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ABSTRACT

Recently, a method to achieve a “natural hot-ion mode” was suggested by utilizing ion viscous heating in a rotating plasma with a fixed
boundary. We explore the steady-state solution to the Braginskii equations and find the parameter regime in which a significant temperature
difference between ions and electrons can be sustained in a driven steady state. The threshold for this effect occurs at qi ! 0:1R. An analytic,
leading order low flow solution is obtained, and a numerical, moderate Mach number M " 2 is investigated. The limitation is found to be at
moderate Mach numbers.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0101271

I. INTRODUCTION
Magnetic plasma confinement assisted by rotation has been

explored in several configurations, such as mirrors1–3 and toroidal
devices.4,5 Rotating mirrors, in particular, are receiving renewed inter-
est, leading to new experimental devices in the near future.6–8 Plasma
mass filters9–17 are another rotating plasma application in which den-
sity gradients are of particular importance and are similar to rotating
mirrors in many respects.

Sufficiently long mirrors may be analyzed using classical trans-
port theory. Radial cross field ion currents18,19 in such devices appear
to be an attractive fueling method, as they can induce rotation in the
plasma due to their interaction with the magnetic field. The hydrody-
namic variables—densities, momenta, and pressures—in such configu-
rations can be asymptotically solved for20 or numerically integrated
using a variety of tools, such as the MITNS: Multiple-Ion Transport
Numerical Solver code.21

Nuclear fusion in magnetic devices is realized by confinement of
hot ions for sufficient time.22 In these devices, the plasma confinement
is often limited by the total plasma pressure, which sums the electron
and ion pressures. As such, a hot-ion mode is preferable, as it can pro-
duce more fusion power for the same magnetic field strength23 in
addition to a decrease in energy radiation losses through electrons.

Plasma heating can be accomplished using a variety of methods.
One proposed method is to use viscous heating due to sheared rota-
tion. Kolmes et al.24 showed how heat dissipation channels in an axi-
symmetric cylindrical plasma could preferentially heat the ion
population. Such a configuration may be realized by a radial flow of

fuel ions into the hot center of the cylinder, and the removal of ash
ions by a fast process other than classical transport—such as a-
channeling.25,26 Heating is the result of the viscous dissipation of the
ion fluid, i.e., the rate of work done by the viscous stress times strain-
rate. The electron fluid viscous stress, as well as the resultant heating
rate, is smaller by a factor of ðme=miÞ3=2.

Kolmes et al.24 predicted that the ion temperature could be higher
than the electron temperature and suggested that the temperature dif-
ference could be large in cases with sufficiently large radial influxes of
fuel ions and high radial electric fields. However, that paper left open
the question of what kinds of radial influxes and fields could be self-
consistently supported, and of precisely what are the density, velocity,
and pressure profiles in this case. The present paper addresses that
question. One of the key results that follows from this calculation is that
there are nontrivial limitations on these hot-ion-mode solutions.

In this paper, we explore a particular solution to the proposed
concept. We consider a one-dimensional Braginskii fluid model27 to
explore the nonlinear effects due to the density and temperature
dependence of the viscosity and heat conductivities for a uniform vol-
umetric charge extraction, i.e., a radial ion current. We compare ana-
lytic solutions using constant coefficients to the full numerical
nonlinear solution.

Because the Braginskii fluid model is the most usual model, it
serves well our purposes here. We do note that several authors pub-
lished corrections to the transport coefficients.28–32 In addition, a mag-
netic mirror machine would have a distribution function that contains
voids where particles are not confined. In the magnetic mirror case,
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it is not clear that Braginskii, or other closures that expand the distri-
bution function in a polynomial basis, produce the precise transport
coefficients. However, the effects discussed in this work do not rely on
the specific transport coefficients.

The limitation on the viscous heating arises because the radial
ion current into the center of the cylinder leads to a large rotation of
the plasma, and the centrifugal force caused by this rotation empties
out the density at the core. The quadratic dependence of the viscosity
on the density means that large angular velocity gradients are required
to produce the viscous shear needed to balance the torque produced
by the radial current and the magnetic field—leading to progressively
larger rotation. This effect limits the amount of charge extraction pos-
sible in this configuration. The viscous heating itself, which increases
the plasma temperature, further reduces the viscosity coefficient. Of
course, diverging angular velocities are not physical and are the result
of an attempt to balance a finite torque when the viscosity coefficient
approaches 0. In a physical system, the torque would be limited.

As a result, the proposed natural hot-ion mode is limited.
Beyond a certain radial ion flux, the nonlinearities in the viscosity coef-
ficient would cut off the shear stress in the plasma. This limitation in
shear limits the viscous heating; the limit depends on the magnetiza-
tion of the plasma. We calculate a magnetization threshold above
which the viscous heating is small compared to the rate of temperature
equilibration between species.

