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Velocity-space compression from Fermi acceleration with Lorentz scattering
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The Fermi acceleration model describes how cosmic ray particles accelerate to great speeds by interacting with
moving magnetic fields. We identify a variation of the model where light ions interact with a moving wall while
undergoing pitch angle scattering through Coulomb collisions due to the presence of a heavier ionic species.
The collisions introduce a stochastic component which adds complexity to the particle acceleration profile
and sets it apart from collisionless Fermi acceleration models. The unusual effect captured by this simplified
variation of Fermi acceleration is the nonconservation of phase space, with the possibility for a distribution of
particles initially monotonically decreasing in energy to exhibit an energy peak upon compression. A peaked
energy distribution might have interesting applications, such as to optimize fusion reactivity or to characterize
astrophysical phenomena that exhibit nonthermal features.
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I. INTRODUCTION

The Fermi acceleration model was introduced to describe
how cosmic ray particles are accelerated to great speeds by
interacting with moving magnetic fields [1,2]. Since then,
many variations of the model have been studied. One well-
known example is the Fermi-Ulam model which describes
the acceleration of an ensemble of noninteracting particles
bouncing between a moving wall and a stationary wall [3,4].
Several studies have examined different billiard shapes [5-8],
wall movement setups [5,9-12], and particle forces [12—14]
and how this affects particle acceleration and accessible points
in phase space.

Consider another variation where particles interact with
a moving wall while also undergoing pitch angle scattering.
Suppose that the pitch angle scattering, also called Lorentz
scattering, is effected by means of Coulomb collisions of light
ions with a background of heavy ions. We assume that other
types of collisions occur on a much greater timescale and
therefore do not consider their effects in our model. We also
assume that the moving wall has a negligible effect on the
density of the heavy ions, either by allowing these particles
to pass through or stick to the wall as it compresses. Figure 1
shows a graphic of this system. This setup is not unique in that
it considers Fermi acceleration with pitch angle scattering, as
other studies have investigated aspects of this collisional effect
[15-18]. However, these studies have added many features si-
multaneously, such as electromagnetic fields, fluid effects, and
complex scattering systems which do not isolate the effects we
report in this paper.

The unique aspect of our problem is the simplicity of our
system, paired with the limit in which we study the collisions,
which results in a distinctive scaling between the change in
energy and the initial energy of a particle. Since we are setting
the Coulomb collision time as the smallest timescale in the
system, pitch angle scattering will be the primary mechanism
for reflecting particles back towards the moving wall rather
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than being reflected by any wall on the other side. Introducing
this stochastic effect into the system will influence the fre-
quency at which particles interact with the moving wall and
therefore also affect the total evolution of the particle distri-
bution function. In particular, due to the relationship between
the mean free path for Coulomb collisions and the speed of
a particle, the rate at which a particle is accelerated by the
moving wall may be heavily dependent on its initial speed
and the collision frequency with the background species. This
would imply that such a system could be tuned with these
parameters to accelerate distributions of particles in a desired
way to achieve a peaked energy distribution.

To get an idea of the underlying physics in the system,
first we study a simpler one-dimensional (1D) problem where
we treat Lorentz scattering by having particles reflected back
towards the moving wall after traveling one collisional mean
free path. We call this the plasma wall approximation, since
particles are being reflected at a fixed length. This setup results
in an invariant conserved during compression which signifi-
cantly differs from the collisionless adiabatic invariant. In a
more sophisticated model we use a random walk representa-
tion of Lorentz scattering and calculate the expected increase
in energy from the wall movement. This model predicts an
inverse relationship between the change in energy and the
initial energy. Specifically, it predicts that in the limit of small
compression (AE < Ep) with many pitch angle scattering
collisions (7col < Teomp), the change in energy scales with
E; % 4, where Ej is a particle’s initial energy, T is the time
between collisions, and Tomp is the total compression time.
We also further confirm the scaling in this limit through a
basic computational particle simulation. The inverse relation-
ship allows less energetic particles to experience a greater
increase in energy than more energetic ones, resulting in
narrower distributions compressed in velocity space. This is
the opposite relationship of that described by the well-known
example of slowly compressing a container of noninteracting
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FIG. 1. Particles interacting with a wall moving at speed v,
while pitch angle scattering with a background species.

particles. This unique relationship and the non-Hamiltonian
nature of the system makes this problem interesting to study,
particularly because of the possibility of nonthermal features
and phase space nonconservation.

The paper is organized as follows. In Sec. II we consider a
simple 1D problem where particles are reflected after traveling
a mean free path and identify an invariant. In Sec. III we
describe the implications of our 1D random walk model and
determine how the energy increase scales with a particle’s
initial energy. Section IV features a summary of our study and
a discussion of the results.

