us

FPðPÞ ¼ FP0ðP0ðPÞÞ * FP0ðPÞ þ
@FP0
@Pi
ðPi0 ' PiÞ: (B29)

For our problem, we have PY0 ¼ PY , so the second term comes purely
from variation in PX. For a Maxwellian, our derivative is given by

@FP0
@Pi
¼ ' Pi

m2v2th
FP0: (B30)

Thus,

FPðPÞ * FP0ðPÞ 1' C
mv2th

1þ 2
kiPi

mx
þ 3
ðkjPjÞ2

m2x2

! "" #

: (B31)

To take the relevant moments, it is convenient to transform
this distribution from momentum space P to velocity space V. This
transformation is given by

FVðVÞ ¼
ffiffiffiffiffiffi
gV

p
ffiffiffiffiffi
gP

p FPðPðVÞÞ; (B32)

where gPij ¼ dij, and

gVij ¼
@Pm

@Vi

@Pn

@Vj g
P
mn: (B33)

After taking the relevant derivatives and performing some algebra,
we arrive at [to OðCÞ]

FVðVÞ ¼
e'V

2=2v2th

2pv2th
1þWEM

pth0

x2
p

x2 '1' 6
k2v2th
x2 þ 3

ðkjVjÞ2

x2

! "" #

;

(B34)

where pth0 ( n0mv2th ¼ n0T .
Thus, we see that the effect of the field is to overall reduce the

value of FVðVÞ in regions with a wave. This repulsion of particles
from the wave region due to the ponderomotive potential is unsur-
prising. However, we also see that the wave introduces anisotropy
to the velocity-space oscillation center distribution, which stretches
out somewhat along k thanks to the last term (Fig. 11).

Now we can calculate our moments. With a bit of algebra, we
find

n ¼ n0 1þWEM

pth0
Drs

! "
; (B35)

nui ¼ n0

ð
dVViFVðVÞ ¼ 0; (B36)

Pij
oc ¼ pth0 þWEMDrsð Þdij 'WEMki

@Drs

@kj
: (B37)

This stress leads to a force,

Fi
s;P ¼ '

@

@xj
Pij

oc ¼ 2WEM jiDrs ' kijj
@Drs

@kj

 !
: (B38)
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Comparing to Eq. (B13), we see that this force exactly cancels the
ponderomotive force on nonresonant particles in steady state. Thus,
along the symmetry direciton y, only the (uncompensated) force on
the resonant particles remains in agreement with the fluid theory of
the main text.
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