This paper is organized as follows: in Sec. II, we present the non-
dimensionalized two-fluid equations. In Sec. III, we present the low-
flux approximate solution, assuming constant coefficients. In Sec. IV,
we discuss the deviation of the full nonlinear (variable coefficients)
solution from the linear approximation.

II. MODEL
Consider an axisymmetric, infinitely long plasma cylinder, in

equilibrium, such that @
@t ¼

@
@z ¼

@
@h ¼ 0, with a constant axial mag-

netic field. The plasma species to be considered, for simplicity, are fuel
ions and electrons. This setting might be realizable in a steady-state
rotating mirror machine, which is fueled radially rather than axially
and in which fusion ash is removed quickly radially using a-channel-
ing, before it can interact with the fuel ions or the electrons. It is
assumed the a-channeling does not affect electrons.

In the steady state, fuel ions fuse, the ash is removed, and more
fuel is supplied continuously from the outer edge, while the electrons
have no average radial velocity. The ion sink term produces in steady
state an inward-flowing ion current. The r$ ðj$ BÞ torque due to
this current induces rotation in the plasma. The plasma rotation, in
addition to the other radial forces acting on it, determines the steady-
state density profile.

The radial expulsion of the fusion ash produces the opposite
r$ ðj$ BÞ torque on the ash ions. However, the fusion ash is kept
at such a low density, using a-channeling, that its collisional interac-
tions with other plasma constituents can be ordered out of the
momentum and energy equations. A density ratio of na=ni % q2

& is
sufficient, with the small parameter q& being the normalized ion
Larmor radius, also defined later.

In this work, we consider only classical transport effects in order
to determine the temperatures. In many real-life plasmas, other effects
contribute to the energy balance—examples include radiative cooling,
and RF heating. These and energy exchange with fusion ash may even

be the dominant mechanisms, over and above classical transport
effects. However, one purpose of this paper is to determine the merit
of the proposed natural ion mode, which cannot be separated from
the other effects considered here.

For each fluid, the continuity, radial momentum, angular
momentum, and pressure equations are

@ns
@t
þ 1

r
@

@r
rnsvrs ¼ ss; (1)

@

@t
ðmsnsvrsÞ þ

1
r
@

@r
rmsnsv2rs þ

@ps
@r
þ ðr ( psÞr

¼ ssmsvsrcsr þmsnsrx2
s þ Zsens Er þ rxsBzð Þ þ

X

s0
Rss0r ; (2)

@

@t
ðmsnsr2xsÞ þ

1
r
@

@r
ðr3msnsxsvrsÞ

¼ rssmsvsrcsh ) ZsernsvrsBz ) rðr ( psÞh þ r
X

s0
Rss0h þ fss0hð Þ;

(3)

3
2
@ps
@t
þ 1

r
@

@r
r qrs þ

5
2
psvrs

! "
þ ps : rvs

¼ vrs
@ps
@r
þ
X

s0
3
msns!ss0
ms þms0

ðTs0 ) TsÞ þ
3
2
ssTsrc

s

þ 1
2
msss vsrcrs ) vrs

# $2 þ vsrchs ) vhs
# $2h i

þ
X

s0

ms0

ms þms0
ðvs0 ) vsÞ ( Rss0 þ f ss0ð Þ

% &
: (4)

Quantities with a subscript s represent a species-dependent quantity,
with the index s representing ions, s¼ i, or electrons, s¼ e.

Number density, velocity, pressure, and temperature are denoted
by n, v, p, and T, respectively, with ps ¼ nsTs. The quantity ss is a parti-
cle source or sink for species s. Time and radius (spatial coordinate)
are denoted by t and r. Particle mass and charge number are denoted
by m and Z, while the elementary charge is denoted by e. The (radial)
electric field and (axial) magnetic field are denoted by E and B. The
constant magnetic field assumption can be construed to stem from a
low plasma b¼: 2l0p

B2 , with l0 being the permeability of vacuum. The
value used for the numerical simulations of the nonlinear equations is
b ¼ 0:002.

If the particle source is negative, as a sink term, the source tem-
perature Tsrc

s ¼ Ts and velocity vsrcs ¼ vs. If the source term is positive,
Tsrc
s and vsrcs need to be specified.