II. 1D PLASMA WALL APPROXIMATION

Many Fermi acceleration models can be simply described
by interactions of bouncing balls with moving and stationary
rigid walls. Our variation is characterized by the inclusion of
two species of ions with significantly different masses and the
interactions between them. To get an idea of the physics of
this system, we start by studying a simpler problem where
particles are reflected after traveling a mean free path. This
simple plasma wall approximation captures the key physics
phenomena.

A. Model and assumptions

Consider a 1D model of an ensemble of ions in a box
interacting with a rigid wall moving at constant speed vy,
much smaller than any particle speed. A second ensemble of
more massive ions is assumed to be nearly stationary in the
background and either passes through or sticks to the moving
wall as it compresses. The interspecies Coulomb collision
time is assumed to be the smallest timescale, followed by the
total compression time and then the collision time for the light
ions interacting with themselves. This time ordering prevents
the light species from thermalizing during compression. In the
case where there are no collisions, particles bounce back and
forth between the moving wall and a stationary wall at the
other end of the box, separated by distance L while conserving
action. In the case where the collisional mean free path is very
small compared to the system size, pitch angle scattering is
considered to be the primary mechanism of reflecting particles
back towards the moving wall. A simple way to model this
effect in the 1D problem is to have particles be reflected after
traveling one mean free path, 4,7, = av?, into the box, where
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FIG. 2. Particles interacting with a moving wall while being re-
flected after traveling a mean free path.

« is a constant and v is the particle speed. The length of the
box L is much greater than any particle’s mean free path, so
most particles are reflected before ever reaching the stationary
wall on the other side. Therefore that wall can be neglected.
Figure 2 shows a graphic of the plasma wall approximation.

B. Invariants of motion

Key aspects of the pitch angle scattering can be expressed
by the 1D plasma wall model. In particular, the nature of
the interaction is non-Hamiltonian, allowing for phase space
nonconservation, although the system still exhibits invariants.
The adiabatic invariant for collisionless particles being com-
pressed in a 1D box with width L is the well-known

Ji =L, ey
and it turns out that the plasma wall model holds the invariant
J = AL + to*, )

where AL is the total distance compressed, taken to be neg-
ative. The moving wall displacement over a particle bounce
time is given by

dL = —Vylhounce, (3)

where fyounce = 2000 is the amount of time a particle with
speed v spends between interactions with the moving wall.
By making this substitution and using the relation dv = 2v,,,
the equation becomes

dL = —av’dv. 4)
Finally, by integrating and rearranging we are left with
AL + }1011)4 =C, &)

where C is some constant which we will denote as J,. Al-
though this invariant is a direct result of v,, being a small
parameter, it is not formally an adiabatic invariant. Adiabatic
invariants are synonymous with action conservation in slowly
varying Hamiltonian systems; however, this system is non-
Hamiltonian, and we will show it does not conserve total
phase space.

These two invariants have a stark physical difference,
since particles which conserve J; will experience a greater
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acceleration rate if they begin with a greater initial velocity,
while the opposite is true for J,. This relationship occurs
because in the plasma wall model, fast particles spend a
greater amount of time away from the wall since the mean free
path scales with v*, which is a phenomena unique to Lorentz
scattering. The fact that less energetic particles achieve a
greater increase in energy over some compression time causes
velocity-space compression.

To gain insight on how an ensemble of particles evolves
as a whole, we can derive a Fokker-Planck equation for the
particle distribution function f(x, v, ¢). We are most interested
in how the distribution is accelerated and not necessarily in the
spatial location of particles, since they will be confined within
a collisional mean free path of the moving wall. Therefore the
focus will instead be on deriving an equation for the spatially
averaged distribution function f(v, t). To further simplify the
problem, we will assume that particles receive a continuous
acceleration over the period of a bounce rather than a discrete
gain in speed at the end of each period. This approximation is
realized under the assumption that the wall speed v,, is much
smaller than any particle speed and that its evolution is slow
compared to a bounce time. In addition, we are only interested
in the evolution of f (v, t) on timescales which are much larger
than the bounce time so that many bounces occur. The speed
of particles in this continuous acceleration approximation will
evolve according to the following stochastic Langevin equa-
tion:

dv = a(v)dt ++/2D(v, t)dW, (6)
where a(v) = v, /av?, D(v,t) is a characteristic diffusion
coefficient, and dW is the differential Wiener process. The
Wiener process is a continuous time stochastic process which
is commonly used in modeling Brownian motion [19]. In our
system we have not described any physical mechanisms for
diffusion; however, the inclusion of variance in the wall speed
or bounce time could result in a nonzero diffusion coefficient.
The Langevin equation directly implies an associated forward
Kolmogorov equation for the probability distribution func-
tion f(v,t), also called a Fokker-Planck equation [20]. The
Fokker-Planck equation implied by the Langevin equation
in (6) is