The friction body force Rss0 and the thermal friction (Nernst)
body force f ss0 between species s and s0 are expressed as

Rss0 ¼ msns!ss0ðvs0 ) vsÞ; (5)

f ss0 ¼
3
2
msns!ss0
ZsZs0eB

b̂ $ Zs0ms0TsrTs ) ZsmsTs0rTs0

msTs0 þms0Ts
; (6)

where b̂ is a unit vector in the direction of the magnetic field. In the
case of an electron–ion plasma, the thermal friction can be approxi-
mated as

f ie ¼
3
2
Zini!ie

Xi

@Te

@r
ĥ: (7)
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The resultant viscous stress tensor divergence, using the Braginskii27

closure, is24

r ( ps ¼
@

@r
g0s
3r

@

@r
rvrsð Þ

% &
r̂

$ 1
r2
@

@r
r3 g1s

@

@r
vrs
r

! "
þ g3s

@xs

@r

% &
r̂

) 1
r2
@

@r
r3 g1s

@xs

@r
) g3s

@

@r
vrs
r

! "% &
ĥ: (8)

The viscosity coefficients for an electron–ion plasma, with Z¼ 1
are

g0i ¼ 0:96
ffiffiffi
2
p pi

!ii
; (9)

g1i ¼
3

10
ffiffiffi
2
p pi!ii

X2
i

; (10)

g3i ¼
pi
2Xi

; (11)

g0e ¼ 0:73
pe
!ei
; (12)

g1e ¼ 0:51
pe!ei
X2

e

; (13)

g3e ¼
pe
2Xe

; (14)

where Xs denotes the signed Larmor frequency for species s. The vis-
cous heating term is expressed as

ps : rvs ¼ )
g0s
3

1
r
@

@r
rvrsð Þ

! "2

)g1s r
@

@r
vrs
r

! "! "2

þ r
@xs

@r

! "2
 !

: (15)

The heat conduction qr is

qrs ¼ )js
@Ts

@r
) jx

ss0 r xs0 ) xsð Þ; (16)

with heat diffusivities

ji ¼
ffiffiffi
2
p pi!ii

miX2
i

; (17)

je ¼ 4:66
pe!ei
meX2

e

; (18)

jx
ie * 0; (19)

jx
ei ¼

3
2
pe!ei
Xe

: (20)

The Coulomb collision frequency between particles of species s and s0

is expressed as33

!ss0 ¼
ffiffiffi
2
p

e4 logKss0

12p3=2e20

Z2
s Z

2
s0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ms0

ms

1
ms þms0

r
ms þms0

msTs0 þms0Ts

! "3=2

ns0 ;

(21)

with logKss0 being the Coulomb logarithm and e0 the permittivity of
free space. Note that this definition of collision frequencies for like-
species collisions differs from its expression in Braginskii by a factor of
1=

ffiffiffi
2
p

. The corresponding transport coefficients incorporate a
ffiffiffi
2
p

fac-
tor, so the transport itself is unchanged.

In the steady state, the particle flux

Cs¼
: rnsvrs ¼ CsðRÞ þ

ðr

R
rssdr; (22)

is the quantity driving the system. Here, we use R as the outer radius
of the cylinder.

A. Source terms and boundary conditions
The source terms and fluxes for the ions and electrons

Ce + 0; (23)

si ¼ const: < 0; (24)

Ci ¼
si
2
r2; (25)

correspond to a constant ion sink si < 0, understood to be a fusion
process, and no radial motion of electrons.

We choose to use a uniform particle sink because we would like
to compare a constant coefficient solution to the same case with vari-
able coefficients. In the comparison, we want to be clear that the non-
linear behavior originates in the nonlinear transport coefficients rather
than from the nonlinear source term.

The boundary conditions for the plasma are

xiðRÞ ¼ 0; (26)

xeðRÞ ¼ 0; (27)

ZiniðRÞ ¼ neðRÞ ¼ Zin0; (28)

TiðRÞ ¼ TeðRÞ ¼ T0; (29)

x0ið0Þ ¼ x0eð0Þ ¼ 0; (30)

n0ið0Þ ¼ n0eð0Þ ¼ 0; (31)

T 0i ð0Þ ¼ T 0eð0Þ ¼ 0: (32)

The integrated viscous heating of the plasma, to leading order,24 is

ðR

0
p : rvrdr ¼

ðR

0
vhðr ( pÞhrdr þ rvhprh½ -r¼R: (33)

The choice of the boundary conditions (26) and (27) drops the bound-
ary term in (33), which is the work done by the boundary on the
plasma. Boundary conditions (28) and (29) are a choice of normaliza-
tion, where the equality of the ion and electron temperatures might
require further justification (see the Appendix). The boundary condi-
tions (30)–(32) are the result of the cylindrical geometry.

B. Nondimensionalization
Nondimensionalizing the equations of motion allows us to factor

out small parameters for use in an asymptotic expansion. Denoting
X ¼ X0~X , with X0 being a reference quantity,

m0 ¼
: mp; (34)
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v0 ¼
:

ffiffiffiffiffiffiffiffiffiffiffiffiffi
T0=mp

q
; (35)

r0 ¼
: R; (36)

C0 ¼
: Rn0v0; (37)

!0 ¼
:

ffiffiffi
2
p

e4 logK
12p3=2"0

n0
T3=2
0 m1=2

0

; (38)

g00 ¼
: n0T0

!0
; (39)

g10 ¼
: n0T0!0

X2
p0

¼ "2g00; (40)

g30 ¼
: n0T0

Xp0
¼ "g00; (41)

Rss00 ¼
: m0n0!0v0; (42)

fss00 ¼
: n0!0T0

Xp0R
¼ m0n0!0v0q&; (43)

js0 ¼
: n0T0!0

m0X2
p0

¼ "2

m0
g00; (44)

jx
ss00 ¼

: n0T0!0
Xp0

: (45)

In this paper, reference quantities are chosen as their value at the outer
radius.

This fluid closure features two small parameters, the normal-
ized ion Larmor radius, q& ¼

: v0=Xp0R, and the ratio of collision fre-
quency to Larmor frequency " ¼: !0=Xp0, which is the inverse Hall
parameter " ¼ 1=CH . We use the reference quantities to define the
values of these constants, i.e., we use them as constants rather than
as functions of radius. When dealing with electron–ion plasma, a
third small parameter is present, the square root of the electron-to-
proton mass ratio,

ffiffiffiffiffiffi
~me
p

. An asymptotic expansion for a parameters
~X , in powers of the small parameters q& and " would be denoted by
~X ¼

P
a;b qa

&"
b ~X
ða;bÞ

.
The steady-state dimensionless angular momentum equation for

a single fluid species is

~ms
d
d~r

~Cs~r 2 ~xs þ
1
q&

Zs~Cs~Bz~r ¼ ~r2~ss ~ms ~xs

q&
d
d~r

~r3 "~g1s
d~xs

d~r
)

~gs3
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~r2~ns

d ln ð~CsÞ
d~r

) 2
~r
) d ln ð~nsÞ

d~r

! "" #

þ"~r 2
X

s0

1
q&

~Rss0h þ ~f ss0h

! "
:

(46)

The steady-state dimensionless radial force-balance equation for a sin-
gle fluid species is

d~ps
d~r
¼ 1

q&
Zs~ns ~Er þ ~r ~xs~B

# $
þ "

q&

X

s0

~Rss0r

þ~ms~ss
~Cs

~r~ns
þ ~ms~ns~r ~x2

s þ
1
~r
d
d~r

~ms~C
2
s

~r~ns

 !

þ q&
"

d
d~r

~gs0

3~r
d
d~r
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 ! !

þ q&
~r 2

d
d~r

~r3 "~gs1
d
d~r

~Cs

~r2~ns

 !

þ ~gs3
d~xs

d~r

 !

: (47)

The steady-state dimensionless temperature equation for a single fluid
species is

) 1
~r
d
d~r

~r ~js
d~T s

d~r
þ 1

q&
~jx
ss0~r ~xs0 ) ~xsð Þ

" #

þ 5
2
1
~r
d
d~r

~T s
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q&"

¼ d~ps
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q&"~r~ns
þ 1

q2
&

X

s0
3

~ms~ns~! ss0
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ð~T s0 ) ~T sÞ þ

3
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~ss~T s
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þ
X

s0

~ms0
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1
q&
ð~v s0 ) ~v sÞ (

1
q&

~Rss0 þ ~f ss0
! "% &

þ 1
"2

~g0

3
1
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d
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þ ~g1~r

2 d
d~r

~Cs

~r2~ns

 !" #2
þ d~xs

d~r

% &2
2

4

3

5:

(48)

III. CONSTANT COEFFICIENTS SOLUTION
In this section, the leading order solution for the angular velocities,

densities, and temperatures is derived, assuming g1, j, and !ie are constants,
and do not depend on the variations in density or temperature within the
domain. This is an approximation that holds well for slow rotation
(~vh . 1), when the density and temperature are indeed nearly uniform.

A. Electron angular velocity
For Ce + 0, the electron angular velocity equation (46) reads as

q&
d
d~r

~r3~g1e
d~xe

d~r

! "
¼ 1

q&
~mi~ni~! ie~r3ð~xe ) ~x iÞ þ ~r2~f ieh: (49)

The electron angular velocity can be solved asymptotically to leading
and first order in q&,

~xe ¼ ~xi )
3
2

q&
~r~B

d~Te

d~r
1)

I1
~r
q&

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~me~ne~! ei

~g1e

s0

@

1

A

I1
1
q&

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~me~ne~! ei

~g1e

s )))))
~r¼1

0

@

1

A

0

BBBBBBB@

1

CCCCCCCA

; (50)

where I1 is the modified Bessel function of the first kind. This solution
sets the azimuthal component of the total friction force
Rieh þ fieh ¼ 0, except for a boundary layer at ~r * 1.