af(v,t) 0 02

= —%[a(v)f(v, D+ ﬁ[D(v,t)p(vJ)]- @)
If each particle receives a speed increase of exactly Av = 2uv,,
over the bounce time fyoupce = 200> as in our model, then
D(v,t) = 0. In this case the equation is easily solved using
the method of characteristics. Solutions to this equation have
the form

fu, 1) = v3h<u4 — 4’;—"%), ®)

where h(x) is an arbitrary differentiable function, chosen to fit
the initial condition fy(v, 0). For an initial uniform distribu-
tion between v; and v,, the solution is

v30 (v4 + 4% — v‘f)
(v + 42
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FIG. 3. Evolution of a step velocity distribution conserving the
invariant J, = AL + Jav®.

where we have made the change of variables AL = —v,¢, and
0(x) is the usual heaviside step function. Figure 3 shows the
evolution of this distribution at different stages of compres-
sion. Note from the Langevin equation that particles obey the
invariant J, in the case of no diffusive processes during com-
pression. Since the particles with greater speed experience less
acceleration, the distribution becomes compressed in velocity
space, resulting in a narrower peaked distribution.

C. Phase space volume

Although we have identified compression in velocity
space, the total phase space is not necessarily compressed. As
particles gain energy from interacting with the moving wall,
they will occupy a greater amount of physical space since the
mean free path increases with an increased speed.

To understand how these effects compete, consider an ini-
tial distribution uniformly distributed in 2D (x, v) phase space
between (v = vp, v = v;) and (x = 0, x = A,rp). When the
rigid wall begins to move, particles will gain energy from
interacting with this wall. As previously shown, the less en-
ergetic particles will experience the greatest increase in speed
(Avy > Avj). The initial and final phase space volumes are
given by

vy
i:/ avidv (10)
vo
and
v+Av;
Pf=/ avtdv, (11)
’ vo+Avg

respectively. In the limit of small wall compression
(Av/v < 1) the change in phase space volume to first order
in Avg; is

AP = a(viAv; — vjAv)). (12)
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FIG. 4. Particles interacting with a moving wall while taking a
1D random walk with a step size equal to a collisional mean free
path.

In this limit we can also approximate the form of Av as

Tcomp
Av =2 . 13
V=200 o3 (13)
Making this substitution into (12) yields
AP = vy Teomp(v1 — Vo), (14)

which clearly is greater than zero. Therefore, the expansion
in physical space causes a net phase space volume increase
despite the compression in velocity space.

III. RANDOM WALK MODEL

The plasma wall model described in Sec. II of ions re-
flecting after traveling one mean free path provides insight
into the physics of Fermi acceleration with Lorentz scattering;
however, it fails to fully capture the effect and cannot easily
be scaled to three dimensions. A more accurate model of pitch
angle scattering can be described with a random walk rather
than forcing particle reflection at a mean free path. This is also
relatively straightforward to extend from 1D to higher dimen-
sions. The random walk model turns out to retain the most
important feature, which is the inverse relationship between a
particle’s change in energy and its initial energy. Furthermore,
in the limit of many collisions during the compression time,
we can estimate the exact form of this relationship.

A. Additional assumptions

Particles now take a random walk with the step size equal
to one mean free path rather than being reflected. After each
particle collision time 7., = av?, a particle will either con-
tinue on in the same direction or be reflected, exhibiting a
random walk. This permits a stochastic component into the
system, since a particle bounce time is now described by a
probability distribution rather than a set time. A graphic of the
random walk model is shown in Fig. 4.

B. 1D energy scaling

In a 1D random walk of n steps, the expected number of
equalizations (or returns to the origin) r in the limit of large n
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FIG. 5. Evolution of a step velocity distribution from compres-
sion while following the rate of the expected number of wall
interactions given by (16).

is interestingly given by

Elr] = \/zﬁ (15)
T

[19,21]. The number of steps in our particle system can be
expressed in terms of the total compression time Tiomp and
the collision time, Tcol, as 1 = Teomp/ Teol- Therefore, for small
compression (Av < vg) the expected increase in velocity for
a particle with initial speed vy is

22 |T:
E[Av] = [ comp

VT vl Yu-
This yields an unusual dependence of the speed increase with
v~3/2 or equivalently, the energy increase with E~!/4, The in-
verse dependence implies that slower, less energetic particles
will receive a greater kick in energy than more energetic par-
ticles, resulting in the expected velocity-space compression.
Figure 5 shows the evolution of a uniform velocity distribution
adhering to the expected velocity gain given by (16). Here we
define Teomp = —AL/vy,.