The electron viscosity coefficient is smaller by a factor of ~m3=2
e

relative to the ion viscosity coefficient, and the contribution of the vis-
cosity is of Oðq2

& ~meÞ relative to the ion angular velocity. The ion
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angular velocity equation can be exactly solved if the sink term
~r2~ss ~ms ~xs is dropped. This term would turn out to be of Oðq2

&"Þ later.
The exact solution to ~x i (as a function of ~xe) without the sink term
with boundary conditions ~x ið1Þ ¼ 0 is

~x i ¼ e
Ð ~r

1

~mi~C i

q&"~g1i

d~r 0

~r 0
ðr

1
d~r 0e

)
Ð ~r 0

1

~mi~Ci

q&"~g1i

d~r 00

~r 00

$ Zi

q2
&"

ð~r 0

0

~C i~B~r 00d~r 00

~r 03~g1i
þ

~g1e ~x0e
~g1i
)

~C i~g3i

"~g1i~r
02~ni

2
~r 0
þ d ln ð~niÞ

d~r

% &
2

64

3

75
:

(51)
Notice that each term in (51) is proportional to

1
~g1i
/

ffiffiffiffiffi
~T i

p

~n2
i
: (52)

If ~ni were to continuously decrease from 1 to near 0 when moving
from ~r ¼ 1 inwards or if the ion temperature should diverge, ~x i

would diverge. This is due to the decrease in viscosity while the mag-
netic field torque remains the same.

The leading order solution for ~x i, taking ~C i ¼ 1
2~si~r

2, which is
the solution to the continuity equation with a uniform steady source
term~si ¼ const:, and ~B ¼ const:, in addition to ~g1i ¼ const: is

~xð0;0Þi ¼ Zi~B~si
8q2
&"~g1i

e
~s i ~mi

4q&"~g1i
ð~r 2)1Þ (

ðr

1
e)

~s i ~mi
4q&"~g1i

ð~r 02)1Þ~r 0d~r 0

¼
~X i

4q&
eFið~r

2)1Þ ) 1
# $

: (53)

It is useful to define the variables Fi ¼ ~s i ~mi
4q&"~g1i

, which is the mass flux

over viscosity, and ~X i ¼
: Zi~B

~mi
, which is the dimensionless gyro-

frequency. The solution is exponentially dependent on the strength of
the source term~si.

The azimuthal velocity in this case is

~vð0;0Þhi ¼
~Xi

4q&
~r eFið~r

2)1Þ ) 1
# $

: (54)

The angular velocity becomes Oð1Þ if Fi % Oðq&Þ. An azimuthal
Mach 1 (~vhi ¼ 1) is obtained when Fi * )6

ffiffiffi
3
p

q&=~X i, corresponding
to a source term ~si % Oðq2

&"Þ. The next corrections are of Oð~m3=2
e Þ

due to the electron viscosity andOðq2
&Þ due to the ~g3i rotation term.

B. Temperatures
The ion temperature equation, when substituting ~C i ¼ q2

&"~C
ð2;1Þ
i ,

and remembering ~x i %Oð1Þ,

)1
~r
d
d~r

~r~j i
d~T i

d~r

! "
þq&

5
2
1
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d
d~r

~T i~C
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1
q2
&
~ni~! ieð~Te) ~T iÞþ~g1i ~r

d~xi

d~r

! "2

þq&
d~pi
d~r

~C
ð2;1Þ
i

~r~ni

þ3
2
q&~s
ð2;1Þ
i

~T iþq4
&
~g0i

3
1
~r
d
d~r

~C
ð2;1Þ
i

~ni

 !2

þ~g1i q2
&"~r

d
d~r

~C
ð2;1Þ
i

~r2~ni

 ! !2

;

(55)
and the electron equation,

) 1
~r
d
d~r

~r~jeeff
d~Te

d~r

! "
¼ )3 1

q2
&

~ni~! ieð~Te ) ~T iÞ

þq2
&"

2 ~mi~! ie
~r 2~ni

~C
ð2;1Þ2

i þ ~g1e ~r
d~xe

d~r

! "2

; (56)

with

~jeeff ¼ 4:66þ 9
4

1)

I1
~r
q&

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~me~ne~! ei

~g1e

s0

@

1
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1
q&

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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~g1e
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1

A

2
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3

77777775

2
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3

77777775

~pe~! ei

~me
~X
2
e

; (57)

being the effective heat transfer coefficient for the electrons, due to the
contribution of the Ettingshausen, ~jx term. The plasma heat transfer
coefficient, for Zi ¼ 1, ~mi ¼ 1, is ~jtot ¼ ~ji þ ~jeeff * 1:16~ji, outside
of the boundary layer.

This is a linear ordinary differential equation (ODE) for ~T i with
a single term—the collisional equilibration between ions and electrons
%q)2& . Thus, in the low-flow case, Fi % Oðq&Þ; Ci % Oðq2

&"Þ, the
temperature difference between the ion and electron fluids is of
O q2

& ~x2
i =

ffiffiffiffiffiffi
~me
p# $

% O q2
&=

ffiffiffiffiffiffi
~me
p# $

.
To leading order, with constant coefficients, the sum of the two

equations is

) 1
~r
d
d~r

~r~jtot
d~T
ð0;0Þ
i

d~r

 !

¼ ~g1i ~r
d~x i

d~r

! "2

; (58)

yielding

~T
ð0;0Þ
i ¼ )

~g1i

~jtot

~X
2
i e
)2Fi

32q2
&Fi

1
2
ðEið2Fi~r2Þ ) Eið2FiÞÞ ) ln ð~rÞ

!

þ 1
4
ðe2Fi~r

2
ð2Fi~r2 ) 3Þ ) e2Fið2Fi ) 3ÞÞ

+
þ ~T ið1Þ; (59)

with ~g1i=~ji ¼ 0:15~mi and ~g1i=~jtot * 0:13~mi. These ratios are
related to the Prandtl number as ~g=~j ¼ 2

3 ~mPr. The function
EiðxÞ ¼

Ð x
)1

et
t dt is the exponential integral. For small values of Fi,

such as Fi * )q&, the boundary term ~T ið1Þ ¼ 1 is the dominant term
in the leading-order temperature solution.

The temperature difference between electrons and ions
DTei ¼ ~Te ) ~T i is determined, to leading order, by

) 1
~r
d
d~r

~r
dDTei

d~r

! "
¼ ) 3~ni~! ie

q2
&

1
~jeeff
þ 1

~ji

! "
DTei

þ 2
3

~mePre ) ~miPrið Þ ~r
d~x i

d~r

! "2

: (60)

The leading order solution to this equation is
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CCCCCA
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(61)
with I0 being the modified Bessel function of the first kind.

Since ~mePre < ~miPri, the solution is negative, indeed yielding a hot-
ion mode, but it also contains a pre-factor of q2

&=
ffiffiffiffiffiffi
~me
p

. In order to achieve
a temperature difference ofOð1Þ, we identify a course of action, that does
not suffer from the fueling limit discussed later. In any case, one has to
push ~x to be as large as possible. However, the q2

&=
ffiffiffiffiffiffi
~me
p

pre-factor has to
be dealt with as well: use low magnetization, such that q&!

ffiffiffiffiffiffi
~me

4
p
% 0:1.

This would bring the pre-factor to beOð1Þ. In this case,~sð2;1Þi can remain
small such that the angular velocity is still linear in ~si. The source term
magnitude must then be larger than the square root of the combined value
of the reminder of (61), which is of Oð0:001Þ, when substituting ~x i as a
function of ~si. In the case of Braginskii coefficients for Zi ¼ ~mi ¼ 1, this
source term is~si * )20q2

&". It is perhaps easier to increase q& rather than

~si, as the maximal temperature difference increases as q3
&ð~s
ð2;1Þ
i Þ2 at large

q&, see Fig. 3. In the figure, the temperature difference is %0:01 because
the source term magnitude kept relatively small for numerical reasons.
This Larmor radius is becoming somewhat large for a small parameter,
required for the fluid approximation. Some magnetic traps operate with
this Larmor radius/machine size scale.

C. Density
The density profile is determined from the radial force balance.

Summing electrons and ions, taking ~ne ¼ Zi~ni, and neglecting elec-
tron viscosity, the radial force balance of the plasma as a whole is
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d~r
þ d~pe

d~r
¼ 3

2
Zi~ni

d~T e
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) 2
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% &!

: (62)

FIG. 1. Comparison between solutions to the constant-coefficient leading order Braginskii equations in the steady state (full line) and nonlinear results from the MITNS code
(dashed line with markers). The source term used for the ODE set and MITNS was the same. The nonlinear solution starts diverging from the leading order linear solution at
Mach number of M * 0:5. At a Mach number of M * 1 in the linear solution, the difference between the linear and nonlinear solutions is quite significant.
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This is a second-order nonlinear ODE in ~ni, and solving the leading-
order terms in it would both remove the nonlinearity, and reduce it to
a first-order differential equation. To leading order,

d ln ð~niÞ
d~r

þ
1) 1

2
Zi

1þ Zi

d ln ð~T iÞ
d~r

¼
~r ~mi ~x2

i þ Zi ~me ~x2
e

# $

~T ið1þ ZiÞ
; (63)

or for Zi¼ 1,

~nð0;0Þi ¼ 1ffiffiffiffiffiffiffi
~T i4

p e
~mi ~X2

i
32q2&

Ð ~r

1

~r 0 eFið~r
02)1Þ)1ð Þ2
~T i

d~r 0
: (64)

This density profile is hollow—matter is pushed to outer radii from
the center.