The compression of the distribution in velocity space is
similar to that demonstrated in Fig. 3, although to a lesser
degree. This is a result of the random walk model’s weaker
inverse scaling between a particle’s speed and the acceleration
it will experience. In this figure we have also assumed that
all particles evolve according to the expected energy gain and
have not accounted for the full distribution of energy gains
from the random walk model. Nevertheless, we still see the
expected compression in velocity space. As the distribution
evolves, it becomes narrower and develops a peak in the lower
energy regime of the distribution. Since the system is stochas-
tic, the total phase space is consequently also not conserved
as in the plasma wall approximation.

16)

C. Higher dimensions

For systems of higher dimension, the scaling law given by
(15) for the 1D problem is expected to hold, with the only
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FIG. 6. Velocity increase following compression as a function
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difference being the constant factor. To demonstrate this, con-
sider an m-dimensional spatial system with the wall moving
parallel to any one of the dimensions. Suppose that particles
randomly walk along a uniform m-dimensional lattice with
grid points separated by a mean free path distance. If each
scattering direction is equally likely to occur at a step and a
particle takes a total number of 7 steps, then the total number
of these steps expected to be along the direction parallel to
the wall’s movement is n/m. Since the system has transla-
tion symmetry in all directions perpendicular to the wall’s
movement, this setup is equivalent to a 1D random walk of
n/m steps, and therefore the expected number of particle-wall
interactions is given by

2
E[r] = ‘/Eﬁ' (17)

Understandably, this is less than the strictly 1D case, since
particles can now “waste” steps on other degrees of freedom.
In a realistic three-dimensional (3D) system, particles are
not restricted to a grid so the constant factor in (17) will be
different to account for scattering at any spherical angle.

D. Numerical results

A simple particle simulation was written to investigate the
effect of Coulomb pitch angle scattering in the 3D random
walk case. A total of 10° particles were initialized at the
surface of a moving, rigid wall with velocities directed away
from the wall. The particles were divided into ten groups with
different initial velocities in order to determine how the speed
increase scaled with the initial speed. There was no stationary
wall implemented on the other side of the simulation domain,
so pitch angle scattering was the only mechanism responsible
for turning particles back towards the moving wall. Collisions
were simulated by randomly changing a particle’s pitch an-
gle every time it traveled one mean free path, Az, = av?.
Figure 6 shows the average change in velocity for each sub-

group as a function of their initial velocity after a compression
time of about 5000 collisions for the least energetic group of
particles.

Clearly the result shows an inverse relationship between
the two variables as shown earlier in the 1D case. When
there is a significant velocity increase over the compression
time, the scaling is near Av ~ v, 2 (or equivalently, AE ~
E, 1/ 4), as shown by the fitting curve, which is also consistent
with our analytic prediction from earlier in the section. This
inverse scaling is the key to obtaining the nonthermal peaked
distributions shown in Figs. 3 and 5 from velocity-space com-
pression.

IV. SUMMARY AND DISCUSSION

We presented a simple model for a two species ion ensem-
ble interacting with a moving wall while also undergoing pitch
angle scattering. We predicted an interesting inverse relation-
ship between the change in energy from compression and the
initial particle energy. It follows that less energetic particles
experience greater acceleration, resulting in compression of
the particle distribution in velocity space. This velocity-space
compression could generate potentially favorable peaked en-
ergy distributions as shown in Figs. 3 and 5.

The nonthermal phenomena predicted by these models
could be of interest to various areas of plasma physics, since
we are considering Lorentz scattering of charged particles. In
particular, due to the mass difference between the two species,
the model could describe some aspects of p'!'B interactions.
This is a potential fuel source for aneutronic fusion [22], and
the velocity-space compression could provide a mechanism
for obtaining favorable proton energy distributions to increase
fusion reactivity [23-25]. The moving wall in this case could
represent either a physical wall compressing or a moving mag-
netic field structure in a magnetic mirror confinement setup
[26]. The model could also be used to describe a variation of
cosmic ray acceleration, where the Lorentz scattering mean
free path is small compared to the system size. Identifying
acceleration mechanisms in astrophysical settings using Fermi
acceleration models is an ongoing area of study [27-30], and
the phenomena outlined in this paper may be applicable to the
field.

We opted for simplicity in our models to isolate the impor-
tant effects described in this paper. However, in real plasmas
there are more complex features such as collisions within a
species which allows ions to thermalize. Thermalization could
significantly dampen velocity space compression, which is
why we examined the limit where interspecies collisions dom-
inate over the light ion collisions with themselves. In this limit
we have identified some unique effects of Fermi acceleration
with Lorentz scattering. The most interesting aspect of the re-
sults is the potential for nonthermal, non-Hamiltonian features
in the compression due to the nonconservation of phase space.
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