D. Validity of the constant coefficients solution
The viscosity profile, to leading order, is

~g1i /
~n2
iffiffiffiffiffi
~T i

p ¼ 1
~T i

e
~mi ~X2

i
16q2&

Ð ~r

1

~r 0 eFi ð~r
02)1Þ)1ð Þ2
~T i

d~r 0
: (65)

Some solutions to the constant coefficient equations are presented in
Fig. 1. Notice how ~g1i / ~ji drops rapidly as the source term is
increased. The disagreements between the linear and nonlinear solu-
tions are visible at the Mach number ofM * 0:5 and become increas-
ingly severe.

IV. VARIABLE COEFFICIENTS SOLUTION
Braginskii’s fluid model is inherently nonlinear with collision fre-

quencies that depend on the densities and temperatures. The diffusion
coefficients (viscosities and heat transfer coefficients) present addi-
tional nonlinearity. From the linear, constant coefficients solution, it is
evident that the viscosity and heat transfer coefficients drop as the
magnitude of the particle flux increases. The shorthand Fi would
become larger at smaller radii, and the angular velocity increase
beyond its constant coefficients solution values.

There are two ways in which a particle flux would fail to produce
a physical solution:

1. The solution breaks the ordering qi . R.
2. The solution produces a negative pressure or is unable to satisfy

both boundary conditions.

For the first case, even a constant coefficient solution with
Fi % Oðq&Þ would produce rotations that are ~x % Oðq)1& Þ and
temperature that is Oðq)2& Þ. The Larmor radius qi /

ffiffiffiffiffi
Ti
p

, and
increasing the temperature above its reference value by a factor
of q)2& puts us firmly in the kinetic regime, where the fluid
model is inapplicable. Using a variable-coefficients solution would
bring that threshold to smaller values of particle flux.

The second case is a feature of nonlinear ODEs, where there is no
guarantee for the existence of a boundary-value-problem solution in
all cases. We can attempt solving initial value problems, and using a
shooting method to pinpoint the correct values and derivatives at one
boundary to hit the correct values at the other, or transform the ODEs
into partial differential equations (PDEs), and attempt to relax the
solution to a steady state at finite times.

Even at Mach numbers in which a solution for the nonlinear case
exists, the solution might develop an angular velocity boundary layer
at ~r ¼ 0, which might be nonphysical. This boundary layer enforces
the axisymmetry condition ~x 0ið0Þ ¼ 0, which appears in (30). The
boundary layer width, shrinks rapidly around M¼ 2, while the tem-
perature rises, as can be seen in Fig. 2. When the boundary layer width
becomes smaller than an ion Larmor radius, the solution becomes
nonphysical. See the Appendix. Steady state solutions for M ! 2 do
not exist in the full nonlinear case, as the viscosity drops quite signifi-
cantly, and it could not balance the torque produced by the magnetic
field.

Figure 2 presents the values of the density, temperature, and
angular velocity at the center of the cylinder and the Mach number as
a function of the particle sink magnitude.

Figure 3 shows the temperature difference between ions and elec-
trons at the center of the cylinder and the maximal value of the tem-
perature difference between the species, as a function of q&. The sink

FIG. 2. Values of angular velocity at the center of the cylinder and Mach number
(maximal azimuthal velocity) (top) and values of density and temperature at the
center of the cylinder, as a function of j~si j (bottom). These nonlinear calculations
were performed using MITNS, with q& ¼ 0:01 and " ¼ 0:1.
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term was chosen such that Fi=q& would remain constant at the bound-
ary, and the azimuthal Mach number would approximately be con-
stant atM * 0:93, with small variation due to the nonlinear nature of
the system. This logarithmic plot shows a near-perfect power law, with
the two curves crossing at q& ¼ 0:11, when the center of the cylinder
becomes the point of maximal temperature difference between species.
The maximal temperature difference depends very nearly on q2

&, even
in the nonlinear case.

V. CONCLUSION
A solution to the flow and temperature profiles in a highly mag-

netized rotating cylindrical two-fluid (ion–electron) plasma, driven by
constant ion charge extraction following Braginskii’s fluid was investi-
gated. First, a leading-order solution in the low-flow limit was pre-
sented. Second, the physical validity of the asymptotic solution was
considered, and the existence of a hot-ion mode was evaluated. It was

shown that the collisional temperature coupling between the fluids is
stronger than the difference in viscous heating between the fluids by a
factor of

ffiffiffiffiffiffi
~me
p

=q2
&, and this limits the temperature difference to be of

O q2
&=

ffiffiffiffiffiffi
~me
p# $

.
The ratio of ion to electron heating is the same as the ratio of vis-

cosity coefficients ~m3=2
e . Picking q& %

ffiffiffiffiffiffi
~me

4
p
% 0:1 would bring the tem-

perature difference to Oð0:1) 1Þ, depending on the exact sink term
magnitude. This would be a large q&, but not impossibly so—somemag-
netic traps or FRCs34 operate in this regime. Finally, the departure of
the nonlinear solution from the linear approximation at moderate
Mach numbers (M ! 0:5) was demonstrated and is explained by the
hollowing-out of the viscosity and heat conductivity profiles.

We have shown the inherent difficulties in achieving a significant
hot-ionmode, even in the absence of electron heating, due to the limitation
on ion heating. We have shown that low magnetization devices present an
easier avenue for a hot-ion mode. Paradoxically, this is a point in favor of
devices that contain fewer ion Larmor radii—which can be accomplished
using a smaller magnetic field or a smaller device size—in view of the large
advantage a hot-ionmodemight present for a fusion plasma.

There are other possible ion sink profiles,~sið~rÞ, and the details of
such solutions may differ from the solution presented here. The main
effect discussed here, however; the hollowing out of the density and
the viscosity profiles, is weakly dependant on the specific ~sið~rÞ profile
and requires only the functional dependence ~g1 / ~n2.
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APPENDIX: BOUNDARY LAYERS

The above solution includes several boundary layers in the
electron angular velocity, effective heat transfer coefficient, and the
temperature difference between electrons and ions. The arguments

FIG. 3. Temperature difference between ions and electrons at the center of the cyl-
inder, and the maximal temperature difference as a function of q& (top), and the
power-law dependence of the same curves (bottom). Results from the nonlinear
solution in MITNS. The ion sink term was ~si ¼ )5q2

&", such that Fi % q&, with
" ¼ 0:1.
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of the boundary layers are expressed in terms of the electron viscos-
ity and heat transfer coefficients. Using Braginskii’s classical trans-
port coefficients, the argument of the electron angular velocity
boundary layer term is

~r
q&

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~me~ne~! ei

~g1e

s

¼
~r
q&

~Bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:51~T e ~me

p ¼ 1:4
rXe

vthe
¼ 1:4

r
qe
: (A1)

Here, qe is the electron Larmor radius. This boundary layer is thinner
than a Larmor orbit. As such, the classical transport model breaks
down at these length scales; hence, we must abandon this boundary
layer solution and the boundary condition that produced it, and resort
to a full slip condition for the electron fluid at the outer edge of the cyl-
inder. This same boundary layer appears in the effective electron heat
conduction and must be discarded there as well.

As such, in the limit of Braginskii’s classical transport, Eqs.
(27), (50), and (57) should simply read as

ð ~r ( ~peÞhð1Þ ¼ 0; (A2)

~xe ¼ ~x i )
3
2

q&
~r~B

d~Te

d~r
; (A3)

~jeeff ¼ 6:91
~pe~! ei

~me
~X
2
e

: (A4)

However, some non-classical transport effects,35 such as turbulent
anomalous transport, or the effects of perturbations to the magnetic
field,36 might enhance the electron viscosity above Braginskii’s val-
ues, while still maintaining the validity of the fluid approximation.
In these cases, if the effective electron viscosity might be large
enough such that the boundary layer thickness might encompass
several Larmor orbits, the boundary layer solution in the electron
angular velocity might be a true physical effect.

The argument of the temperature-difference boundary layer,
using Braginskii’s classical transport coefficients, is

~r
q&

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3~ni~! ie ~j)1eeff þ ~j)1i

, +r
¼

~r
q&

0:71ffiffiffiffiffiffi
~mi
p : (A5)

This boundary layer does encompass many electron gyro-orbits and
is plausible because of it. Physically, it must be enforced by some
effect on the boundary. We are not concerned with modeling the
plasma–surface interactions that might lead to this electron temper-
ature boundary layer and conclude that the fluid approximation is
valid for a boundary layer with possibly a different boundary value
for the electrons other than the ions.

Note that the magnitude of DTei, for the constant coefficient solu-
tion, is controlled by the scaling of the flux (~si or equivalently Fi), which
directly affects ~x 0i, and is not dependent on the exact form of the viscos-
ity or heat transfer coefficients. Trying to maximize ~T i ) ~Te in Eq.
(61), by changing ~jeeff only, or in conjunction with ~g1e, using an anom-
alous electron transport, for example, would yield limited results.

In a fusion reactor, when a-channeling is missing or is insuffi-
ciently effective at removing the fusion ash, the ash would slow
down on the electrons and introduce significant electron heating.
Indeed this mechanism typically causes a hot electron mode.
Alternatively, Bremsstrahlung radiation introduces a heat sink in
the electrons, which would help maintain a hot-ion mode, when
dealing with mildly relativistic plasmas such as in p) B11 reactors.
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